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Leaning into STEM: Predicting STEM Major 
Choice Using Measures of Academic Tilt and 
Measured Interest Tilt 

Paul Westrick, PhD, Justine Radunzel, PhD, & Dina Bassiri, PhD 

This study examined the value of using measures of academic “tilt” and 
vocational interest “tilt” to predict whether students will declare a STEM major 
during their first term in college. Academic tilt looks at students’ relative 
academic strengths by appropriately comparing their math and science 
achievement levels to their English, reading, and social studies achievement 
levels. Vocational interest tilt measures are based on students’ People/Things 
and Data/Ideas work-task dimension scores that underlie the ACT World-of-
Work map. Results suggested that having a relative strength in math and 
science achievement and having a tilt toward things and ideas on the 
People/Things and Data/Ideas dimensions are positively related to STEM major 
choice, after statistically controlling for mathematics and science academic 
achievement levels, high school coursework taken and grades earned, major 
intentions, certainty of major intentions, and gender. 

As new initiatives and programs are 
implemented to promote STEM (Science, 
Technology, Engineering, and Mathematics) 
interest and participation among US students, 
it is important to gain a better understanding 
of what student characteristics are useful for 
identifying those who are likely to declare a 
STEM major during their first term in college. 
Prior research has found that having higher 
mathematics and science standardized test 
scores, taking higher-level mathematics and 
science coursework in high school, expressing 
interest in a STEM-related field, and having 
measured vocational interests in STEM are 
positively related to STEM major choice, 
persistence, and degree completion in college 

(Le, Robbins, & Westrick, 2014; Mattern & 
Radunzel, 2016; Mattern, Radunzel, & Westrick, 
2015; Radunzel, Mattern, & Westrick, 2016). 

It is also widely recognized that female 
students are underrepresented in math-
intensive STEM fields, both in college and in the 
workforce (National Science Foundation, 2015). 
Researchers have examined this issue from 
multiple perspectives and provided alternative 
explanations for the difference in male/female 
participation rates. Some researchers have 
studied the gap by examining vocational 
interests. Using Holland’s (1959; 1997) 
framework of vocational interests and 
Prediger’s (1982) People/Things (PT) and 
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Data/Ideas (DI) work-task dimensions, there is 
strong evidence that males prefer occupations 
that are associated with working with things 
and females’ interests are more aligned with 
occupations that emphasize working with 
people (Su, Rounds, & Armstrong, 2009). These 
studies also suggest that math-intensive STEM 
fields such as engineering tend to attract 
students with a stronger interest in working 
with things. 

Other research suggests that students’ 
perceptions of their relative strength, whether 
they are better (or worse) at math-intensive 
studies than they are at verbal-intensive 
studies, influences students’ decisions on 
whether or not to enroll, persist, earn a degree, 
and eventually work in a STEM field (Coyle, 
Purcell, Snyder, & Richmond, 2014; Davison, 
Jew, & Davenport, 2014; Riegle-Crumb, King, 
Grodsky, & Muller, 2012). The literature also 
suggests that students with high mathematics 
ability also tend to have high verbal abilities, 
and this is especially true for female students, 
giving them a wide variety of academic majors 
from which to choose (Lubinski & Benbow, 
2007). In contrast, male students with high 
mathematics ability are said to have a larger 
gap in their mathematics and verbal abilities 
and are thus more likely to see themselves as 
constrained to math-intensive STEM fields (e.g., 
Lubinski & Benbow, 2007). 

An exploratory analysis from a recent study by 
Westrick (2018) provides some support for the 
notion that students tend to gravitate toward 
academic majors that match their relative 
academic strengths. The study examined the 
precollege academic and measured interest 
profiles of fourth-year undergraduate students 
and found that males generally showed greater 
strength in math and science on average 
among those in STEM majors and greater 
strength in English and reading among those 
in non-STEM majors. In comparison, females 

generally showed greater strength in English 
and reading on average across all the majors 
examined in the study, but the magnitude of 
the tilt toward higher verbal skills was found to 
be higher among verbal-intensive majors than 
among math-intensive majors with almost no 
tilt found in Engineering. These findings 
highlight the need for further research on this 
topic to better understand whether students’ 
relative academic strengths help to explain why 
females tend to be underrepresented in math-
intensive STEM fields. 

