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Abstract 

 Using a sample of schools testing annually in grades 9-11 with a vertically-linked series 

of assessments, a latent growth curve model is used to model test scores with student intercepts 

and slopes nested within school.  Missed assessments can occur because of student mobility, 

student dropout, absenteeism, and other reasons.  Missing data indicators are modeled using 

logistic regression, with grade 9 and potentially unobserved growth scores used as covariates.  

Under a hierarchical selection model, estimates of school effects on academic growth and 

missingness are obtained.  The results from the selection model are compared to a model that 

ignores the missing data process.  

 

The author would like to acknowledge Ruitao Liu and Justine Radunzel for their review and 

helpful comments on this report. 

 

 

KEY WORDS: selection model, latent growth curve, hierarchical model, not missing at random, 

informative missingness, school effectiveness, Bayesian analysis, WinBUGS 

 

  



 
 

2 
 

Introduction 

 Educators, researchers, and policymakers are increasingly interested in measures of 

academic growth for purposes of monitoring student progress, evaluating interventions, and 

measuring school or teacher effectiveness.  Growth models require longitudinal data systems that 

track assessment data over time and link the data to individual students, teachers, and schools. 

Not unlike longitudinal data in other disciplines, missing data are common with academic 

assessment because of student migration out of the school system, sickness, truancy, and student 

dropout, among other reasons. 

 Customary methods for analyzing longitudinal data assume that data are missing at 

random – that is, missingness depends only on the observed responses and covariates.  However, 

in the case of longitudinal assessment data, it is plausible that missingness is related to 

unobserved level of academic achievement.  Academic difficulty or lack of academic growth 

could contribute to students leaving high school or missing assessment days.  Alternatively, other 

student risk factors could affect both academic performance and likelihood of missing 

assessment days.  If academic performance is the outcome of interest amd unobserved academic 

performance constructs are related to missingness, data are not missing at random. 

 In this paper, a Bayesian approach is presented for jointly modeling the academic growth 

and missing data processes in an attempt to account for informative missingness.  Using 

WinBUGS, the model was fit for a sample of schools that test annually in grades 9-11 with a 

series of vertically-scaled assessments.  The results are compared to those from a simpler model 

that ignores the missing data process, with emphasis on measures of school effects on academic 

growth. 
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Informative dropout in longitudinal research 

 This study deals with a common situation where the primary outcome is measured on 

individuals at multiple time points, and that the research focuses on examining predictors of 

change in the outcome.  Random coefficient models are often used for this purpose.  For 

example, each individual’s vector of outcomes can be described by a person-specific intercept, 

slope, and possible higher-order terms.  The individual effects are not observed and this type of 

model is also known as a latent growth curve model.  

 A common problem that arises in longitudinal studies is missing data in the primary 

outcome.  Using maximum likelihood estimation on the observed data set results in unbiased 

estimation when the missingness process only depends on observed data and other observed 

covariates.  This situation is known as missing at random (Little, 1995).  Unfortunately, it is 

often plausible that the missing data process depends on the unobserved data.  In this case, the 

data are not missing at random (Little, 1995), and estimation of the rate of change parameters 

may be biased.  For example, in medical research, not missing at random can result when 

dropout is caused by illness or death.  In an educational research example, not missing at random 

can result when missed assessments are influenced by students’ expected academic performance.  

Wu & Bailey (1988) defined informative right censoring to refer to situations where the 

probability of dropping out depends on an individual's slope.  Note that dropout is a specific type 

of missing data situation, where Y is no longer observed after time of dropout; in other cases 

intermittent missingness is possible.   

 Methods have been developed that attempt to correct the bias caused by not missing at 

random, which is also referred to as non-ignorable missingness or informative missingness.  Two 

general types of models have been proposed: selection models, in which the missingness process 
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is modeled simultaneously with the outcome data process; and pattern-mixture models (c.f., 

Hedeker & Gibbons, 1997), which estimate the parameters of interest separately for each missing 

data pattern and then calculate overall estimates by averaging over the missing data patterns.  

This paper focuses on a type of selection model. 

 Selection models work by explicitly modeling the missing data process, with missing 

outcome data or latent variables used as predictors of missingness.  When missing data depends 

on missing response variables, the situation is called outcome-dependent missingness; random-

coefficient-dependent missingness occurs when the missing data depends on random effects or 

latent variables (Feldman & Rabe-Hesketh, 2012).  When the missing data process depends on 

random effects or latent variables, the model is also called a shared parameter model because the 

random effects are used to describe the primary outcome measure and also used as predictors of 

missingness.   

 Studies of the performance of selection models generally find that models that ignore the 

missing data process result in bias associated with the rate of change (slope) parameters and that 

this bias increases as the relation between person-specific slopes and dropout becomes stronger, 

and when the proportion of subjects with fewer than two observations increases (Saha & Jones, 

2005).  In simulation studies, the true dropout process is known, and so the performance of 

different selection models can be studied under different scenarios.  The studies have shown that 

the bias is diminished or eliminated by using selection models to jointly model the longitudinal 

outcome of interest and dropout data.  In reality, the true dropout process is not known, so theory 

and judgment must be used to specify the model.  Because of this subjectivity, it is recommended 

that researchers perform sensitivity analyses to examine the study results under a variety of 

assumed models (Molenberghs & Kenward, 2007; Xu & Blozis, 2011). 
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 There are many variants of selection models, characterized by the model used for the 

primary outcome, the model used for the missing data process, the selection of predictors of 

missing data, and the hierarchical structure of the outcome and missingness models.  Selection 

models first gained popularity in medical research.  Wu & Carroll (1988) introduced the shared 

parameter model for analyzing rates of change of a continuous outcome between two groups.  

