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Validity Decay in STEM and Non-STEM Fields of Study 

Abstract: The purpose of this study was to determine if validity coefficients for ACT scores and 

high school grade point average (HSGPA) decayed or held stable over eight semesters of 

undergraduate study in science, technology, engineering, and mathematics (STEM) fields at 

civilian four-year institutions, and whether the decay patterns differed from those found in non-

STEM fields at the same institutions.  

Data from 62,122 students at 26 four-year institutions were analyzed in a hierarchical meta-

analysis in which student major category (SMC), gender, and admission selectivity levels were 

considered potential moderators. Analyses for twelve subgroups were run. The results indicated 

that ACT score validity coefficients for STEM-Quantitative and STEM-Biological majors 

decayed less over eight semesters than the validity coefficients for non-STEM majors did. This 

was true for the uncorrected and corrected validity coefficients. For the HSGPA validity 

coefficients, this was true for the corrected validity coefficients.  

 

Keywords: Validity decay, dynamic criterion, meta-analysis, STEM, ACT  

 

Introduction 

Past research has suggested that the validities of admission tests and high school class rank decay 

over eight semesters (Humphreys, 1968; Wilson, 1983). Early research suggested that the decay may be 

due to the students changing over time (Humphreys, 1968), though later research suggested that validities 

decay because the criterion changes over time (Humphreys and Taber, 1973; Powers, 1982). Butler and 

McCauley (1987), however, found validity stability instead of validity decay when using data from the 

United States Military Academy (USMA) and the United States Air Force Academy (USAFA). Among 

the reasons given for this stability were that, 1) at least half of the four-year curriculum at the military 

academies consisted of mathematics and natural science courses, 2) instructors teaching the same courses 

had to use common syllabi, and 3) the instructors at the academies tested the cadets more frequently than 

instructors tested students at civilian institutions. The first point is probably the most important one 



 

2 

 

because students taking courses in a program with a highly structured curriculum do not have the freedom 

to avoid difficult courses and select courses known for easy grading standards.  

The Butler & McCauley (1987) results were unique in the validity decay literature, but the 

military academies are unique academic environments. Most students in the United States attend civilian 

institutions, but within civilian institutions the academic requirements in science, technology, 

engineering, and mathematics (STEM) fields are similar to those found in the military academies in that 

more than half the required courses are in mathematics and the natural sciences. Furthermore, STEM 

courses typically must be taken in sequential order, ensuring a high level of uniformity in the content of 

the prerequisite STEM courses that must be completed before attempting the advanced STEM courses. 

Lastly, and as discussed in greater depth below, the grading practices in STEM fields are more stringent 

than the grading practices in non-STEM fields (e.g., Goldman & Widawski, 1976; Strenta & Elliot, 

1987). Although one cannot completely replicate the Butler & McCauley (1987) study while using data 

from civilian institutions, there would be important similarities with such a study and the results could be 

generalized to the much larger civilian college population. 

The main purpose of this meta-analysis is to determine if validity coefficients for ACT scores, 

both composite scores and subject area test scores, and high school grade point average (HSGPA) decay 

over eight semesters of undergraduate study in STEM fields at civilian four-year institutions, and whether 

the decay pattern differs from that found in non-STEM fields at the same institutions. In this study, 

validity decay is defined as a general trend in which the correlations between a predictor variable and a 

criterion decrease each time the criterion is measured. With the passage of time, the validity coefficients 

trend downward, and the validity coefficient for the eighth semester is less than the validity coefficient for 

the first semester. Another question of interest is whether admission selectivity and gender further 

moderate the relationships between precollege predictors (ACT scores and HSGPA) and academic 

performance in the STEM fields. 
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Whereas most studies that focused on validity decay have used data from single institutions, this 

meta-analysis uses the data from 26 four-year institutions. This study draws upon and integrates research 

literature on the validity of traditional precollege academic predictors (admission test scores and 

HSGPA); validity decay; differential grading practices across fields of study; and characteristics of STEM 

fields and the students who enter these fields. The integration of this literature provided the rationale for a 

hierarchical moderator analysis in which the validity decay analyses were ultimately disaggregated by 

three student major categories (SMCs), two levels of institutional admission selectivity, and gender for a 

total of twelve subgroups.  

Criterion Model of Validity 

The word “validity” has meant different things to different people at different times. Brennan 

(2006) has traced the meaning of the word across the various editions of Educational Measurement and in 

a variety of contexts (e.g., K-12, licensure exams, admissions to higher education), and Kane (2006) has 

described the evolution of how the measurement community has conceptualized validity, from the 

criterion model, to the content model, to the construct model, and finally to his argument-based approach 

to validity. However, Kane noted that “for admissions, placement, and employment testing, the criterion 

model is still the preferred approach” (p. 17). With admissions, the focus is on predictive validity, and the 

outcome of the validity study, a correlation between the predictor variable and the criterion of interest, 

provides what may be seen as tangible evidence to support admission decisions. Institutions want to be 

able to predict future academic performance, defined as the grades students earn in the courses taught by 

the institutions’ faculty members, and admission test scores and HSGPA typically provide the best 

information to make these predictions. For this reason, this study adheres to the criterion model with a 

focus on the predictive validity of ACT scores and HSGPA.  

Validity studies generally report both observed and corrected correlations. It is well known that 

range restriction on the predictor variables and unreliability in the criterion reduce the size of observed 
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correlations (Cronbach, 1960; Gullicksen, 1987), and corrections for these artifacts can produce large 

differences between the observed correlations and corrected correlations. For example, Ramist et al. 

(1994, p. 13) reported uncorrected correlations between combined SAT scores (Verbal plus Math) and 

first-year GPA of .36. After correcting for range restriction, the correlation rose to .53, and then after 

correcting for unreliability in first-year GPA the fully corrected correlation rose to .57. Later studies 

(Bridgeman et al., 2008; Kobrin, Patterson, Shaw, Mattern, and Barbuti, 2008; Sackett, Kuncel, Arneson, 

Cooper, & Waters, 2009) have produced similar results after correcting for one or both of these artifacts. 

Corrected correlations between HSGPA and first-year GPA have ranged between .54 and .61, and 

corrected multiple correlations (test scores and HSGPA) have ranged between .62 and .68 (Bridgeman et 

al., 2008; Kobrin et al., 2008; Ramist et al., 1994).  

Validity Decay 

Wilson (1983) observed that most validity studies focused on the validity of test scores and 

HSGPA as predictors of first-year GPA and that research on their predictive validity beyond the first year 

was not as common. However, summarizing the research on this topic up through the early 1980s, he 

found that when predicting independently calculated GPA (e.g., first-semester GPA, second semester 

GPA, etc.), validity coefficients for precollege predictors such as test scores, high school rank (HSR), and 

HSGPA generally decayed over time. This trend was best described by Humphreys (1960) in his simplex 

model, in which the strongest relationships were between measurement variables that were 

chronologically closest to one another and weakened as the interval between measurements increased. For 

example, given GPAs for eight semesters, first semester GPA would have its highest correlation with 

second-semester GPA and its correlations with the other semester GPAs would monotonically decline to 

its lowest correlation, its correlation with eighth-semester GPA.  

Of all the studies on validity decay, Humphreys’ (1968) classic study stands out in the literature. 

Humphreys tracked the academic performance of students at the University of Illinois across eight 
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semesters and found that although ACT scores and HSR were valid predictors in every semester, they 

declined steadily over the four years. The correlations reported were actually averages of the correlations 

calculated by gender and college within the university, each weighted by N. This decline was true for the 

correlations calculated using all students enrolled in each semester (varying Ns), when using just the data 

from only the students who had been continuously enrolled for eight semesters, and when using the data 

from the first analysis and then making corrections for range restriction with the continuously enrolled 

students. The explanation given for validity decay was that it was most likely that students were changing 

over time, hence the decline. Later, Humphreys and Taber (1973) used GRE scores to postdict 

undergraduate grades and found that the correlation coefficients were highest in the first semester and 

lowest in the eighth semester, a contradiction of the simplex model. One possible explanation they gave 

was that it the criterion, semester GPA, had changed between the freshman and senior years.  

Wilson (1983), after reviewing the literature on the prediction of academic performance beyond 

the first year of college and his own research (1978, 1980, 1981), concluded that validity coefficients for 

test scores, HSGPA, and HSR declined over time and there appeared to be evidence that the decay was 

due to the criterion changing. Wilson’s review of the literature was quite thorough, but other researchers 

continued to conduct research on validity decay. Powers (1982) found validity decay in the prediction of 

law school grades, but recognized that the first year of law school consists of common courses, the second 

year less so, and the third year is often filled with clinical courses, making comparisons more difficult. In 

their study on differential grading practices across fields of study, Elliott and Strenta (1988) found that 

adjusting GPAs for differential grading practices not only raised the validity coefficients but it decreased 

the amount of decay seen over time.  

These two studies on course selection and differential grading practices helped explain why 

validity coefficients decayed over time, but they did not show or argue for validity stability. Rather, they 

provided different explanations or proposed methods to demonstrate that the decline in validity 

coefficients was not as steep as it initially appeared. A strong argument for validity stability came from 
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Butler and McCauley (1987) who used data from the USMA and at the USAFA. They found that the 

validity coefficients of SAT scores and high school class ranks did not decay over time at the USMA, and 

although they did decline at the USAFA, they did not decline nearly as much as Humphreys had found in 

his studies. As mentioned earlier, Butler and McCauley presented three possible factors for validity 

stability at the military academies, but probably the most important factor given was that the cadets at the 

military academies had little room to maneuver when it came to choosing courses. Civilian students 

experiencing academic difficulties are free to change to a major with less stringent grading practices 

and/or seek out instructors who are reputed to be easy graders (Prather Smith, & Kodras, 1979), and this 

mobility could explain why so many other studies reviewed by Wilson (1983) had found validity decay in 

academic settings. In a sense, by using only cadets at the military academies, Butler and McCauley 

largely controlled for differential grading practices across fields of study.  

Though not dedicated to examining validity decay, a recent series of validity studies have looked 

at the validity of SAT scores and HSGPA as predictors of independently calculated annual GPA and 

cumulative GPA across four years (Kobrin et al., 2008; Mattern & Patterson, 2011a, 2011b, 2011c). 

Starting with data for 151,316 students at 110 institutions in the first year and finishing with 56,939 

students at 55 institutions in the fourth year, within each institution they obtained the observed 

correlations and then made corrections for range restriction within each institution, using the 2006 cohort 

of SAT examinees (college bound seniors) as their reference population. They then obtained weighted 

average observed and corrected correlations for each predictor variable or combination of predictor 

variables. When looking at independently calculated annual GPAs, combining the results of the four 

studies showed a pattern of validity decay for both the observed and corrected validity coefficients for 

SAT scores and HSGPA. When looking at cumulative GPAs, the corrected and uncorrected validity 

coefficients for SAT scores and HSGPA held steady or increased slightly over four years. 

