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Abstract

Equating a test form to itself through a chain of equatings, commonly referred to as circular 

equating, has been widely used as a criterion to evaluate the adequacy of equating. This paper uses 

both analytical methods and simulation methods to show that this criterion is in general invalid in 

serving this purpose. For the random groups design done in the same year, it is shown 

analytically that circular equating will always result in the identity function (i.e., the perfect result) 

even with the presence of random and systematic equating errors. For the random groups design 

done in the different years, a heuristic argument is provided that circular equating will generally 

deviate from the identity function by some random sampling error. A simulation study for this 

design also showed that expected values of the circular equating may deviate slightly from the 

identity function but those deviations do not reflect the systematic error (bias) embedded in the 

equating. For the common-item nonequivalent groups design, a simulation study was done to 

show that circular equating again can not reflect the systematic error in equating. More effective 

ways of assessing random and systematic equating errors are recommended.
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The Effectiveness of Circular Equating as a Criterion 

for Evaluating Equating

In test equating, there has been a lack of definitive and practically feasible criteria for 

evaluating the adequacy of equating. Harris and Crouse (1993) did a thorough review and 

discussion of the available criteria in the literature. One of the criteria they reviewed is the circular 

equating paradigm. Circular equating involves equating a test form to itself through a chain of 

equatings. To illustrate this with a case of three test forms, X, Y, and Z, test form X is equated to 

form Y, which is equated to form Z, which is equated back to form X. It is presumed that if an 

equating is without error, an identity circular equating should result, and that if the equating 

functions in the chain contains much error, the circular equating would not result in identity 

equating and the result should reflect the error accumulated in the chain. Based on this reasoning, 

the circular equating criterion was commonly used in evaluating equating methods (e.g., Cope, 

1987) or scale drift in IRT equating (e.g., Petersen, Cook, & Stocking, 1983). Brennan and 

Kolen (1987a, b) and Angoff (1987) discussed this criterion. Angoff (1987) had more positive 

views on the usefulness of this criterion. Brennan and Kolen (1987a, b), however, expressed 

cautions about using this criterion. They pointed out that no equating at all will result in identity 

equating under this paradigm. They also demonstrated that equating methods with fewer 

parameters tend to achieve better results, and starting from a different form may affect the results. 

Despite these concerns, this paradigm and some variations of it continue to be used as a criterion in 

both research and practice (e.g., Klein & Jarjoura, 1985; McKinley & Schaeffer, 1989; Gafni & 

Melamed, 1990; Harris, Welch & Wang , 1994). The applications of the criterion have not 

produced clear results about its usefulness. Some authors expressed doubts about the validity of 

this criterion (e.g., Gafni & Melamed, 1990). There has not been a substantive study on the 

validity and usefulness of this widely used criterion. The objective of this paper is to address this 

need. More specifically, we focus on type of equating error for which this criterion can or cannot 

provide an accurate measure, when applied to different equating methods and equating designs.



Kolen and Brennan (1995, pp. 210-211) summarized two major types of equating errors: 

random error and systematic error. There is one source of random error; that is, equating is 

performed based on samples randomly drawn from the population of examinees rather than based 

on the population itself. There are two major sources of systematic errors. One source is the 

equating method used, including violations of the assumptions associated with the equating 

method, and the estimation bias related to that method. A second source is the collection of data in 

the equating study, including whether the samples are randomly drawn from the population that 

actually take the test forms, and whether the equating design was properly implemented. A 

criterion for evaluating equating should be able to provide an accurate measure of one or both types 

of equating error and be able to indicate the amount of error present. Thus the effectiveness of the 

circular equating paradigm as a criterion for evaluating equating is determined by the extent to 

which it can meet these requirements.