They used random subject effects (person-specific intercept and slope parameters) to model the 

continuous outcome and used the same random effects as predictors of study dropout.  Mori, 

Woolson, & Woodworth (1994) used the shared parameter approach with a random slope model 

where each subject's number of measurements was modeled using the truncated geometric 

distribution.  Diggle & Kenward (1994) specified an outcome-dependent missingness model with 

a multivariate linear model for the outcome and a logistic regression model for the dropout 

process.  Predictors of dropout included the outcome at the time of dropout as well as the 

outcome measured at the time prior to dropout.  Pulkstenis, Ten Have, & Landis (1998) fit a 

mixed effects logistic model to binary longitudinal data sharing parameters with a discrete-time 

survival model for the dropout process.  Albert & Follmann (2000) used the shared parameter 

approach for repeated Poisson outcomes with informative dropout.  Wang & Taylor (2001) 

proposed a joint model for longitudinal and event time data that allows the person-specific slopes 

to vary over time.  They specified prior distributions and fit their model using MCMC methods. 

 More recently, selection models have gained momentum in educational research.  Tanaka 

and Kanazawa (2010) analyzed grade 7 to grade 10 test score data using a latent growth curve 

model with dropout modeled using a logistic regression survival process depending on student 

intercepts and slopes.  The model was specified and fit using Bayesian methods.  McCaffrey and 

Lockwood (2011) studied grade 1-5 math score data with a focus on estimating teacher effects.  
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They specified two selection models: one modeling the number of observed test scores 

dependent on an unobserved student effect, and the other modeling each instance of test score 

missingness as binary random variable with logistic link function, again dependent on the 

unobserved student effect.  They also studied a pattern-mixture model and discussed the 

sensitivity of their results to model specification.  They found that the selection models and 

pattern-mixture models did not have much effect on estimated teacher effects.  Xu and Blozis 

(2011) analyzed procedural learning task performance over time.  They contrasted results from 

complete-case analysis (discarding observations with missing data), models that used the 

complete data set but assumed missing at random, selection models assuming outcome-

dependent missingness, and a pattern-mixture model.  Results changed appreciably when using 

the complete-case analysis, but were more stable across the selection models and model that 

assumed missing at random.  Feldman and Rabe-Hesketh (2012) analyzed reading test score data 

from the NELS:88 longitudinal study using a latent growth curve model for the growth process 

and a logistic model for the dropout process with student intercepts and slopes included as 

predictors of dropout.  They found that both intercepts and slopes were inversely related to risk 

of dropout, but that the parameter estimates of the growth model were quite similar for the 

regular model (that assumes missing at random and ignores the dropout process) and the shared 

parameter model.  Karl, Yang, and Lohr (2013) fit a correlated parameter model, where the 

model for the primary outcome (test scores) depended on latent student and teacher effects, the 

model for missingness depended on different latent student and teacher effects, and the two sets 

of latent effects are allowed to be correlated.  The correlated parameter model is considered a 

generalization of the shared parameter model. 
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Research questions 

 The primary goal of this study is to determine the extent that accounting for informative 

missingness affects measures of student and school growth for a particular assessment system.  

The primary research questions addressed are: 

1) To what extent does accounting for informative missingness affect school effectiveness 

estimates? 

2) To what extent does accounting for informative missingness affect individual student growth 

estimates? 

Method 

Sample and data 

 School systems that use ACT’s College and Career Readiness System and test students 

each year with ACT Explore (grade 9), ACT Plan (grade 10), and the ACT College Readiness 

Assessment (grade 11) are the focus of this study.  The three assessments share a common score 

scale, with different score ceilings.  Explore scores range from 1-25, Plan scores range from 1-

32, and ACT scores range from 1-36.  Explore, Plan, and the ACT all contain multiple choice 

tests in English, Mathematics, Reading, and Science.  The philosophical basis for the tests are 

that (a) the tests should measure academic skills necessary for education and work after high 

school and (b) the content of the tests should be related to major curriculum areas (ACT, 2013).  

For each assessment, the Composite score is calculated as the mean of the four subject area 

scores.  The ACT focuses on the knowledge and skills attained as the cumulative effect of school 

experience.  Plan is intended for all 10th graders and focuses on the knowledge and skills that are 

typically attained by grade 10, and Explore is intended for all students in grades 8 and 9 and 

focuses on the knowledge and skills that are usually attained by grade 8.   
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 High schools with all-student testing programs in grades 9-11 are the focus of this study.  

Specifically, high schools that tested their 2012 high school graduating class with Explore in 

2008-2009 (grade 9), Plan in 2009-2010 (grade 10), and the ACT in spring 2011 (grade 11) were 

included.  Some students also elected to take the ACT in grade 12 and those test scores are 

included in the analysis.  To determine if a high school had an all-student testing program, the 

proportion tested for grades 9, 10, and 11 was calculated.  Proportion tested was defined as the 

number of tested students, divided by grade level enrollment.1  Schools whose proportion tested 

was at least 0.75 for all three grade levels and located in a state that administers the ACT to all 

grade 11 students were included.  The resulting sample of 223 high schools is summarized in 

Table 1 with respect to school percent eligible for free or reduced lunch, student sample size, and 

test score missingness for grades 9-12.  There was considerable variation in the within-school 

sample sizes, with 13.9% of the schools having fewer than 40 students and 16.1% having more 

than 300.  Most schools were in the 40-79 (25.6%) or 80-159 (29.1%) sample size ranges.  

Schools also varied with respect to poverty level (measured by percent eligible for free or 

reduced lunch), with 25.6% at 0-19%, 52.5% at 20-39%, 21.1% at 40-69%, and just 0.9% at 70% 

or higher.  The mean percentage of students tested was 84.5% (SD=8.3) for grade 10 and 79.4% 

(SD=6.7) for grade 11.  The mean percentage of students tested in grade 12 was 13.0% as 

relatively few students elected to test again in grade 12. 

