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Estimating the Probability of Traditional Copying, Conditional on Answer-Copying Statistics 

 

Abstract 

 Statistics for detecting copying on multiple-choice tests produce p-values measuring the 

probability of a value at least as large as that observed, under the null hypothesis of no copying.  

The posterior probability of copying is arguably more relevant than the p-value, but cannot be 

derived from Bayes’ Theorem unless the population probability of copying and probability 

distribution of the answer-copying statistic under copying are known.  In this paper, we develop 

an estimator for the posterior probability of copying that is based on estimable quantities and can 

be used with any answer-copying statistic.  The performance of the estimator is evaluated via 

simulation and we demonstrate how to apply the formula using actual data.  Potential uses, 

generalizability to other types of cheating, and limitations of the approach are discussed. 
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Introduction 

Cheating on standardized tests is a well-documented problem and there have been several 

high-profile incidents across the U.S. in recent years (NCES, 2013).  One of the most basic and 

oldest forms of cheating occurs when one examinee copies the responses of another.  Traditional 

copying occurs when sight, sound, or touch (e.g., tapping) is used to obtain responses, without 

the aid of electronics.1  For traditional copying to occur, students must take the same test at the 

same time and in the same physical location.  Efforts to prevent traditional copying include 

assigned seating at an appropriate distance (NCME, 2012), spiraling of test forms, physical 

barriers that prevent visual copying, and test proctors who look for wandering eyes and listen for 

unnecessary noises.  Despite these preventive efforts, traditional copying can still occur for 

students in the same test center.  When cases of suspected copying are reported, answer-copying 

statistics can be used to obtain additional evidence of copying.  Or, the statistics can be used to 

trigger investigations of misconduct.  These statistics are often designed for multiple-choice tests 

and measure level of item response similarity (Angoff, 1974).  Examples of answer-copying 

statistics include the K-Index (Holland, 1996), the Omega Index (; Wollack, 1996, 1997), the 

S-check (Weslowsky, 2000), the VM-Index (Belov, 2011), and the generalized binomial test (van 

der Linden & Sotaridona, 2006; Zopluoglu & Davenport, 2012). 

Answer-copying statistics often yield a p-value representing the probability that the 

statistic could exceed a critical value, under the hypothesis of no cheating.  The p-value can be 

expressed as pr(𝑋 ≥ 𝑎| 𝑌 = 0, 𝐶 = 1) where X is a random variable representing the answer-

copying statistic, Y is a dichotomous random variable where Y=1 if copying occurred and Y=0 

otherwise, and C=1 indicates that an examinee pair came from the same test center (C=0 for 

                                                           
1 An example of nontraditional copying would be examinees in different physical locations texting each other with 

exam responses.  



 
 

5 
 

different-center pairs).  In the broader field of test security data forensics, answer-copying 

statistics are not alone in their use of the p-value as evidence of fraud.  Other applications of the 

p-value include the detection of aberrations in erasure behavior (van der Linden & Jeon, 2012), 

as well as test score gains and group improvement over the prior year. 

While computationally feasible and grounded in statistical theory, the p-value does not 

directly address the question: “What is the probability that test fraud occurred, given the 

available evidence?”  For individuals charged with detecting test fraud, this question is more 

relevant than “What is the probability of the available evidence, given that test fraud did not 

occur?”  Using the notation introduced earlier, this probability of interest can be written as 

pr(𝑌 = 1|𝑋 = 𝑎, 𝐶 = 1). 

If investigators knew that the probability of fraud was above a certain threshold (say, 

0.50), they would have an objective means to decide whether to continue the investigation.  The 

p-value, by itself, does not provide this.  In fact, depending on the power of the statistic and the 

population probability of test fraud, the probability that test fraud occurred could be quite small, 

even if the p-value is very small.  For example, suppose that an answer-copying statistic has 

power of 0.60 (assuming an α=0.01 test) and that copying occurs among 1 in 1,000 of all same-

center examinee pairs.  By Bayes’ Theorem (Equation 1, forthcoming), the probability that 

copying occurred, given an observed p-value less than 0.01, is just 0.057.  In this case, 0.057 is 

the posterior probability of copying (PPC).  

Individuals that understand laws of probability will recognize that a significant p-value 

does not necessarily suggest that copying occurred.  However, other individuals involved with 

investigations of test fraud (e.g., investigators, education officials, case panelists, arbitrators, and 

examinees) cannot be expected to understand the complex relationship between the p-value, 
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power, rate of copying in the population, and the PPC.  Hence, there is ample opportunity for the 

p-value to be misinterpreted or judged out of context.  For example, individuals might incorrectly 

interpret the p-value as the “probability that copying did not occur” (e.g., the complement of the 

PPC).  If the PPC could be reasonably estimated, it could be reported alongside p-values and 

facilitate a greater understanding of the evidence (or lack thereof) of copying. 