Building on these previous studies, the study 
had three objectives. The objectives were to 1) 
develop measures of relative academic 
strength or “tilt” as related to differences in 
STEM and non-STEM achievement levels; 2) 
examine whether academic tilt and established 
vocational interest tilt measures on Prediger’s 
People/Things and Data/Ideas dimensions are 
predictive of STEM major choice, after 
statistically controlling for mathematics and 
science achievement, high school coursework 
taken and grades earned, major intentions, 
certainty of major intentions, and gender; and 
3) determine if the effects of the academic 
achievement and tilt measures on STEM major 
choice differ by gender. 

Data 

The data included nearly 80,000 students who 
took the ACT® test, enrolled as a first-time 
entering student in fall 2005 through 2009, and 
declared a major during their first fall term of 
enrollment. More than 40 four-year 
postsecondary institutions were represented in 
the sample. The institutions were diverse with 
regard to institutional control, selectivity, and 
size. Seventy percent were public institutions, 
23% had highly selective admission policies, 
and more than one-half (56%) had a student 
body of fewer than 5,000 students. Institutions 
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provided the six-digit Classification of 
Instruction Program (CIP) major codes; these 
codes were used to identify STEM and non-
STEM majors. Students’ demographic 
characteristics, high school coursework and 
grades, major plans and interests, and ACT 
Interest Inventory results were obtained from 
the ACT registration database; students 
provided this information at the time they 
registered to take the ACT. Official ACT test 
scores were also obtained. If students took the 
ACT more than once, only scores from the most 
recent ACT administration were used. 

Methods 

Defining STEM Major Choice 
The study outcome was math-intensive STEM 
major choice during the first fall term of college 
enrollment and was coded as a binary outcome 
(STEM major (1) vs. non-STEM major (0)). 
Researchers have distinguished between 
math-intensive STEM fields, non-math-
intensive STEM fields, and non-STEM fields (e.g., 
Ceci, Williams, & Barnett, 2009; Pennock-
Roman, 1994). The math-intensive STEM 
programs included in this study were 
Engineering and Technology, Computer 
Science and Mathematics, and Natural Science 
majors.1 Inclusion of these majors as being 
math-intensive is supported by the results from 
a catalog and course transcript review of the 
typical first-year mathematics course taken in 
college by STEM majors (overall and by cluster) 
and non-STEM majors (see Table 3 from 
Mattern et al. (2015) for more details). For the 
purposes of this study, Medical & Health majors, 
which are sometimes considered STEM majors 
(ACT, 2016), were not included. All other majors 
were classified as non-STEM. 

Defining Academic Tilt 
There are multiple ways that one might 
compare test scores to define a relative 
academic strength or “tilt” measure on 
differences in students’ STEM and non-STEM 
achievement levels. Two methods include 
examining (1) the difference in scale scores and 
(2) the difference in score percentiles. Each 
approach has its weakness. For example, a 
student may have a higher scale score on Test 
A than on Test B, but the student may have a 
higher percentile rank on Test B than on Test A. 
The problem is that score distributions can 
differ across subject tests that use the same 
score scale. Based on these methods, the 
student’s relative academic strength or “tilt” 
would depend on the approach used. 
Standardizing the scale scores for each 
measure eliminates this issue (Coyle et al., 2014; 
Shea, Lubinski, & Benbow, 2001). Therefore, in 
this study, relative academic strengths were 
determined by subtracting the z-scores of non-
STEM achievement from the z-scores of STEM 
achievement. The means and standard 
deviations from a national reference group of 
ACT-tested students were used to convert the 
scale scores to z-scores. ACT examinees from 
fall 2003 through spring 2009 served as the 
reference group for this study. This approach 
accounted for differences in the score 
distributions across subject areas. 