In summation, the majority of research using independently calculated semester or annual GPA as 

the criteria has found that validity coefficients declined, or decayed, over consecutive terms or years, with 
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the Butler and McCauley’s (1987) results standing out as an exception. The results of the key validity 

decay/stability studies are summarized in Table 1. In light of the Butler and McCauley study, the 

argument that validity coefficients do not necessarily decay over time when students are in a restricted 

curriculum that is heavy in mathematics and natural science courses must be taken as a distinct 

possibility.  

STEM Fields 

Although some consider the social sciences and psychology to be STEM fields (Green, 2007), a 

more restricted definition (Chen & Weko, 2009) limits inclusion to mathematics; natural sciences 

(including physical sciences and biological/agricultural sciences); engineering/engineering technologies; 

and computer/information sciences. These STEM fields have certain characteristics that distinguish them 

from non-STEM fields. One is that they require students to complete sequential courses in mathematics 

and the natural sciences (Kokkelenberg & Sinha, 2010; Oh, 1976; Ost, 2010; Prather & Smith, 1976), 

which was a key factor in the Butler and McCauley (1987) study. Though the expression “two cultures” is 

commonly associated with Snow’s (1959) lecture on the differences between the humanities and the 

sciences, Elliott and Strenta (1988, p. 334) used it to describe the curricular differences between the areas 

of study, with mathematics and science curriculums being “hierarchically organized and unforgiving of 

any lack in basic knowledge or skill.” Students cannot opt out of these sequential courses if they want to 

remain in a STEM field and subsequently earn a degree in the field. Being able to complete the courses at 

the end of the program requires students to use the knowledge that they had acquired in the preceding 

courses, which go back to the initial mathematics and natural science courses completed in the first year 

of study. Success in those initial courses requires sufficient academic preparation before college, so it is 

imperative that aspiring STEM students enter college prepared for the academic work.  

Another defining characteristic of STEM fields is that the grading standards appear to be more 

stringent (Elliott & Strenta, 1988; Goldman et al., 1974; Goldman & Hewitt, 1975, 1976; Goldman & 
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Widawski, 1976; Hewitt & Jacobs, 1978; Oh, 1976; Prather & Smith, 1976; Prather et al., 1979; Strenta 

& Elliott, 1987; Strenta, Elliott, Adair, Matier, & Scott, 1994). Some researchers have developed grade 

adjustment methods at the individual course level (Berry & Sackett, 2009; Noble & Sawyer, 1987; 

Stricker, Rock, & Burton, 1993; Young, 1990a, 1990b, 1993), while others have tried to develop grade 

adjustment methods to make GPAs for students in different majors more comparable (e.g., Goldman & 

Widawski, 1976; Strenta & Elliot, 1987; Elliott & Strenta, 1988; Pennock-Roman, 1994). Distinctions 

between quantitative and non-quantitative fields have been made, though Pennock-Roman reported that 

the grading standards in biological fields did not fit into this dichotomy. Students also seem to be aware 

of these different grading standards (Goldman & Hewitt, 1975; Hewitt & Jacobs, 1978), which influences 

their selection of courses and majors. These differences in grading practices across fields may help 

explain who enters and succeeds in STEM fields.  

Ability Level of STEM Majors 

Four decades ago, Burnham and Hewitt (1972) concluded that, among the students at Yale, those 

who had high verbal aptitude test scores and high mathematics achievement test scores were the only 

students who really had a choice between fields of study. More specifically, they suggested that 

mathematics was what separated students. They argued that schools ought to require students to take 

College Entrance Examination Board achievement tests in mathematics and the natural sciences and 

select students who scored high on these tests as well as on the verbal tests. Then the schools would have 

incoming students “who are in fact free to choose their prospective major on the basis of positive interest 

(p. 410).” What they avoided saying directly was that those who lacked mathematical and science ability 

had no choice over whether to be a STEM major or a non-STEM major. They had to be non-STEM 

majors. 

It was a somber message, over the following decades other researchers have made similar 

arguments. The general message has been that as the STEM fields require sequential coursework that 
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cannot be avoided, and as the grading practices are stricter in STEM fields, students seem to screen 

themselves into or out of STEM fields on their own. Students enrolling in STEM programs generally have 

higher levels of precollege academic preparation as measured by HSGPA and admission test scores than 

do students who enrolled in non-STEM programs (Elliott & Strenta, 1988; Green, 1989; Nicholls, Wolfe, 

Besterfield-Sacre, Shuman, & Larpkiattaworn, 2007; Ost, 2010; Pennock-Roman, 1994; Price, 2010; 

Strenta & Elliot, 1987; Strenta et al., 1994; White, 1992).  This was an important factor in the series of 

studies on differential grading practices at universities in California (Goldman et al., 1974; Goldman & 

Hewitt, 1975, 1976; Goldman & Widawski, 1976) where students in the sciences, mathematics, and 

engineering consistently had HSGPAs and SAT scores, especially SAT-Mathematics scores, that were 

higher than those associated with students in other majors. Strenta and Elliott (1987; Elliott & Strenta, 

1988; Strenta et al., 1994) also found that students in the sciences, mathematics, and engineering had 

higher HSGPAs and SAT scores than their non-STEM peers, and much as Goldman and Hewitt (1976) 

had observed, it was mathematics ability that set the science, mathematics, and engineering students apart 

from students in other majors. More recent research found that despite making up only 22.8% of the first-

year students, STEM majors were 31.1% of the entering students who had earned at least a B average for 

their HSGPA, and they were 51.1% of the entering students who had scored in the top quartile on their 

admission tests (Chen & Weko, 2009). STEM majors were also more likely to enroll in highly selective 

institutions (32.6% versus 21.1%) than their non-STEM counterparts.  

Gender Differences in STEM Fields 

 Female representation in the STEM fields has been an issue of interest for decades (Wai, 

Cacchio, Putallaz, & Makel, 2010), with researchers providing multiple explanations for why males are 

more prevalent than females are in certain STEM fields (e.g., Ceci & Williams, 2007), especially the 

more quantitative fields. As Kimura (2007) pointed out, even though work in the biological sciences – a 

field where females are well-represented – require mathematics, the level of mathematics required is not 

as high as that required for physics, where females are less represented. However, even among youth 



 

10 

 

identified as being mathematically precocious (Benbow, Lubinski, Shea, & Eftekhari-Sanjani, 2000), in a 

twenty-year follow-up study, males were nearly twice as likely as females to have earned a bachelor’s 

degree in mathematics or the inorganic sciences, and females were nearly twice as likely as males to have 

earned a bachelor’s degree in the life sciences or humanities. Looking at national data for all STEM 

majors, in 2007 males earned roughly 80% of all the bachelor’s degrees awarded in engineering, 

computer sciences, and physics, and females earned 60% of all bachelor’s degrees in biological sciences 

and 50% of all bachelor’s degrees in chemistry (National Science Board, 2010). Another possible 

explanation for these gaps is that among females with high mathematical abilities, many are even stronger 

in other areas, and students tend to follow academic and career paths that match their strengths (Lubinski 

& Benbow, 2007). Attempting to explain why males and females enter different STEM fields at different 

rates is beyond the scope of this paper, but the differences in male and female participation rates across 

STEM fields provides further support for distinguishing between STEM-Quantitative and STEM-

Biological majors. Furthermore, differential validity research has consistently found that females earn 

higher grades and that the validity coefficients for females are slightly higher than those for males (Young 

& Kobrin, 2001; Zwick, 2006). Considering these gender differences in participation rates, grades earned, 

and validity coefficients, gender should be considered as a potential moderator in validity decay analyses. 

Institutional Admission Selectivity 

Past research suggests that institutional admission selectivity should be considered a potential 

moderator of validity coefficients. Regarding admission selectivity, Kobrin et al. (2008) found that 

validity coefficients for SAT scores were higher at more selective institutions than they were at less-

selective institutions, but validity coefficients for HSGPA were highest at the less-selective institutions. 

This trend continued in subsequent research over the next three academic years (Mattern & Patterson, 

2011a; 2011b; 2011c). Allen and Robbins (2010) found that validity coefficients for ACT Composite 

scores and HSGPA were higher at four-year institutions, most having admission policies in which most 

students came from the upper half of their high school classes, than at two-year institutions, most of 
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which had open admissions. Given these findings, admission selectivity should also be considered a 

potential moderator of validity coefficients over time. 

Hypothesis 

A fundamental concept to remember in correlational studies is that analyses conducted on a group 

that contains subgroups with different means and standard deviations on any of the variables may lead to 

spurious correlations (Kirk, 1999). STEM majors have higher mean admission tests scores and HSGPAs 

(Chen & Weko, 2009), hence they should not be analyzed together with non-STEM majors. Similarly, 

students at more-selective institutions have higher mean admission tests scores and HSGPAs than 

students at less-selective institutions. Finally, males tend to have slightly higher mean admission test 

scores and more variance in their scores, whereas females tend to have higher mean HSGPAs (Kobrin & 

Patterson, 2011a; 2011b; 2011c). Given these differences, the validity coefficients from the overall results 

may be misleading. However, as the results presented by Humphreys (1968) and Butler and McCauley 

(1987) did not make distinctions between academic majors, it was decided to first meta-analyze the data 

without considering potential moderators. Subsequent analyses included SMC, gender, and institutional 

admission selectivity levels as potential moderators. 

Hypothesis: Regardless of gender and institutional admission selectivity level, student major category 

will moderate the relationships between precollege academic predictors – ACT scores and HSGPA – and 

independently calculated semester GPA across eight consecutive semesters. Within each gender by 

admission selectivity grouping, students in the STEM-Quantitative and STEM-Biological categories will 

have less validity decay than the students in the non-STEM categories.  

Methodological Issues 

Predictions of future behavior will always be less than perfect (Thorndike, 1963), and a number 

of factors cause this imperfection, including measurement error in the predictors and the criterion; 

heterogeneity in the criterion; the limited scope of single predictors; group differences; and the impact of 
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individual experiences between the time the predictor measurement was taken and the time the criterion 

measurement was taken. Another artifact to add to the list is range restriction, which is widely known to 

reduce the magnitude of correlations. 

Many of these issues were directly addressed in this meta-analytic study. Validity studies from 26 

institutions were combined using the Hunter and Schmidt (2004) meta-analytic techniques, which use a 

random effects model that allows validity coefficients to vary across institutions while also determining 

estimated mean correlations between the predictors and the criterion. This methodology makes 

corrections for measurement error and range restriction at each institution before pooling data across 

institutions. This pooling also diminishes the problem of sampling error, which is common in individual, 

single institution studies with small sample sizes. 

In addition to correcting for measurement error and range restriction, a hierarchical moderator 

analysis addresses the problems arising from heterogeneity and group differences. Heterogeneity in the 

criterion, which concerns differences in the “common” criterion across institutions, fields of study, and 

teachers, was addressed by grouping students according to fields of study and by admission selectivity. 