To use Bayes’ Theorem to arrive at the PPC, we must know the probability distribution 

function (PDF) of the answer-copying statistic when copying occurs, as well as the population 

rate of copying among same-center examinee pairs.  While the PDF can be estimated through 

simulation after specifying certain levels of copying, neither it nor the rate of copying in the 

population is known in practice.  In this paper, we develop a formula for the PPC which does not 

involve these unknown quantities and demonstrate how to estimate the components of the 

formula.  

Methods 

  The formula for the PPC is derived using laws of probability – namely the multiplication 

rule and law of total probability (Hogg and Craig, 1995, pp. 21-23).  In the derivation, an 

assumption must be made, and later we discuss the legitimacy of the assumption.  We argue that 

the formula for the PPC can be employed with any answer-copying statistic, and we illustrate 

how it can be used with a variant of the Omega Index (denoted ; Wollack, 1996), which has 

been shown to have strong power and sensitivity (Sotaridona & Meijer, 2003; Zopluoglu & 

Davenport, 2012).  To study how well the PPC approximates the true probability of copying, 

simulation is used where the PDF of an answer-copying statistic is used to estimate the PPC.  To 

illustrate a real-world application of the formula, we estimate the PPC for various levels of the 
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answer-copying statistic using data from a large assessment program.  We now explain these 

steps in greater detail. 

Developing a formula for the posterior probability of copying 

We define the population of interest as examinee pairs who test at the same center.  Our 

initial expression of the PPC, pr(𝑌 = 1|𝑋 = 𝑎, 𝐶 = 1), is appropriate when X is a discrete 

random variable.  More generally, the PPC can be written as pr(𝑌 = 1| |𝑋 − 𝑎| < 𝛿, 𝐶 = 1 ).  In 

practice, 𝛿 = 0.5 should be used when the answer-copying statistic is discrete.  If the answer-

copying statistic is continuous, smaller values of 𝛿 can be used.  For example, if a=5 and 𝛿 =

0.125, the PPC is the probability that copying occurred, given that the answer-copying statistic 

(X) was between 4.875 and 5.125.  To simplify notation, we write the PPC as pr(𝑌 = 1| 𝑋 ≈

𝑎, 𝐶 = 1).   

Our goal is to establish an expression for the PPC that is a function of estimable 

quantities.  Using Bayes’ Theorem, the PPC can be written as: 

Equation 1: Posterior Probability of Copying Based on Bayes’ Theorem 

pr(𝑌 = 1| 𝑋 ≈ 𝑎, 𝐶 = 1)

=
pr(𝑋 ≈ 𝑎| 𝑌 = 1, 𝐶 = 1)×pr(𝑌 = 1|𝐶 = 1)

pr(𝑋 ≈ 𝑎| 𝑌 = 1, 𝐶 = 1)×pr(𝑌 = 1|𝐶 = 1) + pr(𝑋 ≈ 𝑎| 𝑌 = 0, 𝐶 = 1)×(1 − pr(𝑌 = 1|𝐶 = 1))
 

This expression has three unknowns: (a) the PDF of X for same-center examinee pairs 

that copied (Y=1, C=1), (b) the population probability of copying among same-center examinee 

pairs, and (c) the PDF of X for same-center examinee pairs that did not copy (Y=0, C=1), which 

can be estimated using traditional answer-copying statistics that estimate the PDF of X under the 

assumption of no copying.  Because Y is unobserved, neither (a) nor (b) are known or directly 

estimable.  Thus, we sought a different formula for the PPC.  We applied laws of probability to 
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derive a formula for the lower bound of the PPC.  In the appendix, a step-by-step derivation of 

the formula is provided, resulting in Inequality 1.  

Inequality 1: Lower Bound of Posterior Probability of Copying for Same-Center Pairs 

PPC ≥  1 −
pr(𝑋 ≈ 𝑎| 𝐶 = 0)

pr(𝑋 ≈ 𝑎| 𝐶 = 1)
 

Let 𝑃0=pr(𝑋 ≈ 𝑎| 𝐶 = 0) and 𝑃𝐶=pr(𝑋 ≈ 𝑎| 𝐶 = 1) represent the PDFs of X for 

different-center pairs and same-center pairs, respectively.  We use the 𝑃0 and 𝑃𝐶 notation for 

simplicity going forward.  The lower bound of the PPC is thus based on the ratio of the PDFs of 

X for different-center and same-center examinee pairs.  As the ratio decreases, the lower bound 

of the PPC increases.  For example, if an extreme value is twice as likely to be observed for 

same-center pairs, the lower bound of the PPC is 0.50 for examinee pairs at that value.  

Intuitively, this means that evidence of copying is stronger when a large value of X is more likely 

to occur for same-center pairs (where traditional copying is possible) than for different-center 

pairs (where traditional copying is not possible). 

To arrive at Inequality 1, we assumed that copying could not occur for different-center 

pairs (consistent with our definition of traditional copying) and refer to this as Assumption 1.  

We also assumed that the PDF of X for large values of X is the same for examinee pairs from 

different test centers (𝐶 = 0) and for examinee pairs from the same center for whom copying did 

not occur (𝐶 = 1, 𝑌 = 0); we refer to this as Assumption 2.  Later, we discuss the legitimacy of 

Assumption 2 and consequences of its violation. 