The variance or standard deviation of equating across samples (the latter is called the 

standard error of equating) is usually used to assess the magnitude of random error. Assessing 

standard error of equating usually involves drawing random samples from the same populations 

under the same set of conditions. Since in practice circular equating only involves one set of 

samples without replication, it is not expected that circular equating in and of itself could be used to 

assess the standard error of equating. Traditionally, the circular equating criterion was intended to 

assess systematic error. Other statistical techniques such as the bootstrap methods can be used to 

assess standard error of equating for a single equating or for a chain of equatings for different 

equating designs (Hanson, Harris & Kolen, 1997; Hanson, 1996; Hanson, 1998). For these 

reasons, the study will focus more on the effectiveness of circular equating in evaluating systematic 

error rather than random error.

It is not known a priori whether the effectiveness of circular equating as a criterion is the 

same under different equating study designs. This paper considers three categories of test equating 

designs: the random groups design, the common-item nonequivalent groups design, and the single 

group counter-balanced design (Kolen & Brennan, 1995, Chapter 1). We will study the two most

2



commonly used equating designs: the random groups design and the common-item nonequivalent 

groups design, in our investigation of circular equating. We will discuss the single group counter­

balance design at the end of the paper.

Random Groups Design

There are two possible scenarios of applying circular equating under the random groups 

design. One is to have a chain of equatings with a single data collection; that is, the groups that are 

administered these different test forms are randomly equivalent groups. For example, three 

randomly equivalent groups are administered three test forms: form X, Y, and Z, and form X is 

equated and to Y, Y is equated to Z, and Z is equated back to X. For convenience, we will call this 

circular equating under random groups done in the same year. Another scenario is to have samples 

from different populations for the different equating chains in a circle. Taking the previous 

example, form X is equated to form Y in one year, and form Y is equated to form Z in a second 

year with another random groups data collection, and form Z is equated back to X in a third year 

with a third data collection. We will call this circular equating under random groups done in 

different years. We will show analytically that under the first scenario, the circular equating 

paradigm is basically an invalid criterion because it cannot reveal any type of equating error. In 

another word, circular equating will result in perfect results (identity equating) with any known 

equating method.

Under the second scenario, we will give analytical results for a special case and use 

simulation to study what type of equating error can be reflected by circular equating in other cases. 

In the case for which analytical results are given, we will show that only the random error in the 

statistics used to estimate the equating function cause the circular equating to deviate from the 

perfect result, and that systematic errors can not be detected by this criterion. That will explain 

why equating methods with fewer parameters appear to achieve better results under circular 

equating, as Brennan and Kolen (1987) contended.



Simulation methods (also called parametric bootstrap method; Efron, 1982; Efron & 

Tibshirani, 1993) will also be used to assess the effectiveness of circular equating under the second 

scenario. In the simulation study, the population distribution for each of the test forms are 

estimated from real data, samples of test data are then generated from these population 

distributions, and circular equating is performed using the generated data.

Analytical Results for Circular Equating Done in the Same Year

We shall consider the case of circular equating of three test forms done in the same year. 

The results can be extended to cases of more than three forms. Assume we have forms X, Y and 

Z. Let mx ,s x , Fx(x) be the sample mean, standard deviation, and the cumulative distribution 

function for a particular form X, and let ex^ Y(x) stand for the equating function from form X to Y;

that is, the form Y equivalent of a particular score x on form X. Notations for the other forms and 

other equating functions are defined likewise with only the subscript changed accordingly. As 

Kolen and Brennan (1995, p. 9) stated, all equating procedures are required to have the symmetry 

property. By this property, we have

^ z W - ^ x W  »

where the superscript -1 means the inverse function. Equivalently, we have 

e z->x\ex->zix )\  — x

It is generally true with any of the known equating methods that for random groups design done in 

the same year, the equating function from form X to Z directly equals to the equating function from 

X to Z through another form Y (or through a chain of equatings if there are more than three forms 

in all). Symbolically, this can be expressed as

4
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This assertion is not obvious but can be verified case by case for various equating methods. We 

will verify Equation 3 for the linear and equipercentile methods. Verifications for other methods 

basically follow the same logic.