 Students were included in the study if they took ACT Explore in grade 9 and were 

allocated to the high school they attended at that time.  Because measures of school effectiveness 

are of interest in this study, only students whose academic growth could be attributed to a single 

high school were included.  Thus, if a student was affiliated with more than one high school 

                                                      
1 Grade level enrollment data was obtained from the National Center for Education Statistics Common Core of Data 
School Database. 
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during grades 9-12, they were removed from the data set.  The resulting sample of 35,286 

students is summarized in Table 1 with respect to gender, ethnicity, mean test scores, and 

proportion missing test scores at grades 9-12.  The sample was evenly distributed by gender, 

with 75.4% Caucasian, 11.9% Hispanic, 6.8% other race/ethnicity, 4.0% African American, and 

1.9% unknown race/ethnicity.  Compared to the national population of high school students, the 

sample has relatively more Caucasian and relatively fewer African American students.  The 

mean Composite scores are 16.6 for grade 9, 18.4 for grade 10, 20.9 for grade 11, and 22.5 for 

grade 12.  Because the number of students tested decreases with grade level, the simple means do 

not accurately portray average growth patterns.  If lower achieving students are more likely to 

miss assessments, the simple means would suggest a higher level of growth than what would be 

observed if all students tested at each grade level. 
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Table 1: Sample Description 
 

High Schools 
Number of Students No. % Mean SD 
  10-39 31 13.9   
  40-79 57 25.6   
  80-159 65 29.1   
  160-299 34 15.2   
  300+ 36 16.1   
Poverty level No. % Mean SD 
  0-19%   57 25.6   
  20-39% 117 52.5   
  40-69% 47 21.1   
  70%+ 2 0.9   
Percent tested   Mean SD 
  Grade 9   100.0 0.0 
  Grade 10   84.5 8.3 
  Grade 11   79.4 6.7 
  Grade 12   13.0 7.6 

Students 
Gender No. % Mean SD 
  Female 17,250 48.9   
  Male 17,962 50.9   
  Unknown 74 0.2   
Race/ethnicity No. % Mean SD 
  African American 1,423 4.0   
  Caucasian 26,591 75.4   
  Hispanic 4,195 11.9   
  Other 2,391 6.8   
  Unknown 686 1.9   
Test scores No. % Mean SD 
  Grade 9 35,286 100.0 16.6 3.4 
  Grade 10 30,048 85.2 18.4 3.8 
  Grade 11 27,977 79.3 20.9 5.1 
  Grade 12 5,565 15.8 22.5 4.6 
 

 Because of the study inclusion criteria, all students had a baseline measurement (grade 9 

test score).  There were eight possible missing data patterns and the relative frequency of each is 

summarized in Table 2.  A majority of students (61.6%) tested in grades 9-11, but not in grade 

12 (note that the grade 12 test is not part of the all-student testing program).  Another set of 
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students, 14.7%, tested in all four grade levels.  Not including the grade 12 missingness, the most 

common missing data pattern (11.8%)  was to test in grade 9, but then to miss grades 10-12.  The 

next most common pattern (8.3%) was to test in grades 9 and 10, but then to miss the grade 11 

and 12 tests.  The most common intermittent missing data pattern (2.6%) was to miss the grade 

10 and grade 12 tests, but to test in grade 11.  Data indicating reasons for missed assessments 

was not available, but plausible reasons for missing data include high school dropout, migration 

out of the high school, absenteeism on test day, opting out of testing, and being held back. 

Table 2: Missing Data Patterns (O=test score missing, X=test score observed) 
 

 

 

 

 

 

 

 

Selection model for assessment data with missingness 

 Selection models for informative missingness have two components: the longitudinal 

outcome component (test scores in our case) and the dropout/missingness component (indicators 

for missed assessments in our case).  These two components are described separately and prior 

distributions for the model parameters are then specified.  The model was fit using the Bayesian 

framework, which provides two key advantages: 1) reliable statistical inference with no reliance 

on asymptotic theory, and 2) a flexible framework for conducting sensitivity analysis of model 

specification and prior distributions. 

Missing Data Pattern 
N % 

9 10 11 12 
X O O O 4,149 11.8 
X X O O 2,917 8.3 
X O X O 917 2.6 
X O O X 45 0.0 
X X X O 21,738 61.6 
X X O X 198 0.6 
X O X X 127 0.4 
X X X X 5,195 14.7 

Total 35,286 100.0 
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 Hierarchical linear model for test score data.  The assessment data include subject-

specific scores for English, Mathematics, Reading, and Science as well as a Composite score.  

Because school effects on overall academic readiness are of interest and to simplify the analysis, 

only Composite scores are used.  The Composite score for the ith student from the jth school in 

the kth year of high school (k=1,2,3,4) is denoted yijk.  With the common score scale used by the 

Explore, Plan, and ACT assessments, a random coefficients model (Raudenbush & Bryk, 2002) 

is assumed so that initial academic performance (grade 9 score) and rate of change (slope) vary 

across students and high schools.  Specifically,  

Equation 1: Level 1 Model for Test Scores 
𝑦𝑖𝑖𝑖~𝑁�𝑏0𝑖𝑖 + 𝑡𝑖𝑖𝑖𝑏1𝑖𝑖 ,σ2� 

where 𝑏0𝑖𝑖 is the initial level of academic performance (intercept parameter) and 𝑏1𝑖𝑖 is the rate 

of change in academic performance (slope parameter) for the ith student from the jth school.  The 

number of months elapsed (not counting the three months of summer) since the start of high 

school (assumed to be September 1st of grade 9) is denoted 𝑡𝑖𝑖𝑖.  This model is also referred to as 

a random intercepts and slopes model, a linear latent growth curve model, or a normal 

hierarchical linear model.  The model assumes that deviations from each student’s linear 

trajectory are normally distributed with variance σ2.  Each student's intercept and slope is 

assumed to be a drawn from a bivariate normal distribution, with school-specific means and 

unstructured covariance matrix bΣ : 