Because Inequality 1 does not involve the unobserved random variable Y (the indicator 

for whether copying occurred), we have expressed the lower bound of the probability of interest 

as a function of quantities that can be estimated with large samples of same-center and different-

center examinee pairs. 
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An alternative form of the PPC can be expressed as pr(𝑌 = 1|𝑋 ≥ 𝑎, 𝐶 = 1) by 

conditioning on X being greater than or equal to a instead of approximately equal to a.  This 

form of the PPC leads to an inequality of the same form as Inequality 1: 

Inequality 2: Alternative Form of Lower Bound of Posterior Probability of Copying for Same 

Center Pairs 

Alternative form of PPC ≥  1 −
pr(𝑋 ≥ 𝑎| 𝐶 = 0)

pr(𝑋 ≥ 𝑎| 𝐶 = 1)
 

In practice, the alternative form of the PPC is not useful for estimating the probability of 

copying for an examinee pair.  Instead of estimating the probability of copying for an observed 

value of the answer-copying statistic, it estimates the probability of copying for all values of the 

answer-copying statistic greater than or equal to the observed value.  So, for example, for an 

examinee pair with an answer-copying z-score of 3.0, it would estimate the probability of 

copying among examinee pairs with a z-score of 3.0 or larger, leading to an inflated estimate of 

the probability of copying for the examinee pair.  Therefore, we restrict our attention to the form 

of the PPC given in Inequality 1. 

The formula for the lower bound of the PPC can be applied with any answer-copying 

statistic X, as long as it’s expressed as a test statistic or p-value under the null hypothesis of no 

copying.  In the case of the Omega Index, X can be a function of the p-value (e.g., 𝑋 =

|log10(𝑝)|, such that a p-value of .0001 converts to X=4) or X can be the z-score used to derive 

the p-value.  In this study, we let X be the z-score of an Omega Index variant.  Next, we describe 

a simulation study designed to evaluate the performance of the PPC estimator. 

Simulation study 

 The purpose of the simulation was to study the performance of the PPC estimator when 

used with a specific answer-copying statistic (an Omega Index variant) and under realistic 
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simulation scenarios.  Data were generated using the nominal response IRT model (Bock, 1972).  

Under this model, the probability of selecting response alternative k of item i for person j is given 

by pijk in Equation 2.   

Equation 2: Nominal Response Model 

𝑝𝑖𝑗𝑘 =
exp(𝛼𝑖𝑘 + 𝛽𝑖𝑘𝜃𝑗)

∑ exp(𝛼𝑖𝑘 + 𝛽𝑖𝑘𝜃𝑗)𝑚
𝑘=1

 

where 𝛼𝑖𝑘 is the threshold parameter for response option k of item i, 𝛽𝑖𝑘is the slope parameter for 

response option k of item i, and 𝜃𝑗  is the ability level of examinee j.  The nominal response 

model item parameters were the same as those used in two previous studies (Wollack, 1996 and 

Zopluoglu & Davenport, 2012) for a 40 item multiple-choice test with 5 response options for 

each item.  For each item, the five threshold parameters were constrained to sum to 0; similarly 

the five slope parameters were constrained to sum to 0.  The nominal response model provides a 

framework for generating item response data that reflects the complexity of each response 

probability depending on ability.   

Data were simulated with the following steps for 5,000,000 same-center examinee pairs 

and 5,000,000 different-center examinee pairs.  First, the ability level for one examinee (the 

potential copier) was drawn from a standard normal distribution, and the ability level of the other 

examinee (the potential source of copying) was set equal to the ability of the first examinee, plus 

a random number drawn from a uniform [0,1] distribution.  Therefore, the ability of the potential 

source is greater than or equal to the ability of the potential copier, reflecting the situation where 

a copier seeks a source of greater ability from whom to copy.2  Second, item responses were 

generated using the nominal response model.  Third, among 5% of the same-center examinee 

                                                           
2 In reality, examinees do not know the ability level of other examinees.  However, examinees may be able to guess 

which other examinees are likely to perform well on the test because of their performance on prior tests or because 

of familiarity with their academic achievements in school. 
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pairs, level of copying was randomly assigned, with number of items copied specified as m=4, 8, 

12, …,40 out of the 40 total items (the same copying levels studied by Zopluoglu & Davenport, 

2012).  For copied items, the source’s responses replaced the suspect’s responses.  Similar to 

Zopluoglu & Davenport (2012), a random copying mechanism was used, whereby the suspect 

randomly chooses the m items to copy among all 40 items on the test.  Fourth, each examinee’s 

raw score (number of correct items) was calculated.  Fifth, a nonparametric variant of the 

Omega Index was calculated for each of the 10,000,000 examinee pairs.  The Omega Index 

variant is calculated by converting the total number of identical responses to a z-score, and then 

converting the z-score to a p-value assuming normality.  Using the actual Omega Index, the 

mean and the standard deviation used in the z-score calculation are based on the nominal 

response model (for full details on how the Omega Index is calculated, please see Wollack, 

1997).  For the Omega Index variant, instead of using the nominal response model conditioned 

on latent ability, the item response probabilities were conditioned on raw score (ranging from 0 

to 40).  Response probabilities were estimated as the simple proportion of examinees (for each 

possible raw score) that selected each response option.  This approach is feasible with large 

samples, as are used in this simulation.    