For the linear equating method, we have (see Kolen & Brennan, 1995, p. 30)

e x->y(x )

Therefore

jt-m ,
sY +mY . (4)

r \x — m,

v /
sY +mY -  nu

>sz +mz = x — m,
J2 +WZ= e ^ z W  (5)

Since mean equating is only a special case of the linear equating, Equation 5 is sufficient for the 

mean equating method. For the equipercentile equating, we have for continuous score 

distributions ( see Kolen & Brennan, 1995, p. 36)

ex->y(x ) ~  [ ^ x ( * ) ]  •

Therefore

(6)

«K_z[«x^r W ] = = F-z '[Fx (x)] = ex^ )  (7)

This holds regardless of whether smoothing is performed on the score distributions. Smoothing of 

the score distributions before equipercentile equating is applied is called presmoothing. If 

smoothing is performed on the equipercentile equating function, it is called postsmoothing (see 

Kolen & Brennan, 1995, Chapter 3 for a discussion of various smoothing methods). Equation 7 

shows that Equation 3 is valid both for unsmoothed equipercentile equating and equipercentile 

equating with presmoothing. However, the discreteness of the score distributions and the linear 

interpolation underlying the equipercentile equating method may cause the equality in Equation 7
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not to hold exactly, but the deviation is expected to be quite small. With postsmoothing, Equation 

3 may also not hold exactly, because the postsmoothing method smoothes the equating function 

and thus changes the equating relationship. But because the deviation is expected to be small and 

is caused only by the smoothing factor (which is not our main concern here), the deviation from 

Equation 7 does not invalidate the main argument. For now, we assume that Equation 3 holds. 

Substituting the left-hand side of Equation 3 for ex_>z(x) in Equation 2, yields

function even though there may be random or systematic error in each link of equatings. In other 

words, the circular equating can not provide an accurate measure of any equating error and 

therefore is an invalid criterion for evaluating equating under this data collection design. In cases 

where there are more then three foims in the circle, Equation 3 can be applied repeatedly, and when 

combined with Equation 2, a result analogous to Equation 8 can be obtained.

Circular Equating Done in Different Years

For this equating design, we shall only present a proof for the mean equating method. 

Suppose we have three equating links done in three different years: form X is equated to form Y in 

the first year, form Y is equated to form Z in the second year, and form Z is equated back to form 

X in the third year. Assume that there is no interaction between the test forms and the examinee 

populations of the different years; that is, if there is an effect of the population ability levels on the 

test scores, the effect is the same for the different forms. We also assume the population effects 

are additive and form-in variant; that is, the effect of a particular population can be added to the 

sample means and remain constant for different test forms. Let mn  and exl be the sample mean 

and the associated random error for form X from the first year population. Let fix be defined as 

the expected mean for form X from all concerned populations, and fiXi be the expected mean for

form X and population i; that is

(8)

Equation 8 indicates that circular equating under this design will always result in the identity
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1 3
fix = ' (^)

i=l

Expected means for form Y and Z are similarly defined. Let <i, be the effect of the first year 

population; that is, = f.iX] - \ i x = f iYl — f iY - fiz\ ~ fiz ’ Notations for other population effects 

are defined likewise, with appropriate subscripts. We have

m xi  “  f i x  + eX\ ’ (10)

mX3 =  f i x  d3 + exl) , (11)

W y j  fl y “I" d] 4* €yi  , (12)

tnY2 = f lY + d2 + 6y2 , (13)

mZ2 = fiz ^ 2 + ^Z2 ’ (14)

mZ3 ~ fiz 3̂ eZ3 ’ (15)

Therefore

*z-»x{gy-»zK -> r(* )]}  =  X ~  m xl + m Yl -  m Y2 + m z2 -  m Z3 +  m x3 

= x — (//x +d{+ exl) + + d} + eYl) — (fly + d2 + eyi)

+ { f i Z ^ 2  e Z2 )  _  { f i z  ^  ^3 e Z3 ) “I" { f i x  ^3 ^*3 )

— x  — eX] +  e Y] — +  ez2 — eZ3 +

Equation 16 shows that under the previously described assumptions, a mean circular equating will 

result in the identity function except for some random errors. The systematic error due to 

population differences or equating methods can not be reflected by this circular equating. It is seen 

that in the chains of equatings that constitute this circle, the systematic errors due to population 

differences cancel out, and that any systematic errors embedded in the equating method (for 

example, if the mean equating method is used when the mean function does not represent the true 

population equating function) never enter the process.