Two different relative academic strength 
variables that measured a tilt toward STEM-
related subject areas were examined in this 
study. The first variable (labeled as ACT tilt) was 
based on ACT test scores. It was calculated as 
the difference in the standardized mean ACT 
mathematics and science score (or the ACT 
STEM score) minus the standardized mean ACT 
English and reading score. The second variable 
(referred to as high school grade point average 
(GPA) tilt) was based on students’ grades 
earned in their high school courses. It was 
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calculated as the difference in the standardized 
high school STEM GPA (that is, the mean high 
school mathematics and science GPA) minus 
the standardized mean high school English 
and social studies GPA. 

Defining Vocational Interest 
Tilt 
Students’ ACT Interest Inventory scores were 
converted to Prediger’s (1982) People/Things 
and Data/Ideas work-task dimension scores, 
which serve as ideal measures of vocational 
interest tilt. Students’ ACT Interest Inventory 
scores are reported visually on the ACT World-
of-Work Map (see Figure 1), which links 
individuals measured interests to career 
clusters. Underlying the map are the 
People/Things and Data/Ideas dimensions. 
Math-intensive STEM fields such as 
Engineering & Technologies, Natural Science & 
Technologies, and Computer & Information 
Specialties are located in the right of the map, 
oriented more toward Things than toward 
People on the People/Things dimension. Most 
STEM fields are located in the bottom half of 
the map, higher on Ideas than on Data on the 
Data/Ideas dimension, though Computer & 
Information Specialties are located near the 
middle of the map. Students’ People/Things 
and Data/Ideas work-task dimension scores 
were converted to z-scores using the same 
national reference group of ACT-tested 
students that was used when standardizing 
students’ ACT scores and subject area high 
school GPAs. The standardized z-scores served 
as the People/Things and Data/Ideas tilt 
measures in this study. 

Other Predictors 
Other predictors included intended academic 
major (categorized as STEM, medical and 
health, non-STEM, and undecided); certainty of 

major intentions (categorized as very sure, fairly 
sure, not sure); taking Calculus in high school 
(yes=1, no=0); taking Physics in high school 
(yes=1, no=0); and gender (male=1, female=0). 
Major sureness was relevant for students with 
an intended major only; it was not evaluated for 
undecided students. Consequently, when the 
major sureness variable was included as a 
predictor in the models, it was included in 
relation to intended major 2.

Statistical Procedures 
Due to the nested structure of the data, 
hierarchical logistic regression models with 
random slopes and random intercepts were 
used to estimate students’ likelihood of 
declaring a math-intensive STEM major. Three 
models were compared. The first included 
measures of academic achievement, intended 
academic major, sureness of intended major, 
and gender. The second model added the four 
tilt measures of ACT-tilt, HSGPA-tilt, 
People/Things tilt, and Data/Ideas tilt to the first 
model, where the first two variables were the 
academic tilt measures and the last two were 
the vocational interest tilt measures. The third 
model added interactions between gender and 
six other predictors to the second model: ACT 
STEM score, STEM-HSGPA, ACT-tilt, HSGPA-tilt, 
People/Things tilt, and Data/Ideas tilt. 

To assess model fit, we calculated the typical 
accuracy rate (AR) and logistic R across 
institutions. The AR estimates the proportion of 
students correctly identified as entering either 
a math-intensive STEM major or a non-STEM 
major. The logistic R – defined as the standard 
deviation of the estimated logit function (Allen 
& Le, 2008) – measures the overall predictive 
strength of the model. The higher the logistic R 
is, the stronger the relationship is between the 
predictors and the criterion. This measure is 
derived in a manner analogous to that for the 
multiple R in multiple linear regression, but it is 
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appropriate for logistic regression models. 
Given that it is the standard deviation of the 
estimated logit function, it is not bounded 
between 0 and 1 as is the multiple R. 