When implementing the PPC estimator in practice, one must choose the minimum z-

score for which to calculate the PPC.  PPC estimates will be negative when 𝑃0 > 𝑃𝐶.  In practice, 

to avoid a probability estimate that is negative, the PPC estimate should be set to 0 when the 

formula gives a negative result.  For this study, we chose z=1.50 as the minimum z-score for 

which to calculate the PPC because z-scores less than 1.50 would not typically be considered 

evidence of copying.   
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Each examinee pair’s z-score was rounded to the nearest 0.25.  Z-scores less than 1.50 

were considered not suggestive of copying, and z-scores greater than 6.00 were grouped with 

those near 6.00 (as we will see later, the PPC estimate does not change much for z-scores greater 

than 6).  This yields z-score levels of <1.50, 1.50, 1.75, …, 5.75, and 6+.  These z-score levels 

are observed in practice and represent a plausible range of answer-copying statistic values.  At 

one extreme, z<1.5 represents a case where no additional evidence of copying arises from the 

answer-copying statistic.  At the other extreme, z>6 represents a case where evidence of copying 

would seem very strong. 

Step 3 of the simulation specified the population rate of copying at 5% among same-

center pairs.  In practice, this rate is unknown and may vary considerably by examinee 

population, test stakes, and test security procedures.  Because the population rate of copying has 

a large influence on the PPC (Equation 1), it is important to study the performance of the PPC 

under different rate scenarios.  Note that the rate of copying among examinee pairs must be 

distinguished from the rate of copying among examinees.  For example, suppose that 10 of 50 

examinees in a test center partake in copying, and that each copier has his or her own source.  In 

this case, there are 1,225 examinee pairs and the rate of copying is 10/1,225 = 0.8% among 

examinee pairs, but 20% among examinees.  Population rates of copying among pairs can be 

very small, so we repeated the simulation using population rates of copying of 0.05% and 0.5%.   

We used the simulated data to estimate 𝑃0 (based on different-center pairs who could not 

have copied) and 𝑃𝐶 (based on same-center pairs of whom 100p% copied), resulting in estimates 

of the lower bound for the PPC (from Inequality 1).  The lower bound of the PPC was estimated 

separately for each z-score level.  The lower bound of the PPC should increase with larger z-

scores.  We calculated the actual proportion of same-center examinees who copied, conditional 
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on z-score.  If the PPC estimator is performing well, the PPC estimate should be slightly smaller 

than the actual proportion who copied.   

Example estimation of the posterior probability of copying 

We applied the PPC estimator to actual data from the ACT Explore Mathematics test 

which consists of 30 multiple-choice items, each with five response options (ACT, 2013).  ACT 

Explore is typically administered during a regular school day, and so test center is the same as  

school.  We used data from three testing years and the most common test form used in each year.  

We removed examinees that had guessing-patterned responses, defined as 10 or more 

consecutive items with the same response.  From these records, we formed 83.4 million same-

center (same-school) pairs and 182.6 million different-center pairs who were enrolled in the 

same school district.  Because we are interested in rare events (extreme values of X), large 

samples of examinee pairs are needed to estimate 𝑃0 and 𝑃𝐶.  Later, we discuss how statistical 

modeling has potential to reduce the large sample size burden. 

For each examinee pair, the Omega Index variant was calculated.  Again, instead of using 

the nominal response model conditioned on latent ability, the item response probabilities were 

conditioned on raw score (ranging from 0 to 30).  While the ACT Explore Mathematics test has 

five response options, it is also possible for examinees to not respond, so we used six response 

options including missing.  Similar to the simulation, each examinee pair’s z-score was rounded 

to the nearest 0.25, resulting in z-score levels of <1.5, 1.50, 1.75, …, 5.75, 6+. 
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Results 

Simulation study results 

Using Inequality 1, the PPC estimates are based on 𝑃0 (the PDF of the Omega Index z-

score for different-center examinee pairs) and 𝑃𝐶 (the PDF of the Omega Index for same-center 

examinee pairs).  While PDFs can be estimated using statistical models, we used the simple 

proportion of examinee pairs at each z-score level to estimate the PDFs.  Figure 1 shows the 

estimated PDFs for Omega Index z-score levels between 1.50 and 6.00 from the simulation study 

when the population rate of copying was 0.05.  In Figure 1, the two PDFs do not have equal area 

under the curves (and do not integrate to 1) because only a portion of the function’s domains are 

shown (1.5<X).  The PDF for same-center pairs (𝑃𝐶) is close to the PDF for different-center pairs 

(𝑃0) for z-score levels between 1.5 and 2.0, and then the difference becomes larger.  For z-scores 

between 3.50 and 5.75, 𝑃0 approaches 0 as the z-score increases while 𝑃𝐶 holds relatively steady.  