This reasoning process can, to some extent, be extended to the linear equating method and 

to other more complicated equating methods even though it may be hard to prove in a clear-cut
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fashion. The simulation results presented below will provide further evidence to support this 

argument.

Simulation Study for Circular Equating Done in Different Years

Method: In order to manipulate the population distributions for different test forms for 

different years, an IRT model was used to compute the population score distributions. The three 

parameter logistic (3PL) model was fit to regular equating data for three forms of the ACT 

Assessment Mathematics test, and the item parameters were estimated using the program EMI 

(Zeng, 1995). The summary statistics for the item parameters for forms A, B, and C are contained 

in Table 1. Table 1 shows that the means of the b parameters of the test forms differ somewhat. 

In particular, form A has a higher mean b value than the other two forms. Three sets of population 

$ distributions were used to compute the population score distributions. The population 6 

distributions are all normally distributed with their means and standard deviations contained in 

Table 2a. These three sets are intended to represent three different situations in the change of the 

population distribution. Set one represents a situation where populations are stable across years. 

Set two represents a situation where the changes are in the same direction. Set three represents a 

situation where the changes are in a different direction. The steps used in computing the 

population score distributions are:

1). Conditioned on a given 9, the score distribution f (x\6)  is computed using the Lord

and Wingersky (1984) recursive algorithm.

2). The marginal score distribution is computed using the following equation:

f ( x )  = l e f(x \e )y ,(e )d e  , 07 )

where ijf(Q) is the population distribution of 0. Some form of numerical integration can be used 

to carry out this step. This computational procedure is also described in Kolen and Brennan 

(1995, pp. 182-183).



After these population score distributions were computed, they were input into a computer 

program RG Equating Error (Hanson, 1996) which can estimate the mean and standard deviation 

of repeated circular equating functions. Using this program, the simulation process takes the 

following steps:

1). Random samples of scores for 2000 simulated examinees were drawn from the 

population score distributions. Six samples were drawn, with each test form having one random 

sample from each of two populations. The six samples were: forms A and B for the first year 

population distribution; forms B and C for the second year population distribution; and forms C 

and A for the third year population distribution.

2). Circular equating was performed for this set of 6 random samples . form A was 

equated to form B using the pair of samples drawn from first year population; form B was equated 

to form C using the pair of samples drawn from the second year population; form C was equated 

back for form A using the pair of samples drawn from the third year population.

3). Steps 1 and 2 were replicated 5000 times. The mean and standard deviation of the 

circular equating function over 5000 replications were computed.

4). Steps 1 through 3 were repeated for three different equating methods: Mean equating, 

linear equating and equipercentile equating with log-linear presmoothing with a degree of six 

(Kolen & Brennan, 1995, Chapter 3). This degree of smoothing was considered to be sufficient 

for this situation.

5). Steps 1 through 4 were repeated for three different sets of populations (See Table 2).

Results: The mean deviations and standard errors of the circular equating function for this

design are plotted in Figure 1. The mean deviations in Figure 1 are the means of the equated 

scores through circular equating across 5000 replications minus the identity function. It can been 

seen from Figure 1, that with population set 1 there is not much mean deviation for any of the 

methods except at the extreme scores for the equipercentile equating with presmoothing. A 

comparison across population sets shows that the mean deviation of the equipercentile (with 

presmoothing) method was least affected by the change of the population. For the mean and linear
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methods, the mean deviation tended to be greater when the population changes in the same 

direction (population set 2) than in a different direction (population set 3). The mean deviation 

from the identity function for the mean equating method for population sets 2 and 3 appear to 

contradict Equation 16. This may be due to some violation of the assumptions that were used to 

derive Equation 16. In particular, the assumption that the population effects are additive and form- 

invariant is probably violated to some extent because an IRT model was used to generate the 

response data and the score distribution. Overall, the mean deviations for all these methods are not 

very large, particular at the middle score range. The standard errors (SE) plotted in Figure 1 are 

the standard deviations of the equating functions through circular equating across the 5000 

replications. The SE plots show that the mean equating consistently has smallest SE, and that the 

linear equating has a smaller SE than the equipercentile (with presmoothing) method over most of 

the score range. The random errors usually have larger magnitude than the mean deviation and 

constitute a larger part in the total error.