The only group difference addressed in this study was gender. Though very much a grouping of interest, 

race/ethnicity was not analyzed as a moderator because of insufficient numbers for some of the groups 

across institutions and fields of study.  

Finally, this validity decay study addressed the issue of the time between when the predictor 

measurement was taken and when the criterion measurement was taken. Finding validity stability, as 

Butler and McCauley (1987) found, would suggest that individual experiences between the time that the 

predictor measurement was taken and the time that the criterion measurement was taken have little if any 

impact on the relationship between the predictor and the criterion.  

Methods 

Sample 
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Data for the current study came from 26 four-year institutions that had participated in various 

ACT research services or partnerships. The institutions were located in 13 states, mostly in the Midwest 

and South, and of the 26 institutions, 23 were public and three were private. Admission selectivity was 

defined in accordance with the classification system utilized by ACT (2010) and summarized in Table 2. 

In this data set, one institution was classified as highly selective; nine were classified as selective; 15 were 

classified as traditional; and one was classified as open. No institutions in the data set fell into the liberal 

classification level. As there were not enough institutions at each level, the highly selective and selective 

institutions were grouped as “more selective” institutions, and the traditional, liberal and open admission 

institutions were grouped as “less selective” institutions.  

Inclusion in the study depended on meeting criteria at the institution and individual levels. To be 

consistent with the Humphreys (1968) and Butler and McCauley (1987) studies, students had to be 

continuously enrolled in the same four-year institution. Therefore, at the institution level, schools had to 

have at least four years of follow-up data on their students, to include semester GPA for eight consecutive 

semesters, from the first semester of the first year through the second semester of the fourth year. Cohort 

years between 2000 and 2005 were included. To ensure that students were continuously enrolled at the 

same institution, all dropouts and transfer students were excluded, as were students who dropped out and 

later returned to the same institution.  

A fundamental goal of the study is to compare three student major categories (SMCs; STEM-

Quantitative, STEM-Biological, and non-STEM) within institutions because institutions that offer all 

three options give students a choice of entering one of the STEM areas of interest as well as any of the 

numerous non-STEM fields. Therefore, institutions that did not have at least three observations in each of 

the six gender by SMC subgroups were excluded. This liberal minimum requirement of having at least 

three observations in each subgroup made it possible to include most of the less-selective institutions that 

had few STEM majors but many more non-STEM majors. At the individual student level, students had to 
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have valid ACT scores, HSGPA, a semester GPA for each semester, and a cumulative GPA for each 

semester.  

An additional requirement was that students had to have a Classification of Instructional 

Programs (CIP) code (National Center for Educational Statistics, NCES, 2002) associated with their 

records. The CIP code is a six-digit number that identifies a student’s declared major. The first two digits 

are the most general categorization, the first four digits provide an intermediate categorization, and the 

full six digits provide the most specific categorization. In light of the findings of Pennock-Roman (1994), 

in this study students with a CIP code of 11 (Computer Sciences), 14 (Engineering), 27 (Mathematics and 

Statistics), and 40 (Physical Sciences, primarily physics and chemistry) were pooled to create the STEM-

Quantitative category, and students with a CIP code of 26 (Biological and Biomedical Sciences) were 

used to create the STEM-Biological category. All other students with a declared major were classified as 

non-STEM. 

As grading practices differ across majors, and these differences potentially moderate the 

relationship between precollege predictors (ACT scores and HSGPA) and undergraduate GPA, students 

who changed SMCs while at the same institution were excluded from the analyses. However, students 

were allowed to change majors within their SMC. For example, a student who initially majored in 

chemistry and later changed to engineering would have been included in the study because both majors 

(CIP codes 40 and 14) would fall into the STEM-Quantitative category. If the student had changed his/her 

major from chemistry to communications, the student would have changed categories (STEM-

Quantitative to non-STEM) and would have been excluded.  

The data set consisted of ACT-tested students who enrolled as first-time students entering in the fall term 

from 2000 to 2005, a total of up to six cohorts per institution. Few institutions had enough students to 

conduct moderator analyses based on racial/ethnic categories, but the overall racial/ethnic breakdown was 

as follows: 48,949 Caucasians, 3,868 African-Americans, 2,638 Hispanics/Latinos, 1,695 Native 
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Americans/Native Alaskans, and 1,857 Asian-Americans. A total of 611 students identified themselves as 

Multiracial, and 513 identified themselves as “Other”. A total of 1,991 students either selected “Prefer not 

to respond” or simply did not answer the item.  

Validity generalization studies seek not to simply describe how the results apply to the study 

participants but to the overall population of interest from which the sample was taken. Data from this 

population, or referent group, are needed to make corrections for range restriction, which is discussed in 

detail later. This population of interest is the national ACT examinee population, to which the results of 

this study will be generalized. To match the cohort years described earlier, data from all 1999-2005 ACT 

examines were used as the referent populations
1
. For the analyses is this study, the two referent groups 

were the male and female ACT-tested populations. Table 3 contains descriptive statistics for these 

referent populations and the overall ACT-tested population. Descriptive statistics for the overall group 

and the subgroups for the moderator analyses in this study are presented in Table 4. Consistent with the 

literature, the STEM majors had higher mean ACT scores and HSGPAs than those of the non-STEM 

majors, both overall and within institutional admission selectivity levels.  

Independent Variables: ACT Scores and HSGPA 

The ACT® college readiness assessment includes four multiple-choice subject area tests – 

English, Reading, Mathematics, and Science – and an optional Writing Test (ACT, 2007). Raw scores for 

each subject area test are converted to scale scores that range from 1 to 36, and the Composite score also 

ranges from 1 to 36. The ACT tests were developed by content experts who consulted junior and senior 

high school state standards for the content areas (grades 7 through 12), textbooks on state-approved lists, 

high school teachers, and college and university faculty members to ensure a high degree of agreement 

with what the students are studying in junior and senior high school and what they need to know to 

succeed in entry-level courses in college. The reliability of the subject area test scores and the Composite 
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score reported in the ACT Technical Manual (ACT, 2007) are as follows: English, .91; Mathematics, .91; 

Reading, .85; Science, .80; and the Composite, .96.  

The measure of HSGPA in this study was based on students’ self-reported high schools grades in 

the four core subject areas: English, mathematics, social science, and natural science. Although students 

report grades on up to 30 high school courses, only grades earned for the first 23 core subject area courses 

are used in calculating HSGPA. ACT research found that the median correlation between self-reported 

high school grades and actual grades on transcripts was .79 (Schiel & Noble, 1991). This median 

correlation was used as the reliability estimate of HSGPA. Note that this estimate came from a restricted 

sample, and it was used as the restricted reliability estimate for each institution. Given the estimated 

reliability of HSGPA in the restricted population at each school (.79), individual corrections for range 

restriction at each institution in this study were made by applying equation 3.17c from Hunter and 

Schmidt (2004) so that each institution had an institution-specific estimate for the reliability of HSGPA in 

the unrestricted national population. This was the opposite of what was done for ACT scores, where the 

reliability estimate for the national, unrestricted population was known and the institution-specific 

estimate for the reliability of HSGPA in the restricted school population had to be estimated. 

Dependent Variable: Semester GPA  

The dependent variable in the validity analyses was independently calculated semester GPA as 

reported by the institutions. All institutions reported semester GPA on a four-point scale. The reliability 

of GPA for a full academic year is typically calculated by using the correlation between semester GPAs 

within an academic year and applying the Spearman-Brown Prophecy Formula. However, as the 

prediction of semester GPA is the objective of this study, the reliability of semester GPA was estimated 

by using the correlation between adjacent semesters within an academic year. An alternative approach 

would have been to use an average of the two correlations available between adjacent semesters, but this 

would have worked only for semesters two through six, as semesters one and eight have only one adjacent 
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semester. Furthermore, the correlations between adjacent semesters within an academic year in 

Humphreys’ (1968) validity decay study were higher than the correlations between semesters separated 

by a summer break, resulting in an up-down pattern over eight semesters and suggesting that the 

correlations between semesters within an academic year were better representations of the relationship. 

For this reason, only the correlations between adjacent semesters within an academic year were used. 

Students who graduated in less than eight semesters were included in the study (n=3,956). For 

students who graduated at the end of the fifth, sixth, or seventh semester, their cumulative GPAs were 

used as their semester GPAs over the following semester(s). These proxy semester GPAs were included 

in the estimation of the reliability of semester GPA. 

 

Moderator Variables 

This study has three hypothesized moderator variables: admission selectivity, gender, and SMC. 

The moderator of most interest in this study is SMC. Some majors are more popular than others, and not 

every major is offered at each institution, so making comparisons at the level of the four-digit or six-digit 

CIP code was impractical. As described earlier, three SMCs were created: STEM-Quantitative, STEM-

Biological, and non-STEM. Students who did not have a valid CIP code for each semester were excluded 

because they could have been in any of the three categories. Students were further subdivided by gender 

and institution admission selectivity, described earlier. 

Meta-Analytic Techniques 

The Hunter and Schmidt (2004) meta-analytic techniques were used to analyze the data. This 

methodology permits corrections for sampling error, measurement error, and range restriction. As 

institutions generally do not make admission decisions strictly using a top-down approach based upon test 

scores and HSGPA, corrections were made for indirect range restriction. Note that the methodology 
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makes corrections to estimate the correlation between the true scores on the predictor (T) and the true 

scores on the criterion (performance, P), ρTP. When the objective is the estimation of the mean 

operational validities of the predictor measures, as in this study, measurement error is reintroduced in T at 

the institutional study level before meta-analyzing the results (Hunter, Schmidt, & Le, 2006; Le & 

Schmidt, 2006).  

As noted earlier, most validity decay/stability studies were conducted at single institutions (e.g., 

Butler & McCauley, 1987; Elliot & Strenta, 1988; Humphreys, 1968; Wilson, 1978, 1980; Wilson, 1978, 

1981). The pooling of research results from individual institutions into a single meta-analysis allows 

researchers to generalize the results to institutions not included in the meta-analysis. Though the focus of 

this study was on validity decay seen in the estimated mean correlations that were calculated for each 

relationship, a 90% credibility interval was calculated for each corrected validity coefficient, each 

providing a range where we would expect to see the parameter values for 90% of all institutions to fall. 

The 90% credibility intervals (and 95% confidence intervals) that were calculated for each of the six 

predictor-criterion relationships across eight semesters for each of the subgroups are not reported here but 

are available upon request.  

Hierarchical Moderator Analysis 

Conducting multiple moderator analyses on moderators one by one can be misleading because the 

moderators may be correlated (Hunter & Schmidt, 2004). Therefore, a hierarchical meta-analysis was 

conducted with observations disaggregated into twelve subgroups by SMC, gender, and institutional 

admission selectivity.  