We see a spike in 𝑃𝐶 at the z-score=6 level because z-scores greater than 6 were included. 
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Figure 1: Right-hand tails of Omega Index variant z-score distributions when population rate of  

copying is 0.05 

 

The PPC estimates follow from the 𝑃0 and 𝑃𝐶 estimates.  For example, consider the case 

of z 3.50 when the population rate of copying is 0.05 (Figure 1).  𝑃0 is estimated as 0.00013 and 

𝑃𝐶 is estimated as 0.00191.  Therefore, the PPC is estimated as 0.93 (1 - 0.00013 / 0.00191).  

Figure 2 shows the PPC estimates, by z-score level, resulting from the simulation study for the 

three levels of p (population rate of copying): 0.05, 0.005, and 0.0005.  As expected, the 

estimated PPC increases sharply with z-score level.  For example, when p=0.005 (the middle set 

of curves), the PPC estimate is 0.02 for z2, 0.23 for z3, 0.88 for z4, and 0.99 for z5.  The 

probability of copying increases very sharply after z-scores of 2.50, and begins to plateau at 

z4.00. 
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The performance of the PPC estimator can be evaluated by comparing the PPC estimates 

to the actual proportion who copied, which is also plotted in Figure 2.  For example, when 

p=0.0005, among examinee pairs with z4.25, the proportion who copied was 0.68 and the 

corresponding PPC estimate was 0.63.  For z5.75 and z6.00, the PPC estimates (1.00) matched 

the true proportion. 

   

Figure 2: Comparing the PPC estimates to the actual proportion who copied 

 

From Figure 2, we see that the PPC tends to closely estimate the true proportion who 

copied.  As the population rate of copying increases, larger PPC values will result for the same z-

score level.  Also as the population rate of copying increases (e.g., when the population rate of 

copying is 0.05), the PPC tends to underestimate the true proportion for lower z-score values.  As 

the population rate of copying becomes smaller, there are fewer extreme cases of the answer-
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copying statistic z-scores.  This, in turn, causes the estimates of 𝑃𝐶 and the PPC to be less 

precise.  In Figure 2, the curves for p=0.0005 are not as smooth as the other curves, reflecting the 

drop in precision. 

Example application of PPC estimator: ACT Explore Mathematics data 

 The PPC estimator was applied to large samples of examinee pairs who took the ACT 

Explore Mathematics test as 8th graders.  In Figure 3, the PPC estimates are plotted by z-score, 

again using z-score intervals of width 0.25.  The figure shows general consistency across testing 

years in the relationship of z-score and PPC estimates.  The PPC is relatively stable between z-

scores of 1.50 and 3.75, but then increases sharply between z-scores of 3.75 and 6.00. 

 

 

Figure 3: PPC Estimates, by Omega Index variant z-score and ACT Explore test year/form 
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Contrasting Figure 2 (simulated data) to Figure 3 (real data), we find that the PPC curves 

are smoother for the simulated data, despite the larger sample sizes used for the real data.  For 

z>3.75, the PPC estimates are considerably smaller for the real data.  This suggests that either 1) 

the population rate of high levels of copying in the ACT Explore population is less than the 

simulated scenarios, 2) the power of the answer-copying statistic is greater in the simulated data 

sets, or both 2) and 3).  For smaller z-score levels (e.g., z2), the PPC estimates based on the real 

data are larger than those based on the simulated data.  

 

Discussion 

 Like other measures used to detect cases of potential test fraud, answer-copying statistics 

have traditionally used “p-values” that measures the cumulative probability distribution of the 

statistic, under the null hypothesis of no copying.  Responding to calls for estimating the 

probability of test fraud (Wainer, 2012), we developed a formula for the probability of copying, 

conditional on observed answer-copying statistics.  We applied the formula to a simulated data 

set, as well as an actual data set of same-center and different-center examinee pairs who took the 

ACT Explore Mathematics test. 

Proposed uses of the PPC estimator 

 Through simulation, we found that the PPC estimates closely matched the actual 

proportion of examinee pairs who copied, especially when the answer-copying statistic (Omega 

Index variant z-score) was very large.  Therefore, the PPC estimator can be used to approximate 

the probability that copying occurred.  This finding has practical implications for how parties 

involved with investigations of test misconduct interpret answer-copying statistics.  For example, 

the PPC estimate could be used by an investigative team to better understand the risk of making 
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type 1 (false positive) and type 2 (false negative) errors when acting upon observed answer-

copying statistics.  For cases of extremely large statistics, PPC estimates may approach 1, in 

which case the estimate could be used to inform others of the overwhelming weight of the 

evidence in favor of copying.   