Results 

Descriptive Statistics 
Tables 1 and 2 contain descriptive statistics on 
student characteristics for the national 
population of ACT-tested students and the 
sample, respectively. The study sample tended 
to be better prepared academically than the 
national population, on average. For example, 
the means for ACT scores – ACT STEM and ACT 
English and reading – and high school GPAs – 
STEM HSGPA and English and Social Studies 
HSGPA – were higher in the sample than in the 
population. The directionality of the tilt 
measures by gender tended to be similar 
between the sample and the population. For 
instance, the mean ACT-tilt for male students 
was 0.18 nationally and 0.22 in the sample. For 
female students, the national mean was   -0.14 
compared to -0.33 in the sample. This indicated 
that male students had performed, on average, 
relatively stronger on ACT math and science 
tests than they had on the English and reading 
tests, and female students had performed, on 
average, relatively stronger on the ACT English 
and reading tests than they had on the math 
and science tests. A similar pattern held for 
HSGPA tilt where the standardized value was 
0.07 for male students and -0.07 for female 
students, nationally, but the mean HSGPA-tilt 
in the sample was 0.05 and 0.03 for male and 
female students, respectively. For measured 
interests, the male average on the 
People/Things dimension was 0.29 nationally 
and 0.21 in the sample (tilted toward Things) 
whereas the female average was -0.23 
nationally and -0.33 in the sample (tilted toward 
People). Gender differences on the Data/Ideas 

dimension in the sample and nationally were 
smaller, with means close to zero for both 
males and females. 

Predicting STEM Major Choice 
Overall, 34% of the students in the sample 
declared a math-intensive STEM major during 
their first term in college; however, this rate 
varied across institutions (median = 30%, 10th 
percentile = 17%, 90th percentile = 39%). 
Additionally, the likelihood of declaring a math-
intensive STEM degree was found to be 
significantly related to all of the student 
characteristics included in the first model (see 
Table 3). Specifically, students who entered 
college better prepared academically in 
mathematics and science had a greater 
likelihood of declaring a math-intensive STEM 
major during their first semester. This is 
evidenced by all of the academic measures – 
ACT STEM score, STEM HSGPA, taking a 
Calculus course, and taking a Physics course in 
high school – being positively related to the 
likelihood of declaring a math-intensive STEM 
major. Additionally, students who had 
expressed interest in a math-intensive STEM 
major or a Medical & Health STEM major, or 
who were undecided about their major 
intentions were more likely to declare a math-
intensive STEM major during their first 
semester than those who had planned to major 
in a non-STEM field. Moreover, the likelihood of 
declaring a STEM major increased as a 
student’s certainty about their STEM major 
intentions increased. The effect for gender was 
positive, indicating that male students were 
more likely to declare a math-intensive STEM 
major than were female students (adjusted 
odds ratio = 1.39), after statistically controlling 
for the other variables in the model. The 
median logistic R was 1.448, and the median AR 
was .809, indicating that approximately 81% of 
the students were correctly classified by the 
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model as having declared a math-intensive 
STEM major. 

Results for Model 2 are presented in Table 4. As 
in the first model, all of the student 
characteristics were significantly related to 
STEM major choice. Having a tilt toward math 
and science on the ACT-tilt and HSGPA-tilt 
measures and having a tilt toward Things and 
Ideas on the People/Things and Data/Ideas 
dimensions were each associated with an 
increased likelihood of declaring a STEM major. 
As these measures increased, the likelihood 
that a student would declare a math-intensive 
STEM major increased. Additionally, as was 
indicated in Model 1, results from Model 2 
suggested that male students were more likely 
than female students to declare a STEM major 
(adjusted odds ratio = 1.21). However, the gender 
effect in Model 2 was somewhat smaller than it 
was in Model 1. This finding suggests that 
statistically controlling for the tilt measures 
helped to reduce but did not eliminate the 
gender gaps in STEM major choice. Adding the 
tilt measures slightly increased the model fit 
statistics: The median logistic R increased from 
1.448 to 1.515 and the median AR increased from 
.809 to .812. 