The average standard error and the average absolute mean deviation across score points are 

contained in Tables 3a and 3b. The values in Table 3 were computed by averaging the values 

reported in Figure 1 over the number correct score scale weighted by the frequency distribution of 

form A. Table 3c contains the average root mean square error. The average root mean square 

error is the square root of the sum of the squared average standard deviation and squared absolute 

mean deviation. The average absolute mean deviation, average standard error, and average root 

mean squared error are measures of systematic, random, and total error in the estimates, 

respectively. The results in Table 3 are consistent with the pattern shown in Figure 1.

To facilitate interpreting the results from these simulations, the true equating functions were 

computed and plotted as shown in Figure 2. True equating is defined as the unsmoothed 

equipercentile equating function performed on the population distributions. Figure 2 shows that 

the true equating function from A to B is curvilinear and deviates from the identity function about I 

to 2 points. The true equating function from B to C is close to being linear. The true circular 

equating from A to B to C to A is basically the identity function. Figure 2 also shows that all the
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true equating functions remain basically the same across three population sets. These plots suggest 

that the true equating functions in the chains of the circle deviate from linear or mean equating 

functions, which means that the mean and linear equating methods are biased for some of the 

chains in the circle. Figure 2 also shows there is little population effects.

To further illustrate this, the plots in figure 3 show the bias in the mean and linear equating 

methods for individual links in the chain of equatings for population set 2. The Figure 3a gives the 

difference of the mean and linear equating from the equipercentile equating of form C to form A 

computed using the population data for the third year population. This gives the bias of the linear 

and mean equating methods relative to the equipercentile method in the population. The Figure 3b 

gives the bias in the linear and mean equating methods for the form B to form C to form A equating 

as computed using the population distributions. It gives the bias in the form B to form A equating 

that results from combining the form C to form A equating in the third year population with the 

form B to form C equating in the second year population. Figure 3c gives the bias (i.e., the 

deviation from the population equipercentile equating function) of the linear and mean methods for 

the full circular equating computed using the population distributions.

Figure 3d gives the deviations of the mean, linear and equipercentile equating functions 

from the identity function for the full circular equating computed using the population distributions. 

The circular equipercentile equating function computed using the population distributions is close 

to, but not exactly, an identity function. The differences given in Figure 3d are very close to the 

mean deviation computed using simulation as reported in Figure lb. This similarity indicates that 

the mean deviations plotted in Figure 1 accurately reflect the deviations of the population circular 

equating from the identity function. Again deviations from the identity functions seems to be 

caused by violations to the assumptions used to derive Equation 16, but these minor deviations do 

not invalid the general argument that circular equating can not reflect the systematic error due to 

population differences or equating methods.

It can be further observed from the plots in Figure 3 that the bias of the mean and linear 

methods in the links that make up the circular equating is much greater than their mean deviation in
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the full circular equating. Only considering the mean deviation for the full circular equating would 

misrepresent the bias in the mean and linear methods when equating two different forms.

In light of these results, it can be seen that the circular equating with a simpler method 

(such as the mean equating; see Table 3c) tends to result in less deviation from the identity function 

than with a more sophisticated method even when the simpler method may not be appropriate for 

some of the equating links that form the chain (e.g., Figure 3). Thus, it can be concluded that 

circular equating is not a good criterion to use in assessing systematic error embedded in an 

equating method, and therefore is not an appropriate criterion for comparing different equating 

methods. The deviations from the identity function mostly reflect random sampling error, and to a 

lesser extent reflect a change in the population distribution from year to year.

Common item nonequivalent groups design

With this design, a new test form X and an old form Y are administered at two test dates to 

two supposedly non-equivalent groups of examinees. Test form X is equated to form Y through a 

common set of items, V. If V is counted as a part of the score reported for forms X and Y, then it 

is called an internal anchor; if V is not counted in the scoring of forms X and Y, it is called an 

external anchor.