Results 

The results for the validity meta-analyses for ACT Composite (ACTC) scores, ACT English 

(ACTE) scores, ACT Mathematics (ACTM) scores, ACT Reading (ACTR) scores, ACT Science (ACTS) 
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scores, and HSGPA are presented in Tables 5 through 10. Corrected and uncorrected validity coefficients 

rounded to the second decimal place are reported across eight semesters. On the right side of each table 

are two columns, one showing the amount of change in the validity coefficients between the first and 

eighth semesters and the other showing the percent changed. The percent changed is the amount of 

change before rounding divided by the unrounded validity coefficient for the first semester. 

Hierarchical Moderator Analysis Results 

The hypothesis stated that student major category, admission selectivity, and gender would jointly 

moderate the relationships between precollege academic predictors – ACT scores and HSGPA – and 

independently calculated semester GPA across eight consecutive semesters. Students in the STEM-

Quantitative and STEM-Biological categories would have less validity decay than the students in the non-

STEM categories within their respective gender by admissions selectivity categories. The upper halves of 

the tables contain the observed correlations, and the bottom halves contain the corrected correlations. As 

range restriction and measurement error distort the relationship between the predictors and the criteria, the 

results for the corrected correlations are emphasized. Note that the corrections for range restriction and 

measurement error increased the validity coefficients for ACT scores and HSGPA, though more so for 

HSGPA due to greater amounts of range restriction and lower reliability estimates for HSGPA. Further 

note that with the increases in the corrected validity coefficients, the amount of change between the first 

and eighth semesters also increased. However, when looking at the percentage of change in the final 

column, the results for the corrected validity coefficients are quite similar to those for the uncorrected 

validity coefficients. 

Females at more-selective institutions. 

Among the females at schools with more-selective admission standards, the STEM-Quantitative 

and STEM-Biological majors had less validity decay than the non-STEM majors. For the ACTC-GPA 

relationships (Table 5), the amount of decay in the corrected correlations was -.07 for the STEM-
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Quantitative majors, -.15 for the STEM-Biological majors, and -.29 for the non-STEM majors. For the 

ACT subject-area tests (Table 6, ACTE; Table 7, ACTM; Table 8, ACTR; Table 9, ACTS), the same 

patterns held. The STEM-Quantitative majors had the least amount of validity decay, followed by the 

STEM-Biological majors, and then followed by the non-STEM majors, who had the most validity decay. 

For the corrected HSGPA-GPA relationships, the amount of decay was only -.02 for the STEM-

Quantitative majors. A larger amount of decay was associated with the validity coefficients for the 

STEM-Biological majors (-.19, -21.9%), but the non-STEM majors still had the largest amount of decay 

(-.22; -29.9%).   

Females at less-selective institutions. 

Among the females at schools with less-selective admission standards, the results for both the 

ACT-GPA relationships (Table 5 through Table 9) and the HSGPA-GPA relationships (Table 10) indicate 

that both the STEM-Quantitative and STEM-Biological majors had less validity decay over eight 

semesters than the non-STEM majors had, at least when considering the amount of change. In one 

instance the STEM-Quantitative majors had a larger percentage of change in the corrected correlations; in 

Table 9 (ACTS) the amount of change was -.19 for the STEM-Quantitative majors and -.22 for the non-

STEM majors, but the percentage of change was -38.7% for the STEM-Quantitative majors and -37.8% 

for the non-STEM majors. Aside from this decline, the STEM-Quantitative majors actually had higher 

validity coefficients in the eighth semester than they had in the first semester for all the other ACT-GPA 

relationships, with increases ranging from .01 (ACTE) to .14 (ACTR). That is, they had validity growth 

rather than validity decay. Keep in mind that this group is the smallest of the twelve subgroups (n=174, 

k=16), and the results should be interpreted with caution. 

Males at more-selective institutions. 

Among the males at more-selective institutions, the STEM-Biological majors had the least 

amount of validity decay for the ACT-GPA relationships (Table 5 through Table 9). Following the 
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STEM-Biological majors were the STEM-Quantitative majors, and the non-STEM majors had the largest 

amounts of validity decay, though the amount of difference between the non-STEM and STEM-

Quantitative subgroups were often small, ranging between .03 and .07 for the corrected correlations. For 

the HSGPA-GPA relationships (Table 10), the non-STEM majors again had the largest amount of validity 

decay over eight semesters (-.24, -34%).  

Males at less-selective institutions. 

Among the males at schools with less-selective admission standards, the results for both the 

ACT-GPA relationships (Table 5 through Table 9) and the HSGPA-GPA relationships (Table 10) indicate 

that both the STEM-Quantitative and STEM-Biological majors had less validity decay over eight 

semesters than the non-STEM majors had. The STEM-Biological majors actually had validity growth for 

three of the five ACT-GPA relationships, ranging from .01 (ACTC) to .05 (ACTE), and validity growth 

for the HSGPA-GPA relationship (.03) in Table 10. As with results for the female, STEM-Quantitative 

majors at less-selective institutions, this was a small subgroup (n=194, k=16), and the results should be 

interpreted with caution.  

Validity generalization output 

Though not reported here due to space limitations, 90% credibility intervals were calculated for 

each of the 624 corrected validity coefficients. For the overall analyses (Table5), none of the credibility 

intervals contained zero, indicating that there were purely positive relationships between precollege 

academic achievement measures (ACT scores and HSGPA) and undergraduate GPA across four years. 

Ten of the twelve subgroups in the final hierarchical moderator analysis also had 90% credibility intervals 

that did not contain zero. However, for the two smallest subgroups, female, STEM-Quantitative majors at 

less-selective institutions and male, STEM-Biological students at less-selective institutions, some of the 

credibility intervals did contain zero. For the female, STEM-Quantitative majors at less-selective 

institutions, six of the 48 credibility intervals contained zero: two for ACTR scores, two for ACTS scores, 
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and two for HSGPA. For the male, STEM-Biological majors at less-selective institutions, 14 of the 48 

credibility intervals contained zero: one for ACTC scores, one for ACTM scores, seven for ACTR scores, 

and five for ACTS scores. 

Discussion 

Validity decay/stability has been a somewhat neglected area of research for the better part of two 

decades. The Humphreys (1968) study and the Butler and McCauley (1987) study were highlighted 

because the Humphreys study has been the prime example of validity decay and the Butler and McCauley 

study has been the prime example of validity stability. A third study of interest, conducted by Pennock-

Roman (1994), did not pertain to the validity decay/stability debate, but it served as a catalyst for splitting 

the STEM majors into the STEM-Quantitative and STEM-Biological categories. 

The main objective of this study was to determine if validity decay could be minimized by 

separating STEM majors from non-STEM majors. The inspiration for this came from Butler and 

McCauley’s (1987) study, in which the researchers found validity stability using data from the USMA, 

which had highly structured curriculums that required cadets had to take more than half of their courses in 

mathematics and the sciences. As the majority of courses taken by STEM majors are also in mathematics 

and science, and these courses are typically completed in a structured, sequential order, it was anticipated 

that validity stability could be found or that at least the amount of validity decay would be less than that 

found in previous studies (e.g., Humphreys, 1968). Pennock-Roman’s (1994) insights on differential 

grading and her observation that the grading profiles for the biological sciences did not fit with either the 

quantitative or non-quantitative fields led to the decision to split STEM majors into two categories, 

STEM-Quantitative and STEM-Biological, with all other majors classified as non-STEM majors. Based 

on the literature on differential validity, these three subgroups were further subdivided by gender and two 

levels of institutional admission selectivity for a total of twelve subgroups. The validity coefficients for 
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ACT scores and HSGPA across eight semesters from 26 four-year institutions were then meta-analyzed in 

three analyses. 

The results supported the hypothesis. Running separate analyses for the STEM and non-STEM 

majors (Tables 5-10) helped reduce the amount of validity decay seen over eight semesters for the STEM 

majors. For ACT scores, when considering the amount of change from the first semester to the eighth 

semester, the corrected validity coefficients for the STEM-Quantitative and STEM-Biological majors 

always declined less than the corrected validity coefficients for the non-STEM majors did. When 

considering the percentage of change, it was true all but once. For the HSGPA-GPA relationships, the 

amount and percentage of validity decay in the corrected validity coefficients were always less for the 

STEM majors than they were for the non-STEM majors. In general, there was less validity decay 

associated with females STEM-Quantitative majors than there was with male STEM-Quantitative majors, 

though closer analysis found that the credibility intervals for both groups overlapped considerably.  

As noted above, the results for the two smallest groupings – female, STEM-Quantitative majors 

at less-selective institutions (n=174), and male, STEM-Biological majors at less-selective institutions 

(n=194) – were the only two groups to show validity growth over eight semesters, at least for ACT 

scores. However, it is also worth noting that between the first and eighth semesters are extreme peaks and 

valleys. For example, for the ACTC-GPA relationships for female, STEM-Quantitative majors at less-

selective institutions (Table 5), the corrected correlations ranged from .58 to .62 for six of the semesters, 

but rose to .65 and .71 in the third and fifth semesters, respectively. For the ACTC-GPA relationships for 

male, STEM-Biological majors at less-selective institutions (Table 5), although the corrected correlations 

for six of the semesters ranged between .43 and .46, in the fourth and sixth semesters they dropped to .26 

and .21, respectively. Similar patterns can be seen for these two STEM groups for the ACT subject area 

tests and HSGPA. The presence of these peaks and valleys for these two groups are similar to those seen 

at the USAFA in the Butler and McCauley (1987; see Table 1) for the SAT-Verbal and high school rank. 
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For the remaining ten groups in the final analyses in this study, the pattern was validity decay across eight 

semesters for ACT scores and HSGPA. 

The results suggest that validity decay is related to how observations are grouped. As discussed 

earlier, different fields of study appear to have different grading standards (e.g., Elliott & Strenta, 1988), 

but another factor to consider is that pooling different subgroups together may lead to spurious effects 

when the subgroups having different means or standard deviations on the predictors and criteria (Kirk, 

1999). In this study the STEM majors were separated from the non-STEM majors, and in Table 4 it can 

be seen that within the admission selectivity by gender breakouts, the three SMCs had different means 

and standard deviations. Although the STEM-Quantitative category included four two-digit CIP families, 

the non-STEM category included 39 CIP families, a much more diverse mixture of students. While the 

STEM fields provided a good starting point, future analyses should be conducted by splitting apart the 

non-STEM majors. Perhaps the amount of validity decay in the non-STEM groups can be reduced by 

creating smaller subgroups for students majoring in areas such as education, business, the social sciences, 

and the humanities. 