 The relationship between answer-copying statistic value (e.g., Omega Index z-score) and 

the PPC is affected by the population rate of copying among same-center examinee pairs.  From 

Bayes’ Theorem (Equation 1) and the simulation study, we see that larger PPC values result 

when the population rate of copying increases.  The relationship between the answer-copying 

statistic value and the PPC is also affected by the power of the test: As power increases, so too 

does the PPC (Equation 1).  In this study, we only estimated the PPC using one answer-copying 

statistic (the Omega Index variant z-score).  If multiple answer-copying statistics are used, the 

PPC estimator provides a simulation-free method to compare the power of the competing 

statistics. 

 We applied the PPC estimator to actual data from the ACT Explore Mathematics test, 

administered to 8th graders. We found that the estimated probability of copying increased only 

slightly between z-scores of 1.50 and 4.00, but then increased sharply for z-scores between 4.00 

and 6.00.  For z-scores of 6 and larger, the estimated probability of copying ranged from 0.937 to 

0.990 across three testing years/forms, suggesting a strong likelihood that copying occurred.  

Combining data across the three years, the PPC estimate exceeded 0.5 for z-scores of 

approximately 4.75 (between 4.625 and 4.875).  This result is somewhat surprising as it suggests 

that among examinee pairs with a z-score of 4.50, copying occurred for less than half of the 

cases. 
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The PPC estimator can also be used to set cutoffs for answer-copying statistic values that 

trigger investigations.  For example, based on the results in Figure 3 for the ACT Explore 

Mathematics test, an Omega Index variant z-score of approximately 4.50 has a PPC estimate of 

0.38 and a z-score of approximately 4.75 has a PPC estimate of 0.53.  If one wished to choose a 

z-score cutoff related to a 50% chance of copying, the cutoff should lie somewhere between 4.50 

and 4.75. 

 By applying the method to three independent samples of ACT Explore Mathematics test 

administrations, we were able to observe the stability across test forms/years of the PPC 

estimates.  Generally, the relationship of z-score to PPC estimate was quite similar across the 

three administrations (Figure 3).  The PPC estimator can be applied to any test with a multiple 

choice format and large samples of same-center and different-center examinee pairs.  It would be 

prudent to estimate the z-score-to-PPC relationship for each test administration, and to examine 

whether the pattern varies from the patterns observed in previous administrations (see Figure 3 

for example). 

Revisiting Assumption 2 

 In the development of the formula for the lower bound of the PPC, we made an 

assumption which allowed us to express the formula in terms of estimable quantities.  We 

assumed that, for large values of X (the answer-copying statistic), the probability distribution of 

X is the same for different-center pairs relative to same-center pairs who did not copy.  If the 

assumption fails, Inequality 1 does not hold.  If the right hand tail of the probability distribution 

of X were actually larger for same-center examinee pairs (who did not copy), relative to 

different-center examinee pairs, it could reverse the direction of the inequality. 
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Logic and prior research (Allen, 2012) suggest that students with shared educational and 

life experiences have slightly higher levels of item response similarity.  Thus, the legitimacy of 

Assumption 2 may depend on the extent that same-center examinee pairs share educational and 

life experiences, relative to the different-center examinee pairs.  In the simulation study, we 

generated the data in a way that did not violate the assumption: Specifically, the answer-copying 

statistic was a function of examinee ability level and chance and so same-center examinees who 

did not copy were expected to have the same distribution of X as different-center examinees. 

When applied to actual data, we sampled same-center examinee pairs as well as different-

center same-school district pairs.  Prior research suggests that examinee pairs who attend the 

same school have higher similarity levels than those who do not (Allen, 2012).  By requiring the 

different-center pairs to have attended school in the same district, we reduced the chance that the 

key assumption is seriously violated.  When the PPC estimator is used in practice, efforts should 

be made to construct the different-center pair samples in such a way that they are as likely as the 

same-center pairs to have shared educational and life experiences.  For example, “same-center” 

pairs could be students from the same school who tested in the same classroom, and “different-

center” pairs could be students from the same school who tested in different classrooms.  In this 

case, there is still a chance that Assumption 2 is violated because same-classroom students may 

have received the same instruction, making them more prone to higher similarity levels. 

In practice, investigators are most concerned with large values of X.  Assumption 2 

therefore actually has two parts of practical importance: 1) the probability distribution of X is the 

same for different-center pairs relative to same-center pairs who did not copy, and 2) X is large 

enough for the first part to hold.  From Figure 2, we see that the PPC underestimates the actual 

rate of copying when X is smaller (e.g., less than 3), especially when the true rate of copying is 
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high.  For larger values of X and when the actual rate of copying is low, Assumption 2 may be 

more likely to hold. 

Assumption 2 can be expressed as pr(𝑋 ≈ 𝑎| 𝐶 = 1, 𝑌 = 0) = pr(𝑋 ≈ 𝑎| 𝐶 = 0) = 𝑃0.  