The rationale underlying almost all the equating methods under this design is as follows: 

First, the sample statistics of form X are projected to the group that takes only form Y through the 

relationship between form X and the common set V. The same thing is done for form Y. Second, 

a synthetic group (sometimes called the synthetic population) is formed as a weighted combination 

of the groups taking forms X and Y and the sample statistics for forms X and Y are projected to the 

synthetic group. Finally, with the sample statistics for both forms for the synthetic group, the 

equating procedure is done in the same fashion as in the random groups design. In the case of 

circular equating, such as with forms X, Y, and Z, a different synthetic group is formed for each 

of the equating links in the circle and, for each synthetic group, it is as if a random groups design 

is employed. In this way, circular equating done under this design is similar to the random groups
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design done in different years as described in the previous section. The differences are that the 

synthetic groups are hypothetical rather than real and the form statistics for the synthetic groups are 

estimated rather than directly collected as in the random groups design. The analytical results for 

the random groups design can shed light on the common-item nonequivalent groups design. It is 

hypothesized that under the common item nonequivalent groups design, circular equating can not 

provide an accurate measure of the systematic error caused by the equating methods and thus can 

not be used to compare different equating methods. It is also hypothesized that if the population 

does not change much from year to year, circular equating would result in the identity function 

except for some random deviations. How the change in the populations from year to year will 

affect the systematic deviations needs empirical investigation. For this reason and for confirming 

our hypotheses, a simulation was conducted.

Simulation Study for Circular Equating for the Common-item Design

Method: Four forms of the ACT Mathematics test, A, B, C, and D were used to form a 

circle (form A, B, and C are the same forms used in the simulation study for the random groups 

design done in different years). A form E was split into four equivalent sets of items in a spiral 

fashion, with 15 items in each set. These four sets of items are used as external anchor items for 

the circular equating from A to B to C to D and back to A. IRT models were used in generating the 

score distributions. The summary statistics of item parameters for these forms are summarized in 

Table 1. Three sets of population 6 distributions were used in computing the bivariate score 

distributions between the form scores and anchor set scores. The 6 distributions are all normally 

distributed with their means and standard deviations contained in Table 2b. Population set 1 is 

designed to represent a situation where the examinee populations do not change from year to year. 

Population set 2 represents a situation where the changes are in the same direction. Population set 

3 represents a situation where the changes are in different directions. The computer program Cl 

Equating Error (Hanson, 1998) was used to carry out the simulation. The equating sample size 

was 2000, and the number of replications was 5000. The steps used in the simulation were very
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similar to the steps described for the simulation study for random groups design done in different 

years, except that bivariate distributions were computed and used in the equatings under a 

common-item design. Three equating methods were used: the Tucker mean equating method, the 

Tucker linear equating method, and the equipercentile (unsmoothed) equating method (Kolen & 

Brannan, 1995, pp. 107-111). The means and standard deviations of the circular equating over 

replications were recorded.

Results: The mean deviation and SE of the circular equating under this design are plotted in 

Figure 4. The mean deviation in Figure 4 is the mean of the equated scores through circular 

equating across 5000 replications minus the identity function. The SEs are the standard deviations 

of the circular equating function across the 5000 replications. Table 4 contains the average 

absolute mean deviation, average SE, and average root mean square error as averaged across the 

number correct score scale weighted by the form A distribution in the first year population.