One goal of this study was to conduct a hierarchical moderator analysis with observations broken 

out by student major categories, gender, and admission selectivity so that any possible interactions could 

be identified. However, breaking out the observations by three potential moderators resulted in two 

subgroups – female, STEM-Quantitative majors at less-selective schools, and male, STEM-Biological 

majors at less-selective schools – that had very few observations spread across sixteen institutions. By 

setting the minimum number of observations at three for each subgrouping, a number of negative 

correlations led to high levels of variance and the 90% credibility intervals contained zero. While the 

hierarchical moderator analysis may have been a step too far, especially for the STEM groups at less-

selective institutions, it did provide useful information. As noted earlier, the results suggested that among 

the STEM-Quantitative majors there was generally less validity decay for the females than there was for 

the males.  
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Limitations and Future Research 

Although this study has provided a thorough examination of validity decay and validity stability, 

the study also has a number of limitations. While demonstrating that validity decay can be reduced by 

stratifying on academic field of study and other relevant variables, such as gender and admission 

selectivity, the results did not match the validity stability results found by Butler and McCauley (1987). 

Only the two smallest STEM groups in this study show validity stability or growth, but they also were the 

only two groups to have 90% credibility intervals that contained zero. In future research, it would be wise 

to raise the minimum number of observations. Keep in mind that the institutions included in this study 

were a reflection of the institutions willing to collaborate with ACT for at least four years and provide all 

the needed variables in every semester. Having more institutions with larger sample sizes would have 

been advantageous. 

A central finding of this study was that by isolating the STEM-Quantitative and STEM-

Biological majors, the validity coefficients for these subgroups showed less decay over time and in some 

cases the validity coefficients actually increased. When subgroups with different means or standard 

deviations are combined together, correlations for this combined group may be misleading. This was the 

point of the hierarchical moderator analyses. However, this study has not demonstrated that validity decay 

is inevitable for non-STEM majors. Within the non-STEM category are multitudes of different fields of 

study, each of which may also show less validity decay and possibly validity stability or growth if 

separated from the overall group. Future research should examine the possibility of validity stability 

among disaggregated non-STEM majors. 

Consistent with previous validity decay/stability studies (Butler & McCauley, 1987; Humphreys; 

1968), this study included only students who were continuously enrolled over eight semesters. This study 

went a step further by ensuring that students had to be in the same SMC over the eight consecutive 

semesters. This made the analyses easier because the number of observations remained constant in each 
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semester. It also made the results easier to interpret, as there was never a question as to how long the 

students were in a given category, or how many times they switched groups, or whether they had stopped 

out of school and returned. The downside of this approach is that in reality students do switch majors, and 

they do drop out, and some stop out for a semester or more and then return to school. Additional research 

on academic retention and the migration of students into and out of the STEM fields is needed. 

Finally, this study has laid a foundation for future research on the gender gap in the STEM-

Quantitative fields. It is interesting to observe that within their admission selectivity levels, males and 

females in the same SMC were more alike than with same sex members of other SMCs (Table 3). For 

example, female STEM-Quantitative majors had ACT score and HSGPA profiles that were more similar 

to the male STEM-Quantitative majors than they were to their female STEM-Biological and female non-

STEM majors. When looking at ACT Composite scores and HSGPA, the gender differences for both 

STEM-Quantitative majors and STEM-Biological majors were small. However, within both STEM 

groups at both levels of admission selectivity males tended to have higher mean ACTM and ACTS scores 

and females tended to have higher mean ACTE and ACTR scores. 

Given the smaller differences in ACTC scores, it may be that the larger differences in the ACT 

subject area scores are due to males and females investing their cognitive resources more heavily in 

subjects that match their interests (Cattell, 1987). Research that integrates the students’ responses to the 

ACT Interest Inventory (ACT, 2009) with their ACT scores and HSGPAs is currently underway. Future 

gender-focused STEM research should also try to integrate additional noncognitive measures, as previous 

research has found that female students score slightly higher on scales of noncognitive skills in the areas 

of academic discipline, commitment to college, and study skills (Allen et al., 2008; Le, Casillas, Robbins, 

& Langley, 2005), and gender differences in motivation are related to gender differences in timely degree 

completion (Allen & Robbins, 2010).  While interests may be more important when examining gender 

differences in entering the STEM-Quantitative and STEM-Biological fields, these non-cognitive factors 
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may also be related to gender differences in retention and degree completion, another area in need of 

more research. 

Conclusion 

This study has made a number of significant contributions to the literature. First, this meta-

analysis was one of the largest validity decay studies conducted to date, including more than 60,000 

students from 26 four-year institutions. The size of the sample made it possible to conduct a hierarchical 

moderator analysis, and the results out to the eighth semester indicate that there are differences in validity 

coefficients for different subgroups, especially when looking across student major categories.  

A second contribution is that the results support the theory of a changing or dynamic criterion. 

The idea that the criterion changes over time is not new, and a number of researchers have studied and 

debated the idea of the changing or dynamic criterion, especially in the employee selection literature (e.g., 

Austin, Humphreys, & Hulin, 1989; Barrett & Alexander, 1989; Barrett, Alexander, & Doverspike, 1992; 

Barrett, Caldwell, & Alexander, 1985; Humphreys, 1976; Mauger & Kolmodin, 1975; Steele-Johnson, 

Osburn, & Pieper, 2000). An attempt was made to replicate the Butler and McCauley (1987) study by 

separating STEM students from non-STEM students at civilian schools, which would create a 

subpopulation that was similar to the STEM students used in their study, cadets at the military academies, 

notably the USMA. One possible reason that the results of the STEM majors in this study differed from 

those found at the USMA (Butler & McCauley, 1987) is that the criterion changed more at the civilian 

schools than it did at the USMA. A defining characteristic of the USMA was the highly structured 

curriculum with a common core of courses, which meant that they probably had fewer electives to choose 

from over four years than their counterparts at civilian institutions had. In this study, it was hoped that 

separating the STEM majors from the non-STEM majors would create subgroupings that faced a highly 

structured curriculum similar to that found at the USMA. However, the civilian STEM majors in this 

study probably had much more latitude in selecting electives both within and outside of their academic 
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fields than the cadets at the USMA had, especially in the last two years of their academic programs. 

Consequently, the criterion may have changed more for the STEM majors in this study than it did for the 

cadets at the USMA. Butler and McCauley (1987) identified other possible reasons for validity stability at 

the USMA, to include the use of common syllabi and tests for single courses taught by multiple 

instructors. Whether similar practices existed at civilian institutions beyond the required courses in the 

first few semesters, if at all, was not explored in this study. 

  Although the STEM groups in this study did not quite have the degree of validity stability found 

at the USMA, the amount of validity decay for the STEM majors was less than that for their non-STEM 

counterparts and the samples included in the Humphreys (1968) study, and this is an encouraging finding. 

The results suggest that validity decay is related to how observations are grouped.  Validity decay was 

reduced by separating the STEM majors from the non-STEM majors, but within the non-STEM group 

were academic majors that were probably not as similar as those found within the STEM-Quantitative and 

STEM-Biological groups. Within the non-STEM group mean ACT scores and HSGPAs probably varied 

across majors, and the criterion probably varied from one non-STEM field to the next. While the STEM 

fields provided a good starting point, future analyses should be conducted by splitting apart the non-

STEM majors. 

Beyond the contributions to the research literature, the results of this study have applied 

contributions. There is national concern that success in the STEM fields has implications for the nation’s 

economic success (e.g., National Governor’s Association, 2007; National Science and Technology 

Council, 2013). The results of this study demonstrate that there are strong relationships between 

precollege predictors, ACT scores and HSGPA, with academic outcomes for STEM majors well beyond 

the first year of college. For the eight STEM subgroups in the hierarchical moderator analysis, all 

corrected validity coefficients for ACT Composite scores exceeded .40 (Table 5) in the eighth semester, 

and all corrected validity coefficients for HSGPA exceeded .55 (Table 10). Students entering college with 

high ACT scores and HSGPAs tend to earn higher course grades than their peers entering college with 
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lower ACT scores and HSGPAs not just in the first year but out to the end of the fourth year. This is 

especially true in the STEM fields. 

Given the focus on the STEM fields, this study sends an important message to government 

officials, college admissions officers, high school counselors, teachers, parents and students. It is 

imperative that students intending to declare a STEM field as their major arrive at college prepared for the 

rigors they will face in undergraduate STEM programs. Students who do not arrive at college prepared 

may find it difficult to earn passing grades and to continue in a STEM program until graduation. This is 

not to say that students with low test scores and high school grades should be denied the opportunity to 

attempt studies in a STEM program. The point is that all parties with an interest in the STEM fields 

should have a realistic perspective on which students are more likely to succeed over four years in a 

STEM program given the students’ precollege academic achievement. They should not expect entering 

students with low test scores and poor high school grades to be highly successful in STEM programs at 

the college level. College is not the time to play catch-up.  
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1     Although the enrolled cohorts used were from 2000 to 2005, examinees for the reference population ranged 

from 1999 to 2005 because most students take the ACT at the end of their junior year or beginning of their senior 
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Table 1  

 

Previous Research on Validity Decay/Stability across Four Years 

   Semester  Percent  

Study/Institution(s) N Measure 1 2 3 4 5 6 7 8 Change Change 

Humphreys (1968) 1,600
a
 ACTC .38 .30 .24 .26 .24 .25 .22 .17 -.20 52.6 

University of  Illinois  ACTE .35 .26 .23 .24 .24 .22 .22 .16 -.19 -54.3 

  ACTM .28 .19 .17 .17 .15 .16 .16 .12 -.16 -57.1 

  ACTSS .28 .24 .19 .20 .21 .23 .17 .15 -.13 -46.4 

  ACTNS .31 .26 .18 .20 .18 .20 .16 .13 -.18 -58.1 

  HSR .39 .34 .28 .27 .24 .26 .24 .22 -.17 -43.6 

             

Humphreys (1968) Max. N ACTC .48 .38 .28 .26 .24 .24 .20 .16 -.32 -66.3 

University of  Illinois in each ACTE .40 .33 .23 .21 .19 .18 .19 .15 -.25 -62.3 

 semester ACTM .40 .29 .22 .19 .17 .16 .14 .11 -.28 -71.7 

  ACTSS .37 .31 .24 .22 .20 .22 .16 .13 -.26 -64.7 

  ACTNS .36 .28 .21 .20 .19 .18 .16 .12 -.24 -66.8 

  HSR .51 .42 .32 .30 .27 .26 .24 .22 -.30 -57.9 

             

Humphreys (1968)
b
 1,600 ACTC .47 .40 .32 .31 .28 .29 .25 .21 -.26 -54.9 

University of  Illinois  ACTE .40 .35 .27 .25 .22 .22 .24 .20 -.20 -50.0 

  ACTM .40 .30 .25 .23 .20 .20 .18 .15 -.25 -63.1 

  ACTSS .37 .33 .27 .26 .24 .27 .19 .17 -.20 -53.4 

  ACTNS .36 .30 .24 .23 .22 .23 .20 .16 -.20 -56.0 

  HSR .51 .45 .37 .36 .31 .32 .30 .28 -.23 -44.8 

             

Humphreys & Taber (1973) 1,510 GRE-V .35 .31 .26 .27 .25 .22 .21 .16 -.19 -54.3 

University of  Illinois 1,510 GRE-Q .35 .33 .31 .29 .28 .20 .17 .15 -.20 -57.1 

 987 GRE-Ad. .36 .39 .38 .38 .34 .33 .31 .23 -.13 -36.1 

             

Wilson (1978, 1980) 530
a
 SAT-V .42 .42 .46 .48 .47 .40 .38 .37 -.05 -11.9 

Anonymous university  SAT-M .42 .40 .47 .45 .49 .37 .30 .32 -.10 -23.8 

  HSR .51 .45 .45 .41 .45 .40 .37 .36 -.15 -29.4 
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Table 1 (cont.)  