Equation 2: Level 2 Model for Student Intercepts and Slopes 
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where 𝑟0𝑗 is the mean initial level of academic performance (school mean intercept) and 𝑟1𝑗 is 

the mean rate of change in academic performance (school mean slope) for the jth school.  The 
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school intercepts and slopes are assumed to be drawn from a bivariate normal distribution, with 

means modeled as a function of school poverty level (proportion of students eligible for free or 

reduced lunch) and unstructured covariance matrix rΣ : 

Equation 3: Level 3 Model for School Intercepts and Slopes 
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With this model specification, estimates of ijb1 represent student growth measures, and estimates 

of jr1  are school growth measures.  Under the assumption that student growth is attributed to 

schools, the school growth measure could be used as a measure of school effectiveness.  A 

school effectiveness measure adjusted for school poverty level is then calculated as 

( )jj FRLr ×+− 431 ββ . 

 Logistic regression models for missing data.  Our data set includes indicators of 

whether students tested at grades 10, 11, and 12 (everyone tested at grade 9).  Let ijkm  be the test 

score non-missing indicator ( 0=ijkm  if missing, 1=ijkm  if not missing) for the ith student from 

the jth school at year k (k=2,3,4 for grades 10, 11, and 12 respectively).  Because missing the 

assessments is plausibly related to performance on the assessments, the missing data indicators 

are modeled as Bernoulli random variables with the probability of missing the assessment 

dependent on the baseline test score (grade 9 Composite score) and change from baseline (grade 

8+k Composite score  - grade 9 Composite score).  Because schools might have effects on 

missingness that are unrelated to test scores, school-specific intercepts are allowed.  Logistic 

regression was used with the following specification of the logit function:  

Equation 4: Logit Function for Missing Data Models 
  

( )12110 ijijkkijkkjijk yyymL −++= αα  
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This model specifies that the probability of missing an assessment depends on the test score at 

time k, which is potentially unobserved.  Because the effects of academic performance on 

missing assessments are potentially different at grades 10, 11, and 12, the model also allows the 

missingness parameters to vary by time.  The school effects on missing data are assumed to be 

drawn from a bivariate normal distribution with covariance matrix mΣ :   

Equation 5: Level 2 Model for School Effects on Missingness 
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Because the test scores are the focus of the hierarchical response model and are included as 

predictors in the missing data model, the full model specification is characterized as a selection 

model with outcome-dependent missingness, such as in Diggle & Kenward (1994) and Xu and 

Blozis (2011).  

 Prior distributions.  Our general strategy for specifying prior distributions was to only 

use informative priors when such priors are needed to obtain proper posterior distributions.  

Hobert & Casella (1996) have shown that, for normal hierarchical linear models such as ours, 

proper prior distributions on these covariance matrices are needed for a proper joint posterior 

distribution.  Therefore, informative priors were specified for the covariance matrices of student 

intercepts and slopes ( bΣ ), school mean intercepts and slopes ( rΣ ), and school effects on 

missingness ( mΣ ).  Note that WinBUGS requires us to specify variance components using 

precisions (inverses of variances).  Using a parametrization given by Carlin & Louis (pp. 166-

168, 1996), a Wishart prior distribution is specified for the inverses of the covariance matrices as  

Equation 6: Wishart Priors for Covariance Matrices 
 

( ){ }κκ ,~ 11 −−Σ RW  
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where κ  is a degree of freedom parameter that represents the effective sample size.  By setting

20=κ , our prior distributions have about the same influence as an observed data likelihood for 

n=20.  Using the parametrization given in Equation 6, the prior mean of 1−Σ  is 1−R .  To obtain 

the prior means for bΣ  and rΣ  parameter values are elicited from subject matter experts.  Two 

senior ACT researchers with 10+ years of experience working with Explore, Plan, and ACT data 

were asked to complete the prior elicitation exercise presented in Appendix A, yielding a priori 

estimates of the variance components.  One expert completed the exercise based on personal 

experience and without performing any analysis or consulting related research findings, while 

the other completed the exercise by performing some analyses using data independent of the data 

used in this study.  The model was fit using the prior distributions elicited from the first expert 

and then sensitivity to the prior was checked by comparing the results against those obtained by 

using the prior distributions elicited from the second expert.  The prior mean for the variance 

components of the school effects on missingness were obtained by analyzing a dataset of high 

school enrollment counts for a single cohort of students from grades 9 through 122.   

 For the other model parameters, proper prior distributions were not needed to obtain 

proper posterior distributions.  For 𝛽 and 𝛼, multivariate normal priors were specified with mean 

0 and covariance matrix I910 .  Note that the large prior variances ensure that the prior 

distributions will have virtually no influence on the posterior distributions.  For ( ) 12 −
σ , a gamma 

prior was specified with parameters 1 and 10-9, such that the prior density function is 

approximately proportional to 1, and hence has virtually no influence on the posteriors. 

  
                                                      
2 High school enrollment count data from the National Center for Educational Statistics Common Core of Data were 
analyzed.  Grade 10, 11, and 12 enrollment counts were modeled as binomial random variables with number of trials 
given by grade 9 enrollment count.  School poverty level was controlled and school effects were estimated for each 
grade level, and then the covariance matrix of school effects on enrollment was estimated. 
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Model fitting with WinBUGs 

 Using Markov Chain Monte Carlo (MCMC) methods, parameter estimates were obtained 

by simulating from the joint posterior distribution of the model parameters using the WinBUGS 

software (Spiegelhalter, Thomas, Best, & Lunn, 2003).  In addition to the selection model, a 

simpler model was fit that ignores the missing data and thus assumes that the data are missing at 

random.  The simple model was also fit using WinBUGS and, with the exception of the missing 

data component, the model specification and syntax is identical to that of the selection model.  