The results for both the mean deviation and SEs are similar to those from the random 

groups design done in different years. For population set 1, the mean deviation is basically zero 

for the Tucker mean and linear methods, and is also very small for the equipercentile method 

except at extreme scores. The mean deviation was affected when the populations changed from 

year to year. It can be seen that when population changes are in the same direction (population set

2), the mean deviation is relatively small compared to when populations changes are in different 

directions (population set 3). This result is different than that observed in the simulation study for 

the random groups design done in different years. The plots of SEs show that the Tucker mean 

method consistently had smallest SEs and the equipercentile method had the largest. The averaged 

SEs over score points are contained in Table 4b which shows the same pattern. The SEs are 

virtually unaffected by the change in the populations. In general, these results confirm our 

hypotheses and suggest circular equating is not a valid criterion to evaluate the systematic errors in 

the equatings.
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Discussion and Conclusions

The circular equating paradigm has been widely used as a criterion for evaluating equating 

errors, and for comparing different equating methods without a clear understanding of the 

effectiveness of the criterion itself. Although some authors have expressed reservations about the 

effectiveness of the paradigm, there has not been an empirical study on this issue. The purpose of 

this study was to clarify what type of equating error this paradigm can or cannot evaluate under 

various equating designs and situations.

The effectiveness of circular equating as an equating criterion was investigated using 

analytical methods and simulation. For the random groups design where all forms are 

administered to randomly equivalent groups, it was shown analytically that circular equating will 

always result in the identity function. Thus, circular equating in this case is an invalid equating 

criterion for comparing equating methods. Analytical results were also obtained for the mean 

equating method under the random groups design where pairs of forms to be equated are 

administered to samples from different populations under the assumption of no interaction 

between population and form differences. In this case the only difference between mean circular 

equating and the identity function is due to random error, so circular equating cannot be used for 

comparing equating methods or observing population effects. The analytical results for the special 

cases considered showed that circular equating is not an acceptable equating criterion due to the fact 

it cannot detect systematic equating error from either source.

The performance of circular equating was investigated for some more complicated cases 

using simulation. Simulations were performed for a random groups design in which pairs of 

forms equated in the chain were administered to samples from different populations, and for the 

common-item nonequivalent groups design. The simulations were used to compute systematic and 

random components in the differences between circular equating results and the identity function. 

In all the cases considered the major portion of the differences between the circular equating and 

the identity equating were due to random error. This was true even when there was considerable 

systematic error (bias) in an equating method for intermediate links in the circular equating chain.
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In evaluating an equating method it is more difficult to assess systematic errors than 

random errors. Random equating error can be investigated in a straightforward manner using the 

bootstrap (Efron, 1982; Efron & Tibshirani, 1993; Hanson, 1996, 1998), and for many equating 

methods analytical standard errors of equating are available (Kolen and Brennan, 1995). Circular 

equating was considered a possible method for evaluating the systematic error in an equating 

method. However, the simulations showed that most of the deviation of circular equating from an 

identity equating is due to random variation, rather than systematic variation. In the simulations 

where systematic deviations of circular equating from the identity equating did exist, they tended to 

be much smaller than the systematic error in the equating method for equating links within the 

circle. Thus the deviations of the circular equating from the identity equating did not accurately 

represent the systematic equating error for the method on the links in the circle.

The results in this paper support the conclusion that circular equating does not provide a 

useful criterion by which the accuracy of equating methods can be investigated. One alternative to 

circular equating for investigating systematic error in an equating method is simulation. The 

disadvantage of simulation is that a model needs to be specified to perform the simulation, and it 

can be unclear to what extent the model chosen produces realistic data. An alternative to circular 

equating that does not involve simulation is to obtain data so that an equating between two forms 

can be done directly (e.g., form A can be directly equated for form C), or indirectly (e.g., form A 

equated to form B equated to form C). Differences in equating results using the indirect or direct 

links would include both systematic and random error, but might give a more realistic assessment 

of systematic error than circular equating.

The performance of circular equating as a criterion for the single group counter-balanced 

design was not studied. Because of the similarity in the equating methodology between this design 

and the random groups design, it is safe to conclude that circular equating is also ineffective in 

evaluating the equating error under this design.
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The Summary Statistics of the Item Parameters for the Test Forms Used in the Equatings

TABLE 1

Form/par. 
Form A

n Mean Std. Dev. Minimum Maximum Skewness Kurtosis

a 60 1.035 0.258 0.628 1.651 0.393 -0.732
b 60 0.324 0.932 -1.816 2.199 -0.265 -0.513
c
Form B