 

Previous Research on Validity Decay/Stability across Four Years 

   Semester   

            Percent 

Study/Institution(s) N Measure 1 2 3 4 5 6 7 8 Change Change 

Wilson (1978, 1981)
 c
 950

a
 CB Ac. Av.  .51 .45 .40 .42 .39 .40 .34 -.11

d
 -24.4 

Selective liberal arts college    SAT-V  .42 .40 .34 .39 .35 .35 .33 -.07
d
 -17.5 

  SAT-M  .38 .36 .29 .32 .28 .28 .20 -.16
d
 -42.1 

  HSR  .36 .29 .28 .27 .25 .19 .20 -.09
d
 -31.0 

             

Butler & McCauley (1987) 559 SAT-V .30 .16 .26 .27 .28 .25 .31 .25 -.05 -16.7 

USAFA  SAT-M .41 .36 .39 .36 .36 .28 .27 .25 -.16 -39.0 

  HSR .39 .39 .47 .41 .44 .41 .39 .36 -.03 -7.7 

             

Butler & McCauley (1987)
e 

618 SAT-V  .30  .30  .30  .30 .00 0.0 

USMA, 1982 class   SAT-M  .41  .43  .43  .42 +.01 +2.4 

  HSR  .47  .51  .51  .51 +.04 +8.5 

             

Butler & McCauley (1987)
e 

631 SAT-V  .36  .32  .32  .32 -.04 -11.1 

USMA, 1983 class    SAT-M  .35  .40  .39  .39 +.04 +11.4 

   HSR  .38  .41  .41  .41 +.03 +7.9 

             

Elliot & Strenta (1988)
e 

927 SAT-V  .35  .32  .31  .32 -.03 -8.6 

Dartmouth College
 

  SAT-M  .39  .31  .25  .24 -.15 -38.5 

   HSR  .42  .34  .35  .31 -.11 -26.2 

  SAT-V-A  .36  .34  .33  .35 -.01 -2.8 

  SAT-M-A  .46  .40  .36  .37 -.09 -19.6 

   HSR-A  .44  .39  .39  .36 -.03 -6.8 
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Note: 
a
 This is an approximation, as the values varied slightly across measures and semesters; 

b 
Corrected for range restriction; 

 c
 Correlation of predictor with 

Year 1 GPA; 
d
 Change from third semester to eighth semester; 

e
 Correlations with independently calculated annual GPAs instead of independently calculated 

semester GPAs; 
f
 Correlations with independently calculated first-year GPAs, Kobrin et al. (2008);  

g
 Correlations with independently calculated second-year 

GPAs, Mattern & Patterson (2011a);  
h
 Correlations with independently calculated third-year GPAs, Mattern & Patterson (2011b);  

i
 Correlations with 

independently calculated fourth-year GPAs, Mattern & Patterson (2011c); USAFA = United States Air Force Academy; USMA = United States Military 

Academy; ACTC = ACT Composite; ACTE = ACT English; ACTM = ACT Mathematics; ACTSS = ACT Social Studies; ACTNS = ACT Natural Science; HSR 

= High School Rank; GRE-V = Graduate Record Exam, Verbal; GRE-Q = Graduate Record Exam, Quantitative; GRE-Ad. = Graduate Record Exam, Advanced 

Tests; CB Ac. Av. = College Board Achievement Tests, Average; SAT-V = SAT Verbal; SAT-M = SAT Mathematics; SAT-V-A = SAT Verbal Adjusted; SAT-

M-A = SAT Mathematics Adjusted; HSR-A = High School Rank Adjusted; SAT-CR = SAT Critical Reading; SAT-W = SAT Writing; SAT-CR/M = SAT 

Critical Reading and Mathematics, multiple correlation; SAT-CR/M/W = SAT Critical Reading, Mathematics, and Writing, multiple correlation; HSGPA = high 

school grade point average; SAT-CR-C = SAT-Critical Reading, corrected for range restriction; SAT-M-C = SAT-Mathematics, corrected for range restriction; 

SAT-W-C = SAT-Writing, corrected for range restriction; SAT-CR/M-C = SAT Critical Reading and Mathematics, multiple correlation, corrected for range 

restriction; SAT-CR/M/W-C = SAT Critical Reading, Mathematics, and Writing, multiple correlation, corrected for range restriction; HSGPA-C = high school 

grade point average, corrected for range restriction. 

 

 

 

Table 1 (cont.)  

 

Previous Research on Validity Decay/Stability across Four Years 

   Semester   

            Percent 

Study/Institution(s) N Measure 1 2 3 4 5 6 7 8 Change Change 

Kobrin et al. (2008)
f 
 151,316

f
 SAT-CR  .29

f 
 .27

 g
  .23

 h
  .20

 i
 -.09 -31.0 

110 institutions  SAT-M  .26
 f
  .23

 g
  .18

 h
  .15

 i
 -.11 -42.3 

Mattern & Patterson (2011a)
 g

 75,208
g
 SAT-W  .33

 f
  .31

 g
  .27

 h
  .24

 i
 -.09 -27.3 

66 institutions  SAT-CR/M  .32
 f
  .29

 g
  .24

 h
  .21

 i
 -.11 -34.4 

Mattern & Patterson (2011b)
h
 
 

63,736
h
 SAT-CR/M/W  .35

 f
  .32

 g
  .28

 h
  .24

 i
 -.11 -31.4 

60 institutions
 

 HSGPA  .36
 f
  .32

 g
  .29

h
  .27

 i
 -.09 -25.0 

Mattern & Patterson (2011c)
i
  56,939

 i
 SAT-CR-C  .48

 f
  .45

 g
  .40

 h
  .35

 i
 -.13 -.27.1 

55 institutions  SAT-M-C  .47
 f
  .44

 g
  .38

 h
  .33

 i
 -.14 -29.8 

  SAT-W-C  .51
 f
  .49

 g
  .43

 h
  .39

 i
 -.12 -23.5 

  SAT-CR/M-C  .51
 f
  .48

 g
  .42

 h
  .37

 i
 -.14 -27.5 

 
 SAT-CR/M/W-C  .53

 f
  .50

 g
  .45

 h
  .40

 i
 -.13 -24.5 

 
 HSGPA-C  .54

 f
  .51

 g
  .46

 h
  .43

 i
 -.11 -20.4 
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Table 2  
 
Typical range of ACT Composite Scores and Class Ranks by Institution Admission Selectivity 

Institution Selectivity 
Level 

ACT Composite Scores  
Middle 50% Definition 

1. Highly Selective 25—30 Majority admitted from top 10% of high school class 
2. Selective 21—26 Majority admitted from top 25% of high school class 
3. Traditional 18—24 Majority admitted from top 50% of high school class 
4. Liberal 17—22 Majority admitted from bottom 50% of high school class 
5. Open 16—21 Generally open to all with high school diploma or equivalent 
Note. ACT Composite score scale ranges from 1 to 36. Adapted from National Collegiate Retention and Persistence to Degree Rates  

(ACT, 2010b). Means and SDs calculated from ACT 2010-2011 examinees. 
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Table 3  

 

Reference Populations’ Means, Standard Deviations, and Correlations between Precollege Academic Predictors, ACT 

National Data, 1999-2006 

 Measure N Mean SD ACTC ACTE ACTM ACTR ACTS HSGPA 

Overall ACTC 7,990,217 20.9 4.8 1.00      

ACTE 7,990,217 20.4 5.8 .91 1.00     

ACTM 7,990,217 20.7 5.0 .87 .72 1.00    

ACTR 7,990,217 21.3 6.1 .90 .79 .65 1.00   

ACTS 7,990,217 20.9 4.6 .89 .73 .76 .72 1.00  

HSGPA 6,625,660 3.21 0.61 .58 .54 .56 .48 .50 1.00 

           

Male ACTC 3,452,926 21.1 5.0 1.00      

ACTE 3,452,926 19.9 5.8 .92 1.00     

ACTM 3,452,926 21.3 5.3 .88 .74 1.00    

ACTR 3,452,926 21.0 6.1 .90 .79 .66 1.00   

ACTS 3,452,926 21.4 4.9 .90 .75 .77 .75 1.00  

HSGPA 2,792,352 3.12 0.62 .59 .53 .59 .47 .52 1.00 

           

Female ACTC 4,448,885 20.9 4.7 1.00      

ACTE 4,448,885 20.8 5.7 .92 1.00     

ACTM 4,448,885 20.2 4.8 .86 .73 1.00    

ACTR 4,448,885 21.5 6.0 .90 .79 .65 1.00   

ACTS 4,448,885 20.5 4.3 .88 .74 .75 .72 1.00  

HSGPA 3,783,691 3.28 0.58 .59 .54 .58 .48 .52 1.00 
Note: Overall figures include examinees who did not identify their gender. All correlations are significant at p < .0001. ACTC = ACT Composite; 

ACTE = ACT English; ACTM = ACT Mathematics; ACTR = ACT Reading; ACTS = ACT Science; HSGPA = High school grade point average.  
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Table 4  

 

Means (Standard Deviations) for ACT Scores and HSGPA, Overall and by Subgroups 

   Admission           

SMC Gender Selectivity k N ACTC ACTE ACTM ACTR ACTS HSGPA 

All All  All 26 62,212 23.6 (4.2) 23.8 (5.0) 23.1 (4.8) 24.1 (5.5) 23.0 (4.1) 3.58 (0.43) 

           

STEM-Quant Female More 10 1,386 27.0 (3.9) 27.0 (4.7) 27.7 (4.0) 26.9 (5.4) 25.7 (4.1) 3.85 (0.22) 

STEM-Quant Male More 10 4,231 26.9 (3.9) 26.0 (4.7) 28.3 (3.9) 26.3 (5.4) 26.6 (4.3) 3.76 (0.29) 

            

STEM-Bio Female More 10 1,621 25.9 (3.5) 26.3 (4.4) 25.7 (3.9) 26.4 (5.0) 24.5 (3.7) 3.82 (0.24) 

STEM-Bio Male More 10 1,015 26.4 (3.6) 26.0 (4.5) 27.0 (3.9) 26.2 (5.0) 25.9 (4.0) 3.77 (0.27) 

            

Non-STEM Female More 10 23,127 23.8 (3.7) 24.6 (4.6) 22.8 (4.1) 24.6 (5.2) 22.6 (3.6) 3.65 (0.34) 