Because same-center pairs may be more likely to share educational and life experiences (and thus have 

larger values of X), we are concerned that pr(𝑋 ≈ 𝑎| 𝐶 = 1, 𝑌 = 0) > pr(𝑋 ≈ 𝑎| 𝐶 = 0), or 

pr(𝑋≈𝑎| 𝐶=1,𝑌=0)

pr(𝑋≈𝑎| 𝐶=0)
= 𝜕 > 1.  In this case, the lower bound of the PPC is  1 −

𝜕𝑃0

𝑃𝐶
.  To illustrate the 

consequences of violating Assumption 2, we can examine what would happen to PPC estimates 

for different values of 𝜕.  In Figure 4, we plot the same data from Figure 3 (PPC estimates for 

ACT Explore Mathematics data) for 𝜕=1.0 (no violation), 1.1 (10% violation), 1.2 (20% 

violation), and 1.3 (30% violation). 

 

Figure 4: Effect of Assumption 2 violations on PPC estimates 
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From Figure 4, we see that violations to Assumption 2 have lesser consequence as X 

increases.  As 𝜕 increases, the PPC estimate should decrease.  For the ACT Explore example, the 

estimate of the lower bound of the PPC is 0.66 when X=5 when there is no violation of the 

assumption, 0.62 when there is a 10% violation, 0.59 when there is a 20% violation, and 0.55 

when there is a 30% violation.  When X=6, there is no practical consequence of the violations as 

all of the PPC estimates are 0.98.  For X < 4.5, the consequences of violating Assumption 2 are 

profound.  

Generalizing the approach for other types of test fraud 

 The lower bound of the PPC was expressed in terms of Y (an indicator of whether 

copying occurred), X (an answer-copying statistic), and C (an indicator of whether the examinee 

pair tested at the same center).  However, Inequality 1 could potentially be applied to other 

modes of test fraud.  For example, Y can more generally represent an indicator of whether test 

fraud occurred, X can represent the statistic designed to detect test fraud (defined such that larger 

values of X are more suggestive of fraud), and C can represent an indicator of whether the form 

of test fraud was possible.  In all cases, X and C must be observable, but Y need not be.  

Generalizing Inequality 1 to a test fraud context other than traditional copying also means that 

the key assumption (Assumption 2) must hold in the new context. 

Limitations and future research 

 We only considered one answer-copying statistic based on an Omega Index variant.  

Other procedures, such as the generalized binomial test, may offer greater power (Zopluoglu & 

Davenport, 2012).  Additional research should be done to compare the performance of the PPC 

estimator for different answer-copying statistics.   
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 Our results apply only to traditional copying; that is, copying that occurs when examinees 

test in the same location at the same time, and use sight, sound, or touch to communicate.  With 

new technologies, nontraditional forms of copying may also be problematic.  It may be difficult 

to generalize Inequality 1 to nontraditional forms of copying because of the lack of an observable 

variable that indicates whether copying was possible (C indicates shared test center for our case 

of traditional copying).  Moreover, nontraditional forms of copying can lead to overestimation of 

𝑃0.  Even with overestimation of 𝑃0 due to nontraditional forms of copying, Inequality 1 would 

still hold because the effect of the overestimation would be consistent with the direction of the 

inequality.  If copying does occur for different-center pairs, it can result in an underestimate of 

the PPC. 

 In our demonstration of the estimation of the lower bound of the PPC, we limited the 

scope to one multiple-choice assessment, the ACT Explore Mathematics test.  The resulting 

estimates of the PPC for different levels of answer-copying statistics would likely be different for 

other assessments.  In particular, results could vary by subject area, by examinee population, by 

test administration protocols designed to prevent copying, and by the stakes of the test.  Future 

research could examine this by repeating the methodology used here with additional assessments 

and different populations of examinees. 

 One advantage to using data from the ACT Explore Mathematics test was the abundant 

sample sizes of examinee pairs that are afforded by a large national testing program.  With the 

large sample sizes, we could estimate 𝑃𝐶 (the rate of an extreme answer-copying statistic for 

same-center pairs) and 𝑃0 (the rate of an extreme answer-copying statistic for different-center 

pairs) as simple proportions.  In practice, investigators may need to estimate the probability of 

copying based on much smaller sample sizes.  Another area of additional research would be to 
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examine model-based methods (e.g., Poisson, exponential, or other extreme value models) for 

estimating 𝑃𝐶 and 𝑃0 that may offer efficient estimation without needing such large samples. 

Even with a very large data set, the rates of extreme answer-copying statistics are noisy and less 

reliable when very low levels of copying are present.   

 Even with extremely large samples, there is still uncertainty in the PPC estimates.  In this 

study, we did not attempt to calculate standard errors of the PPC estimates.  While the PPC 

estimator is a very simple expression, the calculation of the standard error is confounded by 

violations of independence across examinee pairs.  Because individual examinees are members 

of multiple pairs, there is autocorrelation and the independence assumption is violated.  

Additional research is needed to estimate confidence intervals for the lower bound of the PPC, 

accounting for the autocorrelation.   