Table 5 contains the results for the third model. 
Only one of the six interactions tested, Gender x 
STEM-HSGPA, was statistically significant. This 
finding suggests that the effect of the ACT 
STEM score and the four tilt measures on STEM 
major choice did not differ between males and 
females. For STEM-HSGPA, the interaction 
estimate was negative, indicating that the 
slope for STEM-HSGPA was steeper for female 
students than for male students. That is, the 
odds of declaring a STEM major that is 
associated with a one standardized unit 
increase in STEM-HSGPA was greater for 
females (adjusted odds ratio = 1.36) than for 
males (adjusted odds ratio = 1.24). Moreover, the 
significant Gender x STEM-HSGPA interaction 

indicated that the effect of gender on STEM 
major choice depended about students’ high 
school math and science GPAs. More 
specifically, the results suggested that the 
gender effect decreased as STEM-HSGPA 
increased when holding all other predictors 
constant.3 The median logistic R and median 
AR for Model 3 were essentially unchanged, 
1.518 and .812, respectively, from those in Model 
2. 

Conclusion 

In conclusion, the results from this study 
demonstrate the value of considering 
measures of academic tilt and vocational 
interest tilt when identifying whether a student 
is likely to enter a STEM major. Two measures 
for relative academic strength or tilt were 
explored that were derived by taking the 
differences in a student’s standardized STEM 
and non-STEM achievement levels. The first 
measure was based on ACT test scores and the 
second measure was based on subject area 
high school GPAs. The approach taken to 
obtain these tilt measures accounted for 
differences in the score distributions between 
STEM and non-STEM areas; this was done by 
first converting STEM and non-STEM 
achievement levels to standardized z-scores 
based on summary statistics obtained from a 
national reference group of ACT-tested 
students, and then subtracting the two z-
scores to obtain the academic tilt measures. 
Likewise, two measures of vocational interest 
tilt were examined using Prediger’s (1982) 
People/Things and Data/Ideas work-task 
dimension scores; these measures were 
standardized using summary statistics from the 
same national reference group. 

The two academic tilt measures were positively 
related to STEM major choice, meaning that 
students with greater tilt toward math and 
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science according to their test scores or their 
subject area high school GPAs had a greater 
likelihood of declaring a math-intensive STEM 
major. Additionally, as a student’s work-task 
dimension scores tilted more toward Things 
and Ideas on the People/Things and Data/Ideas 
dimensions, the more likely they were to 
declare a STEM major. These results held even 
after statistically controlling for mathematics 
and science academic achievement levels, high 
school coursework taken and grades earned, 
major intentions, certainty of major intentions, 
and gender. The findings lend support to 
previous research that has found a positive 
relationship between having a tilt toward math 
and science and choosing a STEM major (Coyle 
et al., 2014; Davison et al., 2014). This research 
adds to our understanding of which students 
are likely to declare a math-intensive STEM 
major as compared to a non-STEM major. 

Another key finding was that gender remained 
an important predictor of STEM major choice 
after statistically controlling for the other 

variables in the model. At the outset of the 
study, we had hypothesized that the gender 
effect would disappear once the academic tilt 
and vocational interest tilt measures were 
taken into account. This did not occur, though 
there was a reduction in the gender effect after 
the tilt measures were added to the model. 
Additionally, results from the third model that 
included interactions with gender indicated 
that the magnitude of the gender effect on 
STEM major choice decreased as students’ high 
school mathematics and science GPA 
increased. Future research is needed to better 
understand this relationship, as well as to 
identify other factors, such as spatial ability 
(Andersen, 2014; Lubinski, 2010; Shea et al., 2001; 
Snow, 1999; Super & Bachrach, 1957; Wai, 
Lubinski, & Benbow, 2009; Wood & Lebold, 
1968) and academic climate (Flam, 1991; Gayles 
& Ampaw, 2014; Walton, Logel, Peach, Spencer, 
& Zanna, 2014), that may explain the gender 
gaps among students declaring a math-
intensive STEM major in the first term of 
college. 
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Notes 
1. See Table A1 from Radunzel et al. (2016) for a list of the individual Classification of Instruction codes 

included for each cluster. 

2. In the models, the major certainty variable was multiplied by a dichotomous variable denoting whether 

the student had an intended major (coded as 1) compared to undecided students (coded as 0) to ensure 

the inclusion of the undecided students in the STEM major choice models. 