Non-STEM Male More 10 12,922 23.9 (3.9) 23.7 (4.7) 23.8 (4.3) 24.2 (5.4) 23.6 (3.9) 3.54 (0.40) 

            

STEM-Quant Female Less 16 174 24.1 (3.9) 24.1 (5.1) 25.1 (4.2) 23.4 (5.3) 23.5 (3.6) 3.74 (0.33) 

STEM-Quant Male Less 16 672 24.3 (3.8) 22.7 (4.5) 25.6 (4.1) 23.7 (5.3) 24.7 (4.1) 3.58 (0.39) 

            

STEM-Bio Female Less 16 409 23.3 (3.9) 23.7 (4.9) 22.2 (4.2) 24.0 (5.3) 22.9 (3.8) 3.68 (0.35) 

STEM-Bio Male Less 16 194 23.7 (4.0) 23.1 (4.6) 23.6 (4.3) 23.7 (5.8) 23.9 (3.7) 3.65 (0.40) 

            

Non-STEM Female Less 16 10,350 21.6 (3.7) 22.0 (4.6) 20.5 (3.9) 22.4 (5.2) 21.2 (3.5) 3.48 (0.44) 

Non-STEM Male Less 16 6,021 21.5 (3.7) 20.7 (4.6) 21.3 (4.2) 21.8 (5.2) 21.8 (3.7) 3.31 (0.48) 
Note. ACTC=ACT Composite; ACTE=ACT English; ACTM=ACT Mathematics; ACTR=ACT Reading; ACTS=ACT Science; HSGPA=high school grade 

point average; k=number of institutional studies; STEM=science, technology, engineering, and, mathematics; Quant=quantitative; Bio=biological. 
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Table 5   

 

Uncorrected and Corrected Correlations, ACT-Composite Scores and Semester GPA 

Correlation 

      Semesters 

Change           

1-8 

Percent  

Change Gender 

Admission 

Selectivity 

Student Major 

Category k N 1 2 3 4 5 6 7 8 

Uncorrected Female More STEM-Quantitative 10 1,386 .44 .42 .45 .39 .39 .35 .39 .38 -.05 -12.1 

   STEM-Biological 10 1,621 .37 .34 .31 .30 .30 .28 .27 .26 -.10 -28.1 

   Non-STEM 10 23,127 .42 .41 .41 .37 .32 .27 .27 .22 -.20 -46.7 

                

  Less STEM-Quantitative 16 174 .34 .41 .45 .41 .48 .39 .46 .45 .11 31.9 

 

  STEM-Biological 16 409 .48 .44 .48 .40 .41 .33 .33 .35 -.13 -26.8 

  Non-STEM 16 10,350 .43 .44 .43 .40 .37 .33 .29 .26 -.17 -40.1 

               

Male More STEM-Quantitative 10 4,231 .39 .35 .36 .31 .33 .28 .27 .26 -.14 -34.3 

  STEM-Biological 10 1,015 .37 .36 .27 .28 .29 .23 .23 .26 -.11 -30.7 

 

  Non-STEM 10 12,922 .36 .36 .37 .32 .28 .24 .25 .19 -.16 -45.3 

               

 Less STEM-Quantitative 16 672 .33 .35 .42 .33 .31 .29 .26 .29 -.04 -11.6 

  STEM-Biological 16 194 .29 .29 .27 .16 .27 .13 .29 .28 -.01 -3.8 

  Non-STEM 16 6,021 .38 .39 .39 .35 .33 .28 .27 .23 -.15 -38.5 

                

Corrected Female More STEM-Quantitative 10 1,386 .61 .60 .63 .58 .59 .53 .55 .55 -.07 -10.7 

   STEM-Biological 10 1,621 .57 .53 .50 .48 .50 .48 .42 .42 -.15 -26.5 

   Non-STEM 10 23,127 .64 .63 .63 .57 .51 .43 .42 .35 -.29 -45.2 

                

  Less STEM-Quantitative 16 174 .58 .61 .65 .60 .71 .59 .62 .62  .04 7.2 

 

  STEM-Biological 16 409 .68 .63 .68 .61 .59 .47 .46 .48 -.20 -29.3 

  Non-STEM 16 10,350 .67 .67 .65 .62 .56 .51 .45 .41 -.26 -39.2 

               

Male More STEM-Quantitative 10 4,231 .62 .56 .58 .53 .55 .47 .42 .41 -.21 -33.3 

  STEM-Biological 10 1,015 .59 .58 .45 .45 .46 .39 .39 .42 -.17 -29.1 

 

  Non-STEM 10 12,922 .58 .58 .59 .52 .46 .40 .40 .32 -.26 -45.6 

               

 Less STEM-Quantitative 16 672 .55 .57 .66 .53 .50 .47 .40 .43 -.12 -21.7 

  STEM-Biological 16 194 .45 .46 .43 .26 .43 .21 .45 .45  .01 1.5 

  Non-STEM 16 6,021 .63 .65 .64 .58 .54 .47 .45 .39 -.24 -37.9 

Note: k=number of studies; STEM=science, technology, engineering, and mathematics. 
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Table 6  

 

Uncorrected and Corrected Correlations, ACT-English Scores and Semester GPA 

Correlation 

      Semesters 

Change          

1-8 

Percent  

Change Gender 

Admission 

Selectivity 

Student Major 

Category k N 1 2 3 4 5 6 7 8 

Uncorrected Female More STEM-Quantitative 10 1,386 .39 .39 .40 .34 .34 .30 .34 .35 -.04 -10.9 

   STEM-Biological 10 1,621 .32 .30 .27 .28 .28 .25 .23 .24 -.08 -24.5 

   Non-STEM 10 23,127 .38 .37 .37 .34 .29 .25 .25 .21 -.17 -45.1 

                

  Less STEM-Quantitative 16 174 .35 .44 .38 .32 .45 .37 .46 .42  .07 19.9 

 

  STEM-Biological 16 409 .44 .42 .44 .36 .41 .33 .30 .32 -.12 -27.0 

  Non-STEM 16 10,350 .40 .40 .38 .36 .34 .30 .27 .24 -.16 -39.7 

               

Male More STEM-Quantitative 10 4,231 .36 .34 .35 .30 .30 .26 .24 .24 -.12 -33.1 

  STEM-Biological 10 1,015 .34 .32 .26 .26 .26 .22 .21 .23 -.11 -32.4 

 

  Non-STEM 10 12,922 .31 .32 .34 .29 .25 .21 .22 .18 -.14 -43.7 

               

 Less STEM-Quantitative 16 672 .34 .33 .39 .31 .28 .28 .23 .26 -.07 -21.2 

  STEM-Biological 16 194 .31 .30 .29 .22 .27 .16 .29 .32  .02 5.6 

  Non-STEM 16 6,021 .35 .36 .36 .31 .30 .25 .24 .21 -.14 -40.1 

                

Corrected Female More STEM-Quantitative 10 1,386 .58 .59 .59 .53 .55 .48 .52 .53 -.06 -9.6 

   STEM-Biological 10 1,621 .53 .50 .45 .45 .48 .43 .38 .40 -.12 -23.4 

   Non-STEM 10 23,127 .60 .58 .59 .53 .47 .41 .39 .34 -.26 -43.8 

                

  Less STEM-Quantitative 16 174 .55 .61 .50 .45 .60 .53 .59 .57  .01 1.9 

 

  STEM-Biological 16 409 .64 .60 .62 .55 .59 .47 .41 .43 -.20 -31.9 

  Non-STEM 16 10,350 .62 .63 .60 .57 .53 .48 .42 .38 -.24 -39.1 

               

Male More STEM-Quantitative 10 4,231 .57 .55 .56 .51 .50 .44 .38 .38 -.19 -33.3 

  STEM-Biological 10 1,015 .54 .51 .42 .41 .41 .35 .33 .37 -.17 -31.4 

 

  Non-STEM 10 12,922 .52 .52 .55 .47 .42 .35 .36 .29 -.23 -44.8 

               

 Less STEM-Quantitative 16 672 .55 .53 .61 .49 .44 .45 .34 .39 -.16 -29.3 

  STEM-Biological 16 194 .49 .50 .44 .35 .45 .31 .47 .53  .05 9.3 

  Non-STEM 16 6,021 .58 .59 .59 .52 .49 .42 .39 .35 -.23 -40.0 

Note: k=number of studies; STEM=science, technology, engineering, and mathematics. 
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Table 7  

 

Uncorrected and Corrected Correlations, ACT-Mathematics Scores and Semester GPA 

Correlation 

      Semesters 

Change          

1-8 

Percent  

Change Gender 

Admission 

Selectivity 

Student Major 

Category k N 1 2 3 4 5 6 7 8 

Uncorrected Female More STEM-Quantitative 10 1,386 .42 .40 .42 .40 .38 .33 .38 .36 -.06 -13.9 

   STEM-Biological 10 1,621 .40 .35 .32 .30 .30 .29 .28 .26 -.14 -35.0 

   Non-STEM 10 23,127 .40 .38 .37 .34 .30 .25 .25 .21 -.19 -47.4 

                

  Less STEM-Quantitative 16 174 .39 .46 .48 .44 .46 .42 .44 .44  .05 13.0 

 

  STEM-Biological 16 409 .44 .42 .49 .38 .39 .28 .33 .30 -.13 -30.6 

  Non-STEM 16 10,350 .39 .40 .39 .36 .33 .31 .27 .24 -.15 -38.2 

               

Male More STEM-Quantitative 10 4,231 .40 .32 .35 .31 .33 .28 .28 .26 -.14 -34.2 

  STEM-Biological 10 1,015 .38 .38 .30 .30 .32 .25 .23 .27 -.11 -29.1 

 

  Non-STEM 10 12,922 .34 .35 .34 .31 .27 .24 .23 .19 -.16 -46.0 

               

 Less STEM-Quantitative 16 672 .29 .34 .41 .31 .30 .25 .29 .27 -.02 -5.7 

  STEM-Biological 16 194 .28 .33 .31 .14 .25 .15 .28 .24 -.04 -13.1 

  Non-STEM 16 6,021 .34 .35 .35 .33 .30 .25 .24 .22 -.13 -36.7 

                

Corrected Female More STEM-Quantitative 10 1,386 .60 .59 .61 .61 .60 .52 .56 .54 -.07 -11.2 

   STEM-Biological 10 1,621 .60 .53 .49 .46 .49 .47 .42 .40 -.20 -33.0 

   Non-STEM 10 23,127 .59 .57 .55 .51 .45 .39 .37 .31 -.28 -47.0 

                

  Less STEM-Quantitative 16 174 .57 .65 .64 .60 .64 .59 .56 .58  .01 2.1 

 

  STEM-Biological 16 409 .63 .61 .70 .56 .55 .41 .44 .43 -.20 -31.9 

  Non-STEM 16 10,350 .59 .61 .59 .55 .50 .47 .41 .36 -.23 -38.9 

               