MCMC methods require starting values for the model parameters.  To obtain starting values for 

the growth model parameters, the simple model was fit using SAS PROC MIXED.  To obtain 

starting values for the missing data component, random-effects logistic regression models were 

fit using SAS GLIMMIX after imputing missing test scores. 

 A single chain was used so that only one set of starting values was needed.  For the 

selection model and simple model, 10,000 burn-in iterations were run to achieve sampling from 

the stationary posterior distribution.  To test for lack of convergence, Geweke's (1992) diagnostic 

test was used on each of the model’s parameters.  This test did not suggest lack of convergence 

for any of the model’s parameters.  Then, 10,000 iterations were run to obtain a large sample of 

posterior draws.  With 10,000 posterior draws, the sampling error in estimating the posterior 

mean was less than one tenth of the estimated posterior standard deviation for all parameters.  

Results 

 Using the MCMC approach, the posterior distribution of each unobserved parameter and 

unobserved outcome is simulated.  The posterior mean is used as the estimate, and the posterior 

standard deviation serves as the standard error of the estimate.  In Table 4, the growth model 

parameter estimates are presented for the selection model and the simple model that assumes 
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missing at random.  The slope parameter estimates are modestly different for the two models, 

while the intercept parameters are much more similar.  This agrees with prior research that has 

found that the simple model overestimates slope parameters when negative rates of change lead 

to a higher probability of dropping out.  In particular, Saha and Jones (2005) found that the 

simple model has greater bias in the slope parameters (relative to the intercept parameters) under 

informative dropout. 

Table 4: Growth Model Parameter Estimates 
 

Component Parameter 
(Predictor) 

Selection 
Model 

Simple  
Model 

EST SE EST SE 
Test score 
intercept 

0β   16.610 0.106 16.670 0.105 
1β  (FRL) -2.799 0.325 -2.805 0.328 

Test score 
slope 

0θ  0.187 0.006 0.201 0.005 
1θ  (FRL) -0.135 0.017 -0.129 0.017 

Test score 
variance 

components 

2
eσ  1.951 0.015 1.685 0.012 
11Σ  7.071 0.071 7.246 0.071 
12Σ  0.223 0.002 0.189 0.002 
22Σ  0.009 0.000 0.008 0.000 
11η  0.405 0.047 0.415 0.048 
12η  -0.001 0.002 -0.001 0.002 
22η  0.001 0.000 0.001 0.000 

 

 Under the selection model, mean yearly growth per month of schooling (at a school with 

no students eligible for free or reduced lunch) is estimated at 0.187, whereas under the simple 

model the estimate is 0.201.  This amounts to a difference of 7.5%, which is noteworthy but does 

not seem critically large.  The estimates of the intercept parameters are very similar for the two 

models, which is expected because all students had an observed grade 9 test score, leaving less 

uncertainty in intercepts to be explained by missingness.   
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 The effect of school poverty on the slope is significant in both models.  Under the 

selection model, growth decreases 18%3 for each 25 percentage point increase in free or reduced 

lunch eligibility.  Under the simple model, growth decreases 16% for each 25 percentage point 

increase in students eligible for free or reduced lunch.  The overall slope parameters suggest that 

students grow by 1.6834 (selection model) or 1.809 (simple model) Composite score points per 

year for a school where no students are eligible for free or reduced lunch.  For a school with 50% 

FRL-eligible, yearly Composite score growth falls to 1.076 (selection model) or 1.229 (simple 

model) Composite score points per year. 

 The parameter estimates for the missingness component of the selection model are 

presented in Table 5.  For each grade level with potential missingness, the baseline grade 9 test 

score is predictive of missingness, as is the growth score.  The effect of grade 9 test score is 

largest for grade 10 missingness (estimate=0.282), followed by grade 11 missingness 

(estimate=0.249), and then grade 12 missingness (estimate=0.086).  Similarly, the effect of 

growth score (growth from grade 9) is largest for grade 10 missingness (estimate=1.059, 

standard error=0.020) and grade 11 missingness (estimate=0.562, standard error=0.009), 

followed by grade 12 missingness (estimate=0.128, standard error=0.007).  The effect sizes of 

the predictors of missingness can be interpreted using odds ratios.  For example, the odds of not 

missing the grade 10 test increase by a factor of 1.335 for each 1-point increase in 9th grade 

Composite score.  The odds of not missing the grade 11 test increase by a factor of 1.75 for each 

1-point increase in grade 9 to grade 11 growth. 

  

                                                      
3 This is calculated as 0.135*0.25 / 0.187 = 0.18. 
4 This is calculated as 0.187*9 = 1.683 
5 Calculated as exp(0.282)=1.33 
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Table 5: Missingness Model Parameter Estimates  

Component Parameter (Predictor) 
Selection 

Model 
EST SE 

Grade 10 
missingness 

02α  -2.565 0.132 
12α (grade 9 score) 0.282 0.008 

22α (grade 9 to 10 growth) 1.059 0.020 

Grade 11 
missingness 

03α  -2.829 0.096 
13α (grade 9 score) 0.249 0.006 

23α (grade 9 to 11 growth) 0.562 0.009 

Grade 12 
missingness 

04α  -3.576 0.091 
14α (grade 9 score) 0.086 0.005 

24α (grade 9 to 12 growth) 0.128 0.007 

Missingness 
school 

variance 
components 

11λ  0.423 0.060 
12λ  0.157 0.026 
13λ  -0.031 0.033 
22λ  0.125 0.018 
23λ  0.002 0.018 
33λ  0.282 0.037 

 

 Because of the large effects of baseline test scores and growth on missingness, the 

selection model adjusts the slope parameters and estimates of unobserved test scores downwards. 

Because only 11.8% of the sample had only one observed test score (Table 2), the adjustment of 

the slope parameters was not substantial.  Prior studies reveal that the adjustment increases with 

the percentage of study subjects with fewer than two observations (Saha & Jones, 2005). 