3. For example, the gender coefficient was estimated to be 0.209 for students with a STEM HSGPA of 3.15 

(adjusted odds ratio = 1.23), 0.171 for a student with a STEM HSGPA of 3.41 (adjusted odds ratio = 1.19), and 

0.091 for a student with a STEM HSGPA of 3.98 (adjusted odds ratio = 1.09), holding all other predictors 

constant at their sample mean values. 

Figure 1. Third edition of the ACT World-of-Work Map (ACT, 2009) 
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Tables 

Table 1. Descriptive Statistics for the 2003-2009 National ACT-Tested Population 

Overall Male Female 
Observed N Mean SD N Mean SD N Mean SD 

ACT STEM Score 7,767,175 20.9 4.7 3,380,370 21.4 4.9 4,207,731 20.4 4.4 

ACT English and Reading Score 7,767,175 21.0 5.7 3,380,370 20.6 5.8 4,207,731 21.2 5.7 

STEM HSGPA 5,975,818 3.15 0.68 2,536,262 3.09 0.71 3,361,215 3.19 0.66 

English and Social Studies HSGPA 6,030,699 3.30 0.64 2,559,982 3.20 0.67 3,391,648 3.38 0.60 

People-Things 6,485,296 -0.07 32.35 2,781,554 9.44 31.32 3,610,212 -7.36 31.23 

Data-Ideas 6,485,296 -3.48 33.75 2,781,554 -2.84 32.56 3,610,212 -3.97 34.64 

High School Calculus* 5,954,481 0.13 0.34 2,527,008 0.14 0.35 3,349,426 0.12 0.32 

High School Physics* 6,192,666 0.33 0.47 2,647,893 0.37 0.48 3,458,229 0.31 0.46 

Standardized 

ACT STEM Score 7,767,175 0.00 1.00 3,380,370 0.12 1.06 4,207,731 -0.10 0.94 

ACT English and Reading Score 7,767,175 0.00 1.00 3,380,370 -0.06 1.01 4,207,731 0.04 0.99 

STEM HSGPA 5,975,818 0.00 1.00 2,536,262 -0.09 1.03 3,361,215 0.06 0.97 

English and Social Studies HSGPA 6,030,699 0.00 1.00 2,559,982 -0.17 1.06 3,391,648 0.12 0.94 

People/Things 6,485,296 0.00 1.00 2,781,554 0.29 0.97 3,610,212 -0.23 0.97 

Data/Ideas 6,485,296 0.00 1.00 2,781,554 0.02 0.96 3,610,212 -0.01 1.03 

ACT-Tilt** 7,767,175 0.00 0.63 3,380,370 0.18 0.62 4,207,731 -0.14 0.60 

HSGPA-Tilt** 5,897,831 0.00 0.69 2,500,348 0.07 0.70 3,320,751 -0.07 0.67 

Notes. *The mean is the proportion of students who reported taking the course. **Calculated using the standardized measures, hence the 
SDs do not necessarily equal 1. 

SD = Standard deviation. 
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Table 2. Descriptive Statistics for the Overall Sample 

Overall Male Female 
Observed N Mean SD N Mean SD N Mean SD 

ACT STEM Score 79,464 22.7 4.6 35,684 23.5 4.8 43,780 22.1 4.2 

ACT English and Reading Score 79,464 23.2 5.5 35,684 22.9 5.6 43,780 23.4 5.3 

STEM HSGPA 79,464 3.41 0.57 35,684 3.37 0.59 43,780 3.45 0.54 

English and Social Studies HSGPA 78,854 3.56 0.49 35,373 3.48 0.52 43,481 3.62 0.45 

