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Abstract
A simulation study was performed to determine whether a group’s average percent correct in a
content domain could be accurately estimated for groups taking a single test form and not the
entire domain of items. Six Item Response Theory-based domain score estimation methods were
evaluated, under conditions of few items per content area per form taken, small domains, and
small group sizes. The methods used item responses to a single form taken to estimate examinee
or group ability; domain scores were then computed using the ability estimates and domain item
characteristics. The IRT-based domain score estimates typically showed greater accuracy and
greater consistency across forms taken than observed performance on the form taken. For the
smallest group size and least number of items taken, the accuracy of most IRT-based estimates
was questionable; however, a procedure that operates on an estimated distribution of group ability

showed promise under most conditions.
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Estimating Average Domain Scores

There has been some recent interest in testing circles in reporting domain-referenced
scores, or scores linked to performance on a domain of items representing the skills and
knowledge required for mastery of a content area. Several advantages of domain score estimates
over traditional test scores are discussed in Bock, Thissen, and Zimowski (1997), who
demonstrate Item Response Theory (IRT) estimation of domain scores for individuals. A primary
advantage of the proposed domain scores over traditional scaled scores is the sfmplicity of score
interpretation—a score on the domain may be expressed simply as the percentage of total
possible points that are achieved. Also, the release of the domain or a representative subset of the
domain would provide a more comprehensive item set from which content area strengths and
weaknesses can be determined and the nature of the content areas inferred than would release of
items taken alone. Thus, domain scores offer the possibility of facilitating interpretation and
evaluation of performance, provided the domain has been well defined.

As part of its redesign, the National Assessment for Educational Progress (NAEP),
proposes the use of “market basket” or domain score reporting based on a collection of items (the
market basket) that would be released to the public (Forsyth, Hambleton, Linn, Mislevy, & Yen,
1996; National Assessment Governing Board, 1996). Different sized market baskets are
proposed, including a market basket that would constitute an entire domain of items; namely, a
very large pool of items operationally defining skill in the domain. Reported scores would
indicate performance in the domain, although individuals would typically not take all items in the
domain. Another use of domain scores that would be applicable to NAEP is discussed in Schulz,
Kolen, and Nicewander (in press), who present a rationale for defining achievement levels using

IRT-estimated domain scores.



The concept of a domain-referenced test stems from criterion-referenced testing, where
items are associated with a well-defined behavior domain (Popham, 1978). Theoretically, a
domain may consist of any clearly specified set of items (Hively, 1974). However, for a well-
defined domain, both the essential attributes of the content which the student is expected to
acquire and the behavior through which he or she is expected to demonstrate such acquisition
should be carefully described (Baker, 1974). Nitko (1984) further clarifies that a domain is well-
defined if it is clear which categories of performance or which kinds of tasks are and are not
potential test items, while a domain is ill-defined if it is defined only in terms of the particular
items on a single test form.

Focus on a single test form may mask the idea that items specific to that form represent
larger domains of content. Observed performance in a content area on a given form may not
necessarily reflect what performance would be on a broader set of items representing the content
domain. Linking performance on a test to a well-defined domain of skills and knowledge shifts
focus from individual items on the form taken to the content domain as a whole. This shift can
provide more comprehensive information about performance, particularly if the coverage of the
content area on a particular form is limited to a small number of items.

The research reported in this paper is based on a large-scale operational testing program
that reports, for participating schools, an observed average percent correct on the test form taken,
for items within a content area that are sampled from a content domain. The content area level is
a finer level than the scale scores that are typically reported for the operational test; school
performance is summarized at this level and reported with normative information to aid in the
diagnosis of particular strengths and weaknesses. Because of the fine level of specification, there

may be as few as five items for some content areas on a given form. In addition, the test forms



are not equated or balanced at the content area level, so that the difficulty of the content areas
may vary across forms, and the observed performance on a form may be dependent upon the
difficulty of the form.