This paper demonstrated a systematic approach for estimating the probability of 

traditional copying.  While it is useful to have an estimate of the probability of copying, such 

measures should not be used in place of preventive efforts, such as adherence to test 

administration protocols and training personnel (e.g., students, teachers, proctors) on acceptable 

and unacceptable behaviors (NCME, 2012).  Investigations of test fraud should carefully 

evaluate the reasonableness of the assumptions needed to estimate the probability of copying, 

and consider alternative explanations for extreme values of an answer-copying statistic.  For 

example, examinees employing the same guessing strategy can cause a shift in the distribution of 

the answer-copying statistic, and lead to an overestimate of the PPC.  The probability of copying 

should be considered along with other forms of available evidence, including analyses of 

changes in test scores from previous years or test administrations, erasures, scratch work needed 

to solve problems, and comparisons with course performance. 
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Appendix: Proof of Inequality 1 

Expression 

Note: Highlighted text shows part of expression that changed at each step 
Rationale for step 

pr(𝑌 = 1| 𝑋 ≈ 𝑎, 𝐶 = 1) =
pr(𝑋 ≈ 𝑎, 𝐶 = 1, 𝑌 = 1)

pr(𝑋 ≈ 𝑎, 𝐶 = 1)
 Multiplication rule 

=
pr(𝑋 ≈ 𝑎)  −  pr(𝑋 ≈ 𝑎, 𝐶 = 1, 𝑌 = 0) −  pr(𝑋 ≈ 𝑎, 𝐶 = 0, 𝑌 = 0)  −  pr(𝑋 ≈ 𝑎, 𝐶 = 0, 𝑌 = 1)

pr(𝑋 ≈ 𝑎, 𝐶 = 1)
 Law of total probability 

=
pr(𝑋 ≈ 𝑎) −  pr(𝑋 ≈ 𝑎, 𝐶 = 1, 𝑌 = 0) −  pr(𝑋 ≈ 𝑎, 𝐶 = 0, 𝑌 = 0) − 0

pr(𝑋 ≈ 𝑎, 𝐶 = 1)
 

pr(𝑋 ≈ 𝑎, 𝐶 = 0, 𝑌 = 1) = 0 
Traditional copying cannot occur for 

different-center pairs (Assumption 1) 

Let 𝑃0 = pr(𝑋 ≈ 𝑎| 𝐶 = 0), let 𝑃𝐶 = pr(𝑋 ≈ 𝑎| 𝐶 = 1), and let 𝑄 =  pr(𝑋 ≈ 𝑎) = 𝑃0 × pr(𝐶 = 0) + 𝑃𝐶 × pr(𝐶 = 1) 

=
𝑄 −  pr(𝑋 ≈ 𝑎, 𝐶 = 1, 𝑌 = 0) −  pr(𝑋 ≈ 𝑎, 𝐶 = 0, 𝑌 = 0)

𝑃𝐶  ×  pr( 𝐶 = 1)
  Law of total probability 

 

=
𝑄 −  pr(𝑋 ≈ 𝑎| 𝐶 = 1, 𝑌 = 0) ×  pr(𝐶 = 1, 𝑌 = 0) −  pr(𝑋 ≈ 𝑎|𝐶 = 0, 𝑌 = 0) ×  pr(𝐶 = 0, 𝑌 = 0)

𝑃𝐶  ×  pr( 𝐶 = 1)
 

Multiplication rule 

 

=
𝑄 −   pr(𝑋 ≈ 𝑎| 𝐶 = 1, 𝑌 = 0) ×  pr(𝐶 = 1, 𝑌 = 0) −  𝑃0  ×  pr(𝐶 = 0, 𝑌 = 0)

𝑃𝐶  ×  pr( 𝐶 = 1)
 

 

pr(𝑋 ≈ 𝑎| 𝐶 = 0, 𝑌 = 0) = 𝑃0 

because all different-center pairs 

have Y=0 

=  
𝑄 −  pr(𝑋 ≈ 𝑎| 𝐶 = 1, 𝑌 = 0) ×  pr(𝐶 = 1, 𝑌 = 0) −  𝑃0  ×  pr(𝐶 = 0)

𝑃𝐶  ×  pr( 𝐶 = 1)
 

pr(𝐶 = 0, 𝑌 = 0) = pr(𝐶 = 0) 
because traditional copying cannot 

occur for different-center pairs 

=  
𝑄 − 𝑃0  ×  pr( 𝐶 = 1, 𝑌 = 0) −  𝑃0  ×  pr(𝐶 = 0)

𝑃𝐶  ×  pr( 𝐶 = 1)
 

pr(𝑋 ≈ 𝑎| 𝐶 = 1, 𝑌 = 0)  = 𝑃0 
Assumption 2 

=
𝑃𝐶  ×  pr( 𝐶 = 1) −  𝑃0  ×  pr( 𝐶 = 1, 𝑌 = 0)

𝑃𝐶  ×  pr( 𝐶 = 1)
 

Substitution for Q, algebra 

= 1 −
𝑃0  ×  pr( 𝑌 = 0|𝐶 = 1)

𝑃𝐶
≥  1 −

𝑃0

𝑃𝐶
 Multiplication rule, algebra,  

pr(𝑌 = 0|𝐶 = 1) ≤ 1 

 