People/Things 75,510 -2.84 33.79 33,622 6.87 32.56 41,888 -10.63 32.72 

Data/Ideas 75,510 -2.69 35.77 33,622 -3.01 34.18 41,888 -2.43 36.99 

High School Calculus* 79,464 0.20 0.40 35,684 0.22 0.42 43,780 0.18 0.38 

High School Physics* 79,464 0.39 0.49 35,684 0.42 0.49 43,780 0.36 0.48 

Standardized 

ACT STEM Score 79,464 0.40 0.98 35,684 0.56 1.04 43,780 0.27 0.91 

ACT English and Reading Score 79,464 0.38 0.95 35,684 0.34 0.97 43,780 0.42 0.93 

STEM HSGPA 79,464 0.39 0.83 35,684 0.33 0.87 43,780 0.44 0.79 

English and Social Studies HSGPA 78,854 0.40 0.77 35,373 0.28 0.82 43,481 0.49 0.70 

People/Things 75,510 -0.09 1.04 33,622 0.21 1.01 41,888 -0.33 1.01 

Data/Ideas 75,510 0.02 1.06 33,622 0.01 1.01 41,888 0.03 1.10 

ACT-Tilt 79,464 0.02 0.66 35,684 0.22 0.64 41,888 -0.33 1.01 

HSGPA-Tilt 78,854 -0.01 0.57 35,373 0.05 0.58 41,888 0.03 1.10 

Note. *The mean is the proportion of students who reported taking the course. 

SD = Standard deviation. 
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Table 3. Predicting Math-Intensive STEM Major Choice, Model 1 

Solutions for Fixed Effects Estimate SE DF t Value p Value 
Intercept -2.412 0.110 42 -21.87 <.0001 

Intended Major 

   Math-Intensive STEM Major 1.608 0.103 42 15.61 <.0001 

   Medical & Health STEM Major 1.438 0.122 42 11.75 <.0001 

   Undecided 0.745 0.061 42 12.17 <.0001 

Sureness of Intended Major* 

   Very Sure -0.469 0.052 42 -9.03 <.0001 

   Fairly Sure -0.249 0.047 42 -5.32 <.0001 

Intended Major x Major Sureness Interaction 

   Math-Intensive STEM x Very Sure 1.621 0.080 42 20.36 <.0001 

   Medical & Health STEM x Very Sure 1.326 0.099 42 13.33 <.0001 

   Math-Intensive STEM x Fairly Sure 0.881 0.068 42 13.02 <.0001 

   Medical & Health STEM x Fairly Sure 0.555 0.083 42 6.72 <.0001 

ACT STEM Score 0.359 0.027 42 13.35 <.0001 

STEM-HSGPA 0.277 0.029 42 9.68 <.0001 

High School Calculus 0.337 0.026 42 13.16 <.0001 

High School Physics 0.149 0.029 42 5.17 <.0001 

Gender (male=1; female=0) 0.331 0.054 42 6.12 <.0001 

Model Fit, Institutional (N=43) Medians 

   Logistic R 1.448 

   Accuracy Rate 0.809 

Note. *Major sureness was examined for students with an intended major only; it was not evaluated for 
undecided students. An additional indicator for whether the student had an intended major (coded as 1) 
compared to undecided students (coded as 0) was multiplied by the major sureness main effect and 
intended major/major sureness interaction terms to ensure the inclusion of the undecided students in 
the sample used to estimate the STEM major choice models. 

SE = standard error. 

DF = degrees of freedom. 
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Table 4. Predicting Math-Intensive STEM Major Choice, Model 2

Solutions for Fixed Effects Estimate SE DF t Value p Value 
Intercept -2.240 0.108 42 -20.79 <.0001 