The analyses produced estimates of individual school effects, including 1) school effects on 

student growth produced by the selection model, 2) school effectiveness estimates produced by 

the selection model, 3) school effects on student growth produced by the simple model, 4) school 

effectiveness estimates produced by the simple model, and 5) school effects on missingness (net 
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of effects on test scores) for grades 10, 11, and 12.  The intercorrelations of the school effects are 

presented in Table 6. 

Table 6: Correlations of School Effects 
 
Variable 1 2 3 4 5 6 7 

1. School growth (selection model) 1.00       
2. School effectiveness (selection model) 0.85 1.00      
3. School growth (simple model) 0.99 0.84 1.00     
4. School effectiveness (simple model) 0.84 0.98 0.85 1.00    
5. Missingness - grade 10 -0.09 -0.12 -0.16 -0.21 1.00   
6. Missingness - grade 11 -0.01 -0.07 -0.09 -0.17 0.83 1.00  
7. Missingness - grade 12 0.26 0.12 0.25 0.11 -0.11 0.00 1.00 
8. Proportion FRL-eligible -0.52 0.00 -0.52 0.00 -0.03 -0.10 -0.31 
 

 The correlation between the two school effectiveness measures from the two models is 

0.98, suggesting that the selection model does not substantially change the rank ordering of 

schools in terms of effects on student growth, adjusted for school poverty level.  The correlation 

between school effects on student growth and the school effectiveness measure is 0.85 for both 

models.  These high correlations indicate that adjusting for school poverty level makes a 

difference in the rank ordering of schools.  School poverty level had large negative correlations 

with school growth for the selection model (R=-0.52) and for the simple model (R=-0.52), 

showing that students enrolled at higher-poverty schools tend to experience less growth.   

 The correlations between school growth and school missingness effects were small in 

magnitude with the exception of school effect on grade 12 missingness (R=0.26 for selection 

model, R=0.25 for simple model).  Higher missingness effects indicate that the school had less 

missingness, so the positive correlation suggests that schools that have higher growth effects 

have more students opting to test in grade 12, net of the effects of individual student test scores 

and growth.  School effects on grade 10 missingness were highly correlated with effects on grade 

11 missingness (R=0.83), but neither was significantly correlated with grade 12 missingness. The 
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simple model’s estimates of school growth and effectiveness tended to have small negative 

correlations with school effects on grade 10 and grade 11 missingness (correlations ranging from 

-0.09 to -0.21).  These correlations suggest that there is a weak negative relationship between 

school growth effects and having fewer missed assessments, a direction that seems 

counterintuitive.  Similar findings were observed for the selection model. 

 Examples of estimates of high school mean growth and high school effectiveness (mean 

growth adjusted for school poverty level) are provided in Table 7.  Results for four high schools 

are provided: a large school with high levels of missingness, a small school with high levels of 

missingness, a large school with low missingness, and a small school with low missingness.  In 

each case, the mean growth estimates are lower under the selection model.  This is expected 

because the selection model acknowledges that students with lower growth are more likely to 

have missing data.  The differences between the selection and simple model are greater for the 

two high schools (schools 4 and 78) with higher levels of missingness.  For example, school 4 is 

missing 25% of the grade 10 assessments, 27% of the grade 11 assessments, and 72% of the 

grade 12 assessments.  School 4’s mean growth estimate falls by 12.7% (from 0.181 to 0.158) by 

moving from the simple model to the selection model.  In contrast, school 126 is missing only 

4% of the grade 10 assessments, 8% of the grade 11 assessments, and 75% of the grade 12 

assessments.  School 126’s mean growth estimate falls by only 1.6% (from 0.243 to 0.239) by 

moving from the simple model to the selection model.  Related to the changes in school mean 

growth, the school effectiveness estimates are also impacted by model choice.  School 4’s 

effectiveness score drops from -0.011 for the simple model to -0.020 for the selection model.  

School 126, on the other hand, sees an increase in its effectiveness score from 0.043 to 0.052. 
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Table 7: High School Effect Estimate Examples 
 

High  
School 

N Missingness  
Rates Measure Selection Model Simple Model 

EST SE EST SE 

4 457 25%, 27%, 72% Per-month growth 0.158 0.006 0.181 0.006 
School effectiveness -0.020 0.008 -0.011 0.007 

78 26 27%, 42%, 77% Per-month growth 0.110 0.022 0.138 0.021 
School effectiveness -0.033 0.022 -0.020 0.021 

126 613 4%, 8%, 75% Per-month growth 0.239 0.005 0.243 0.005 
School effectiveness 0.052 0.007 0.043 0.007 

209 35 3%, 11%, 89% Per-month growth 0.113 0.020 0.120 0.019 
School effectiveness -0.026 0.021 -0.034 0.019 

 

 Estimates of individual student slope estimates were highly correlated (R=0.98) under the 

two models.  However, as was the case with the school effects, the results are different for 

individual students when data are missing.  In Table 8, the means and standard deviations of the 

student slope estimates for the two models is presented for each missing data pattern.  As 

expected, the mean slopes are most similar when there are no missing data (pattern 8), with a 

mean under the selection model of 0.204 and a mean under the simple model of 0.208.  Under 

the most common missing data pattern (pattern 5, missing only the grade 12 test), the models 

also yield similar results (mean=0.178 under the selection model, 0.184 under the simple model).  