Male More STEM-Quantitative 10 4,231 .67 .57 .60 .57 .61 .53 .49 .46 -.21 -30.7 

  STEM-Biological 10 1,015 .63 .63 .51 .50 .53 .42 .40 .45 -.17 -27.3 

 

  Non-STEM 10 12,922 .56 .56 .56 .50 .44 .39 .36 .30 -.26 -46.6 

               

 Less STEM-Quantitative 16 672 .50 .57 .65 .53 .51 .43 .45 .42 -.08 -16.1 

  STEM-Biological 16 194 .46 .53 .48 .26 .43 .35 .46 .40 -.06 -12.6 

  Non-STEM 16 6,021 .57 .58 .57 .54 .48 .42 .40 .36 -.21 -36.9 

Note: k=number of studies; STEM=science, technology, engineering, and mathematics. 
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Table 8  

 

Uncorrected and Corrected Correlations, ACT-Reading Scores and Semester GPA 

Correlation 

      Semesters 

Change          

1-8 

Percent  

Change Gender 

Admission 

Selectivity 

Student Major 

Category k N 1 2 3 4 5 6 7 8 

Uncorrected Female More STEM-Quantitative 10 1,386 .33 .32 .36 .30 .30 .28 .30 .30 -.03 -9.1 

   STEM-Biological 10 1,621 .24 .24 .24 .23 .22 .21 .19 .19 -.05 -21.2 

   Non-STEM 10 23,127 .32 .31 .32 .29 .25 .20 .21 .16 -.15 -47.9 

                

  Less STEM-Quantitative 16 174 .24 .33 .37 .34 .41 .34 .40 .41  .17 72.3 

 

  STEM-Biological 16 409 .38 .31 .35 .31 .31 .26 .25 .29 -.08 -22.1 

  Non-STEM 16 10,350 .34 .33 .33 .30 .28 .25 .22 .19 -.15 -43.7 

               

Male More STEM-Quantitative 10 4,231 .30 .27 .28 .23 .25 .20 .19 .18 -.12 -39.0 

  STEM-Biological 10 1,015 .23 .25 .17 .20 .19 .16 .16 .16 -.07 -32.3 

 

  Non-STEM 10 12,922 .27 .27 .28 .25 .21 .18 .19 .14 -.13 -46.7 

               

 Less STEM-Quantitative 16 672 .24 .29 .32 .25 .24 .24 .19 .24 -.01 -2.9 

  STEM-Biological 16 194 .23 .18 .18 .10 .20 .06 .20 .20 -.03 -13.2 

  Non-STEM 16 6,021 .28 .30 .30 .26 .25 .21 .20 .17 -.12 -40.9 

                

Corrected Female More STEM-Quantitative 10 1,386 .47 .45 .50 .44 .44 .42 .42 .42 -.04 -9.2 

   STEM-Biological 10 1,621 .38 .37 .37 .35 .36 .35 .29 .30 -.08 -21.6 

   Non-STEM 10 23,127 .48 .47 .49 .43 .38 .31 .31 .25 -.23 -48.4 

                

  Less STEM-Quantitative 16 174 .41 .47 .49 .48 .56 .48 .54 .55  .14 33.6 

 

  STEM-Biological 16 409 .55 .46 .50 .49 .45 .37 .37 .42 -.13 -23.0 

  Non-STEM 16 10,350 .51 .50 .50 .46 .42 .37 .33 .28 -.23 -44.4 

               

Male More STEM-Quantitative 10 4,231 .45 .42 .42 .36 .39 .32 .28 .27 -.18 -39.5 

  STEM-Biological 10 1,015 .38 .40 .29 .32 .30 .26 .26 .25 -.12 -32.8 

 

  Non-STEM 10 12,922 .42 .42 .43 .37 .33 .28 .29 .22 -.21 -48.6 

               

 Less STEM-Quantitative 16 672 .40 .45 .48 .39 .38 .38 .27 .32 -.07 -18.0 

  STEM-Biological 16 194 .31 .26 .23 .14 .24 .10 .29 .28 -.03 -9.4 

  Non-STEM 16 6,021 .46 .48 .47 .42 .40 .34 .32 .26 -.19 -42.5 

Note: k=number of studies; STEM=science, technology, engineering, and mathematics. 
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Table 9  

 

Uncorrected and Corrected Correlations, ACT-Science Scores and Semester GPA 

Correlation 

      Semesters 

Change          

1-8 

Percent  

Change Gender 

Admission 

Selectivity 

Student Major 

Category k N 1 2 3 4 5 6 7 8 

Uncorrected Female More STEM-Quantitative 10 1,386 .36 .34 .36 .32 .31 .28 .31 .31 -.05 -13.7 

   STEM-Biological 10 1,621 .26 .22 .20 .20 .20 .19 .20 .18 -.08 -29.9 

   Non-STEM 10 23,127 .33 .33 .32 .30 .26 .22 .22 .18 -.16 -46.7 

                

  Less STEM-Quantitative 16 174 .28 .25 .33 .27 .33 .19 .27 .18 -.10 -35.4 

 

  STEM-Biological 16 409 .39 .38 .38 .33 .31 .24 .26 .27 -.12 -30.0 

  Non-STEM 16 10,350 .36 .36 .35 .33 .30 .28 .24 .22 -.14 -38.1 

               

Male More STEM-Quantitative 10 4,231 .31 .27 .28 .25 .26 .22 .22 .21 -.10 -32.6 

  STEM-Biological 10 1,015 .28 .25 .18 .17 .20 .15 .18 .21 -.07 -26.6 

 

  Non-STEM 10 12,922 .28 .28 .28 .26 .22 .20 .20 .15 -.13 -45.0 

               

 Less STEM-Quantitative 16 672 .24 .24 .31 .25 .22 .20 .19 .22 -.02 -8.2 

  STEM-Biological 16 194 .14 .14 .13 .06 .16 .05 .17 .18  .04 26.3 

  Non-STEM 16 6,021 .31 .32 .31 .29 .27 .23 .22 .19 -.12 -38.1 

                

Corrected Female More STEM-Quantitative 10 1,386 .47 .45 .46 .43 .45 .39 .41 .41 -.07 -13.9 

   STEM-Biological 10 1,621 .40 .35 .31 .31 .32 .31 .30 .28 -.12 -29.3 

   Non-STEM 10 23,127 .54 .53 .53 .49 .43 .37 .36 .29 -.25 -45.8 

                

  Less STEM-Quantitative 16 174 .48 .42 .51 .43 .53 .27 .34 .29 -.19 -38.7 

 

  STEM-Biological 16 409 .57 .56 .58 .52 .45 .34 .37 .38 -.20 -34.7 

  Non-STEM 16 10,350 .59 .60 .59 .55 .50 .47 .40 .37 -.22 -37.8 

               

Male More STEM-Quantitative 10 4,231 .47 .43 .43 .41 .43 .35 .34 .32 -.16 -33.5 

  STEM-Biological 10 1,015 .46 .41 .29 .27 .33 .24 .29 .34 -.12 -26.0 

 

  Non-STEM 10 12,922 .50 .50 .51 .45 .39 .36 .35 .27 -.23 -45.4 

               

 Less STEM-Quantitative 16 672 .40 .37 .49 .39 .36 .32 .27 .32 -.08 -19.8 

  STEM-Biological 16 194 .32 .33 .22 .12 .36 .11 .37 .34  .02 4.7 

  Non-STEM 16 6,021 .58 .60 .57 .54 .51 .43 .41 .36 -.22 -37.4 

Note: k=number of studies; STEM=science, technology, engineering, and mathematics. 
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Table 10  

 

Uncorrected and Corrected Correlations, HSGPA and Semester GPA 

Correlation 

      Semesters 

Change          

1-8 

Percent  

Change Gender 

Admission 

Selectivity 

Student Major 

Category k N 1 2 3 4 5 6 7 8 

Uncorrected Female More STEM-Quantitative 10 1,386 .34 .32 .32 .31 .27 .25 .30 .32 -.02 -6.1 

 STEM-Biological 10 1,621 .39 .37 .32 .29 .28 .25 .24 .24 -.15 -39.0 

 Non-STEM 10 23,127 .38 .38 .36 .33 .30 .27 .27 .24 -.14 -37.1 

               

 Less STEM-Quantitative 16 174 .42 .42 .33 .37 .37 .39 .35 .36 -.06 -14.5 

 

 STEM-Biological 16 409 .52 .52 .53 .40 .38 .34 .40 .45 -.07 -13.7 

 Non-STEM 16 10,350 .44 .45 .42 .41 .39 .36 .35 .31 -.13 -29.2 

               

Male More STEM-Quantitative 10 4,231 .34 .33 .29 .27 .26 .27 .25 .25 -.10 -27.8 

 STEM-Biological 10 1,015 .37 .38 .29 .27 .34 .24 .24 .26 -.11 -30.4 

 

 Non-STEM 10 12,922 .37 .37 .36 .35 .31 .28 .27 .23 -.14 -38.1 

               

 Less STEM-Quantitative 16 672 .39 .43 .43 .38 .32 .34 .33 .37 -.01 -3.7 

 STEM-Biological 16 194 .41 .45 .41 .37 .48 .27 .47 .35 -.06 -14.5 

 Non-STEM 16 6,021 .41 .42 .40 .37 .36 .32 .31 .27 -.14 -34.9 

                

Corrected Female More STEM-Quantitative 10 1,386 .83 .81 .81 .82 .79 .75 .79 .81 -.02 -2.3 

 STEM-Biological 10 1,621 .85 .83 .79 .75 .75 .71 .67 .67 -.19 -21.9 

 Non-STEM 10 23,127 .73 .74 .71 .67 .64 .58 .56 .51 -.22 -29.9 

               

 Less STEM-Quantitative 16 174 .71 .74 .68 .62 .63 .70 .62 .60 -.11 -15.9 

 

 STEM-Biological 16 409 .85 .86 .85 .77 .72 .66 .70 .76 -.09 -10.2 

 Non-STEM 16 10,350 .70 .71 .68 .66 .62 .59 .56 .52 -.19 -26.5 

               

Male More STEM-Quantitative 10 4,231 .80 .78 .73 .72 .72 .72 .65 .65 -.15 -19.1 

 STEM-Biological 10 1,015 .82 .83 .74 .69 .79 .66 .67 .68 -.14 -16.7 

 

 Non-STEM 10 12,922 .72 .72 .71 .67 .62 .57 .54 .47 -.24 -34.0 

               

 Less STEM-Quantitative 16 672 .74 .78 .78 .72 .63 .65 .60 .65 -.08 -11.4 

 STEM-Biological 16 194 .71 .73 .67 .67 .71 .49 .68 .58 -.13 -17.7 

 Non-STEM 16 6,021 .68 .69 .66 .63 .60 .55 .51 .46 -.23 -33.2 

Note: k=number of studies; STEM=science, technology, engineering, and mathematics. 

 