Intended Major 

   Math-Intensive STEM Major 1.410 0.098 42 14.33 <.0001 

   Medical & Health STEM Major 1.370 0.125 42 10.96 <.0001 

   Undecided 0.669 0.061 42 10.90 <.0001 

Sureness of Intended Major* 

   Very Sure -0.431 0.054 42 -8.03 <.0001 

   Fairly Sure -0.210 0.049 42 -4.28 0.0001 

Intended Major x Major Sureness Interaction 

   Math-Intensive STEM x Very Sure 1.568 0.083 42 18.92 <.0001 

   Medical & Health STEM x Very Sure 1.220 0.102 42 11.94 <.0001 

   Math-Intensive STEM x Fairly Sure 0.831 0.071 42 11.69 <.0001 

   Medical & Health STEM x Fairly Sure 0.474 0.087 42 5.47 <.0001 

ACT STEM Score 0.285 0.028 42 10.32 <.0001 

STEM-HSGPA 0.256 0.028 42 8.99 <.0001 

High School Calculus 0.351 0.026 42 13.29 <.0001 

High School Physics 0.146 0.030 42 4.88 <.0001 

Gender (male=1; female=0) 0.190 0.054 42 3.54 0.0010 

ACT-Tilt 0.175 0.028 42 6.17 <.0001 

HSGPA-Tilt 0.056 0.026 42 2.15 0.0370 

People/Things Tilt 0.270 0.022 42 12.52 <.0001 

Data/Ideas Tilt -0.201 0.021 42 -9.79 <.0001 

Model Fit, Institutional (N=43) Medians 

   Logistic R 1.515 

   Accuracy Rate 0.812 

Note. *Major sureness was examined for students with an intended major only; it was not evaluated for 
undecided students. An additional indicator for whether the student had an intended major (coded as 1) 
compared to undecided students (coded as 0) was multiplied by the major sureness main effect and 
intended major/major sureness interaction terms to ensure the inclusion of the undecided students in 
the sample used to estimate the STEM major choice models. 

SE = standard error. 

DF = degrees of freedom. 
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Table 5. Predicting Math-Intensive STEM Major Choice, Model 3 

Solutions for Fixed Effects Estimate SE DF t Value p Value 
Intercept -2.253 0.108 42 -20.92 <.0001 

Intended Major 

   Math-Intensive STEM Major 1.407 0.098 42 14.30 <.0001 

   Medical & Health STEM Major 1.370 0.125 42 10.98 <.0001 

   Undecided 0.668 0.061 42 10.91 <.0001 

Sureness of Intended Major* 

   Very Sure -0.430 0.054 42 -8.02 <.0001 

   Fairly Sure -0.209 0.049 42 -4.25 0.0001 

Intended Major x Major Sureness Interaction 

   Math-Intensive STEM x Very Sure 1.572 0.083 42 18.98 <.0001 

   Medical & Health STEM x Very Sure 1.222 0.103 42 11.92 <.0001 

   Math-Intensive STEM x Fairly Sure 0.833 0.071 42 11.72 <.0001 

   Medical & Health STEM x Fairly Sure 0.473 0.087 42 5.46 <.0001 

ACT STEM Score 0.252 0.031 42 8.24 <.0001 

STEM-HSGPA 0.309 0.034 42 9.21 <.0001 

High School Calculus 0.353 0.026 42 13.31 <.0001 

High School Physics 0.146 0.030 42 4.89 <.0001 

Gender (male=1; female=0) 0.188 0.055 42 3.40 0.0015 

ACT-Tilt 0.181 0.033 42 5.54 <.0001 

HSGPA-Tilt 0.025 0.034 42 0.75 0.4574 

People/Things Tilt 0.253 0.024 42 10.50 <.0001 

Data/Ideas Tilt -0.183 0.022 42 -8.43 <.0001 

Gender x ACT STEM Score 0.065 0.037 42 1.78 0.0829 

Gender x STEM HSGPA -0.097 0.038 42 -2.57 0.0140 

Gender x ACT-Tilt -0.014 0.038 42 -0.35 0.7244 

Gender x HSGPA-Tilt 0.051 0.044 42 1.17 0.2488 

Gender x People/Things Tilt 0.039 0.025 42 1.55 0.1277 

Gender x Data/Ideas Tilt -0.043 0.023 42 -1.88 0.0665 

Model Fit, Institutional (N=43) Medians 

   Logistic R 1.518 

  Accuracy Rate 0.812 

Note. *Major sureness was examined for students with an intended major only; it was not evaluated for 
undecided students. An additional indicator for whether the student had an intended major (coded as 1) 
compared to undecided students (coded as 0) was multiplied by the major sureness main effect and 
intended major/major sureness interaction terms to ensure the inclusion of the undecided students in 
the sample used to estimate the STEM major choice models. 

SE = standard error. 

DF = degrees of freedom. 
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