60 0.149 0.049 0.058 0.251 -0.053 -0.805

a 60 0.960 0.314 0.349 1.681 0.201 -0.582
b 60 0.182 0.987 -2.132 1.911 -0.300 -0.568
c
Form C

60 0.155 0.041 0.075 0.247 0.114 -0.557

a 60 0.950 0.276 0.524 1.509 0.379 -0.854
b 60 0.115 0.879 -1.851 1.749 -0.402 -0.605
c
Form D

60 0.141 0.039 0.042 0.232 -0.464 0.551

a 60 1.012 0.325 0.296 1.635 -0.122 -0.499
b 60 0.116 0.943 -2.348 1.799 -0.600 -0.091
c
Form E

60 0.144 0.046 0.041 0.252 -0.040 -0.333

a 60 0.940 0.313 0.441 1.933 0.569 0.562
b 60 0.171 0.998 -2.515 1.971 -0.378 -0.345
c
Form F

60 0.151 0.047 0.031 0.250 -0.343 -0.070

a 60 0.936 0.246 0.403 1.520 -0.068 0.015
b 60 0.105 0.974 -1.871 1.771 -0.183 -0.769
c 60 0.146 0.045 0.062 0.256 0.240 -0.209
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TABLE 2

a. For the random groups design done in different years.
Set one Mean SD

The first year population 0.0 1.0
The second year population 0.0 1.0
The third year population 0.0 1.0

Set two
The first year population 0.0 1.0
The second year population 0.2 1.1
The third year population 0.4 1.2

Set three
The first year population 0.0 1.0
The second year population 0.2 1.1
The third year population -0.2 0.9

b. For the the common-item nonequivalent groups design.
Set one Mean SD

The first year population 0.0 1.0
The second year population 0.0 1.0
The third year population 0.0 1.0
The fourth year population 0.0 1.0

Set two
The first year population 0.0 1.0
The second year population 0.1 1.1
The third year population 0.2 1.2
The fourth year population 0.3 1.3

Set three
The first year population 0.0 1.0
The second year population 0.2 1.2
The third year population 0.0 1.0
The fourth year population -0.2 0.8
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TABLE 3

The Average Standard Error, Absolute Mean Deviation and Root Mean 
Square Error for the Random Groups Design Done in Different Years.

a. Average Standard Errors.

Populatoin Set
Equating Method 

Mean Linear Presmoothing
Set One 0.666 0.759 0.894
Set Two 0.714 0.810 0.962
Set Three 0.662 0.762 0.905

b. Average Mean Deviation.____________________________________
Equating Method

Populatoin Set Mean Linear Presmoothing
Set One 0.000 0.003 0.018
Set Two 0.199 0.120 0.025
Set Three 0.077 0.049 0.023

c. Average Root Mean Square Error.____________________________
Equating Method

Populatoin Set Mean Linear Presmoothing
Set One 0.666 0.759 0.894
Set Two 0.742 0.818 0.962
Set Three 0.667 0.764 0.905
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TABLE 4

The Average Standard Error, Absolute Mean Deviation and Root Mean Square Error 
for the Common-item Nonequivalent Croups Design Done in Different Years.

a. Average Standard Errors.

Populatoin Set
Equating Method 

Tucker Mean Tucker Linear Presmoothing
Set One 0.405 0.513 0.785
Set Two 0.413 0.497 0.787
Set Three 0.421 0.539 0.818

b. Average Mean Deviation.___________________________________
Equating Method

Populatoin Set Tucker Mean Tucker Linear Presmoothing
Set One 0.004 0.002 0.014
Set Two 0.050 0.069 0.103
Set Three 0.347 0.195 0.189

c. Average Root Mean Square Error.____________________________
Equating Method

Populatoin Set Tucker Mean Tucker Linear Presmoothing
Set One 0.405 0.513 0.785
Set Two 0.416 0.502 0.794
Set Three 0.546 0.573 0.839
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Figure 1. The mean deviation and standard error of the circular equating for different populations and equating methods.



23

Figure 2. The true population equating functions minus identity function for the random groups design done in different years.
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Figure 4. The mean deviation and standard error of the circular equating for the common item nonequivalent grous design.
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