Under the most extreme missing data pattern (pattern 1), the mean under the selection model was 

substantially reduced to 0.064, compared to 0.135 under the simple model.  For students who 

missed both assessments after grade 10, the mean slope was 0.122 under the selection model and 

0.136 under the simple model. 
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Table 8: Student Slope Estimate Summary Statistics, by Missing Data Patterns (O=test 
score missing, X=test score observed) 
 

 

 

 

 

 

 

 Examples of individual student growth estimates are provided in Table 9.  Results for 

five students with various missing data patterns are provided.  Student 1 had observed scores for 

grades 9 and 10, with a least-squares slope estimate of 0.111.  The simple model’s estimate of 

Student 1’s slope is 0.168, while the selection model’s estimate is 0.155.  The simple model pulls 

the least-squares estimate toward the school mean slope, while the selection model adjusts the 

slope estimate downward because missed assessments are associated with lower growth.  

Students 2 and 4 had just one observed score, which is the most severe case of missingness in 

this study.  It is therefore expected that the difference between the selection model estimate and 

the simple model estimate will be most pronounced.  Indeed, the growth estimate for Student 2 is 

0.196 under the simple model, but falls to 0.111 under the selection model.  The growth estimate 

for Student 4 is 0.023 under the simple model, but falls to -0.053 under the selection model.  

While the least-squares slope is not estimable for either student because there is just one data 

point, the posterior mean growth estimates are much larger for Student 2 than for Student 4 

under the simple model.  This is the case because latent slopes are positively correlated with 

Pattern 
Grade Level 

% 
Selection model Simple Model 

9 10 11 12 Mean SD Mean SD 
1 X O O O 11.8 0.064 0.077 0.135 0.077 
2 X X O O 8.3 0.122 0.081 0.136 0.074 
3 X O X O 2.6 0.122 0.087 0.140 0.085 
4 X O O X 0.0 0.100 0.067 0.113 0.066 
5 X X X O 61.6 0.178 0.097 0.184 0.093 
6 X X O X 0.6 0.106 0.072 0.111 0.070 
7 X O X X 0.4 0.183 0.081 0.193 0.079 
8 X X X X 14.7 0.204 0.083 0.208 0.080 
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latent intercepts (Table 4, R=0.786) and so the posterior of the slope is informed by the grade 9 

scores.  The student variation in slopes is also influenced by school effects. 

Table 9: Student Growth Estimate Examples 
 

Student Scores Selection Model Simple Model Least-Squares 
EST SE EST SE EST SE 

1 17, 18, ??, ?? 0.155 0.047 0.167 0.052 0.111 -- 
2 18, ??, ??, ?? 0.111 0.053 0.195 0.063 -- -- 
3 11, ??, 12, ?? 0.003 0.035 0.029 0.039 0.042 -- 
4 10, ??, ??, ?? -0.053 0.052 0.025 0.062 -- -- 
5 17, 20, 24, 27 0.252 0.031 0.267 0.034 0.303 0.013 

 

Discussion 

Summarizing the results 

 Studying predictors of academic growth is an important area of research with potential to 

identify school practices and student behaviors that lead to better preparedness for college and 

careers.   This area of study is also important for improving methods for measuring school and 

teacher effectiveness.  To study predictors of academic growth when some students miss 

assessments or drop out of school, one should examine the sensitivity of analysis results to 

different assumptions about informative missingness.  In this paper, a selection model was fit 

that assumed that missing data was predicted by potentially unobserved test scores, as well as a 

simpler model for the hierarchical outcome data.   

 The selection model results showed that students with lower initial test scores and lower 

growth were more likely to miss assessments.  Compared to a model that ignored the 

missingness process, the selection model resulted in lower estimates of mean student growth.  

However, because 88% of the student sample had at least two observed test scores, growth was 

identifiable for the vast majority of students and the overall adjustment afforded by the selection 

                                                      
6 Calculated as 0.223/(7.071*0.009)0.5=0.78. 
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model was modest.  Importantly, our study did not include students missing baseline (grade 9) 

test scores, and so additional missing data patterns were excluded.  It is likely that including 

students who did not have an observed grade 9 test score would have resulted in a greater 

difference between the selection model results and those obtained from the simple model that 

ignored the missing data process. 

 While the measures of school effectiveness were highly correlated for the selection model 

and simple model (R=0.98), examination of school cases at the extremes of high and low 

missingness illustrated that the school effect estimates can be sensitive to model choice.  

Interestingly, school effects on missingness (net of the effects of test scores on missingness) 

were not positively correlated with school effects on student growth. 

Measures of student growth were also highly correlated under the simple model and selection 

model.  The selection model adjusted the mean student slope estimates downwards, and the 

adjustment was very pronounced (52.9%, from a mean of 0.135 to a mean of 0.064) for students 

who only had one observed test score.  For other missing data patterns, the size of the adjustment 

ranged from 2.1% to 12.9%.     

Need for sensitivity analysis 

 While two models were considered, a more thorough analysis of the sensitivity of the 

results to model choice would have considered a larger set of alternative selection models or 

pattern-mixture models, both of which are designed to account for informative missingness.  Our 

selection model assumed that missingness depends on observed outcomes, whereas alternative 

selection models, referred to as shared parameter models, might have assumed that missingness 

depends on latent student or school variables, such as the student intercept and slope.  The shared 

parameter model assumes that latent student effects (e.g., true academic achievement or true 
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growth) affect missingness, whereas the selection model used in this study assumes that 

potentially unobserved test scores affect missingness.  The main distinction in the two 

approaches is that the proposed selection model allows test score measurement errors to affect 

missingness, whereas the shared parameter does not. 

 Pattern-mixture models, whereby separate estimates are derived for each possible missing 

data pattern and then combined to form an overall estimate, could also be used in the sensitivity 

analysis.  MCMC model-fitting methods provide a flexible framework for conducting sensitivity 

analysis because inferences can be made by simultaneously monitoring the posterior 

distributions of functions of parameters from competing models. 

 Because proper prior distributions were specified for the variance-covariance matrices of 

random effects, sensitivity to prior distributions was also checked.  Priors were elicited from two 

subject matter experts and the results under the set two sets of priors were virtually identical, 

which was expected given the large sample of schools and students.  

Model fitting using WinBUGS 

 The selection model and simple model were fit using the WinBUGS software.  Flat priors 

were specified for each parameter, with the exception of  the three variance-covariance matrices 

of random effects (student intercepts and slopes, school intercepts and slopes, and school 

missingness effects).  The prior distributions for the student and school effects were found using 

a prior elicitation exercise with subject matter experts, while the prior distribution for the 

variance-covariance of the school missingness effects was found using a data set independent of 

the study data set.  The prior distribution had effective sample sizes of 20, which is relatively 

small compared to the sample size of 35,286 students and 223 schools.   
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 The shared parameter model was relatively easy to fit using WinBUGS.  Since 

WinBUGS is currently free and accessible to everyone (see http://www.mrc-

bsu.cam.ac.uk/bugs), selection models can be implemented without much programming time and 

without investing in special software.  Since the missingness component of the selection model 

adds considerable complexity to the posterior simulation, computing time is expected to be 

significantly greater for the selection model relative to the simple model.  For our data set of 

35,286 students and 223 schools, WinBUGS required 2.5 seconds per iteration for 

simultaneously fitting the selection model and simple model. 

Limitations and ideas for additional research 

 As discussed earlier, only one selection model was examined whereas additional models 

could have been fit to examine the sensitivity of the results to model specification.  Student-level 

predictors of achievement intercepts,  achievement slopes, or missingness were not examined.  It 

is possible that the missingness process could have been explained by observable student 

characteristics such as prior course grades, family income, psychosocial measures of motivation, 

social engagement, and self-regulation (Casillas et al., 2012), and socio-demographic variables.  

If the missingness process is completely explained by observed data, the test scores would have 

been missing at random and there would be no need to fit the selection model.  Future research 

should examine predictors of test score intercepts and slopes, as well as the predictors of 

missingness. 

 As discussed earlier, the primary distinction between the outcome-dependent missingness 

model used in this study and a random-effects-dependent missingness is whether test score 

measurement errors can affect the missingness process.  Additional research should examine this 

issue to determine if observed test scores or latent test scores are more predictive of missingness. 
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 While our sample of high schools (N=223) and students (N=35,286) was quite large, it is 

not necessarily representative of all schools in the United States.  Schools had to have an all-

student testing program with ACT’s College Readiness Assessment System (ACT Explore, ACT 

Plan, and the ACT college readiness assessment) to be included.  School poverty level was 

included as a predictor in the hierarchical growth model for test scores, and was shown to be 

negatively related to both intercepts (grade 9 academic achievement) and slopes (academic 

growth).  Future research should include additional school characteristics as potential predictors 

of academic growth and missingness.   

 The growth model assumed a common scale for the test scores and the school 

effectiveness measure was defined as school mean slope, adjusted for school poverty level.  

Alternative models that regress current test scores on prior test scores do not require or assume a 

common scale of the test scores across multiple years (c.f., Allen, Bassiri, & Noble, 2009; Karl, 

Yang, and Lohr, 2013).  Future research should examine the appropriateness of using selection 

models for growth models that assume common test score scales versus those that do not. 

 A final idea for future research would be to extend the high school growth model with 

missingness to include college enrollment, college retention, and other college outcome data.  

This research could examine effects of test score missingness, as well as academic achievement 

status and growth, on future outcomes.  The research could also extend the analysis of high 

school effects on academic growth and missingness to include high school effects on college 

enrollment and college outcomes. 
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Appendix A: Prior elicitation exercise  

Consider students who test with Explore at the start of grade 9, Plan in grade 10, the ACT in 
grade 11, and the ACT again (optionally) in grade 12. Think of their Composite scores plotted 
over time and summarized by an intercept and slope for each student. 
 
Assume that the average starting point is 16.0 and assume that the average yearly change in score 
is 1.2.  Within the typical high school, starting true score varies by student.  Assuming a 50th 
percentile score of 16, what do you think would be the 90th percentile starting true score?  
<P90_intercept entered as 21.00, 19.39> 
 
Within the typical high school, growth (average yearly true score change) varies by student.  
Assuming that the 50th percentile of true growth is 1.2, what do you think would be the 90th 
percentile of true growth? <P90_slope entered as 2.40, 1.79> 
 
What do you think would be the correlation of starting true score and true growth?  
<R_slope_intercept entered as 0.20, 0.27> 
 
True score starting points and true growth may also vary across high schools, after adjusting for 
school poverty level.  Assuming a 50th percentile school-mean starting score of 16, what do you 
think would be the 90th percentile school-mean starting true score?  
< P90_school_intercept entered as 17.50, 18.31> 
 
Assuming a 50th percentile school-mean growth score of 1.2, what do you think would be the 
90th percentile school-mean true growth score? <P90_school_slope entered as 1.60, 1.57> 
 
What do you think would be the school-level correlation of school-mean starting true score and 
school-mean true growth? <R_school_slope_intercept entered as 0.30, 0.32> 
 
The prior mean of the student and school covariance matrices is then calculated as: 
 

Parameter Prior Mean Formula Prior Mean 
Expert #1 

Prior Mean 
Expert #2 

11Σ  �
𝑃90𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 16

1.645
�
2

 9.24 4.25 

12Σ  𝑅𝑠𝑠𝑠𝑠𝑠_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� 11Σ 22Σ  0.049 0.022 

22Σ  �
𝑃90𝑠𝑠𝑠𝑠𝑠 − 1.2

9 × 1.645
�
2

 0.0066 0.0016 

11η  �
𝑃90𝑠𝑠ℎ𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 16

1.645
�
2

 0.831 1.972 

12η  𝑅𝑠𝑠ℎ𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� 11λ 22λ  0.0074 0.0112 

22η  �
𝑃90𝑠𝑠ℎ𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠 − 1.2

9 × 1.645
�
2

 0.00073 0.00062 

 
 