At the examinee level, the observed percent correct for a single form is an unbiased
domain score estimate when based on a random sample of items from the domain, but is highly
vnreliable when the number of items on which the estimate is based is small (Hambleton,
Swaminathan, Algina, & Coulson, 1978). Research suggests that computing an observed percent
correct for test lengths less than 20 items could lead to unreasonable domain score estimates
(Haladyna & Roid, 1983). Domain score estimates could be problematic for either examinees, or
for groups, when examinee performance is aggregated at a group level. Thus, there is potential
for misinterpretation at the content area level if observed examinee or group performance on a
form taken is used to make inferences beyond performance on the items contained on that form.
An alternative would be to supplement observed performance on the form taken with similar
information about performance in the content domain from which the test items are sampled. For
groups, the supplementary information would consist of the group average percent correct for
each content domain.

In most testing situations, the domain performance cannot be measured outright, because
the domain is typically not administered. This research was performed to determine whether
schools' performance on a content domain could be accurately estimated, using item responses to
a single form taken and the characteristics of the items in the domain. Our research focused only
on procedures for estimating group-level (i.e., school) domain scores, specifically, the average
percent correct for the group in the domain. The procedures summarized here would be

applicable to NAEP, which reports only group-level scores, or any testing program providing



group-level summaries. The research evaluated estimation procedures under conditions specific
to the operational testing program on which the study is based; namely, very few items per
content area on the form taken, small domains, and small numbers of observations per group.
These are problematic conditions that might often exist in practice and that could greatly affect
the accuracy of group-level domain score estimates.
An IRT-Based Domain Score Approach

A domain score for an examinee, where the domain consists only of muitiple choice
items, can be simply defined as the percentage of items in the domain that the examinee can
answer correctly. When the domain contains open-ended items that are scored polytomously, a
domain score for an examinee can be defined as the proportion of total possible domain points
reccived by the examinee. At the group level, a domain score may be defined as the average
percent correct (domain includes multiple choice items only) or the average proportion of total
possible points (domain includes open-ended items) for examinees within the group.

IRT provides a convenient method for estimating domain scores using performance on
the form taken and known domain item parameters. Under this approach, a domain score for an
examinee (or group), where the domain consists only of multiple choice items, may be estimated

as

] J
— D Pi(8), (1)
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where B is an IRT scale score of examinee ability estimated from item responses to the form

taken (or @ is the average estimated ability at the group level), and P}.(e) is the probability of

answering domain item j correctly at ability 6. An application of IRT-based domain score

estimates at the individual level was demonstrated in Bock, Thissen, & Zimowski (1997). We



present a demonstration of IRT domain score estimation procedures at the group level, under
conditions that could adversely affect the accuracy of the domain score estimates.'

One benefit of a domain score defined using IRT is that 8 can be estimated from one set
of items (i.e., the form taken), while the domain score can be estimated from a completely
different set of items not taken by the examinees (i.e., the content domain), if the domain item
parameters are known. If the IRT model holds, unbiased domain score estimates can be obtained,
even if items within a form are a nonrepresentative sample of the domain, because @ is invariant
across items (Hambleton & Swaminathan, 1985). IRT-based domain scores are not dependent on
the difficulty of the form taken (although they are dependent on the difficulty of the domain
items). Assuming the domain item parameters are known, the prevailing problem is to accurately
estimate ability—a problem that is exacerbated when the number of items taken is small. Due to
averaging P(0) over examinees and/or items to obtain a group domain score estimate, it is
possible that small domains and small numbers of examinees per group may also adversely affect
group-level domain scores.

Because our interest is in domain scores to be reported at a group level, we could estimate
each group’s average ability and compute Equation (1) for each group. Mislevy (1985) proposed
an EM-based solution to estimate group means for an unobserved random variable. Tate and
King (1994) demonstrated the application of a group-level IRT model to estimate school ability;
group-level ability estimates are provided by BILOG (Mislevy & Bock, 1990). Because of

rigorous computer requirements for the EM-based solution, and restrictive assumptions for the

'"The methods presented in this paper are discussed with respect to multiple choice items only, although the methods
can be extended to open-ended items that are polytomously scored. For an application of group-level domain score
estimation procedures to open-ended items see ACT (1997). Or see Bock, et al. (1997) for a discussion of the extension
of the domain score estimates to open-ended items.



BILOG solution that were not met in our operational tests, it was necessary to examine alternate
methods of estimating ability. We compared several IRT-based methods for estimating domain
scores, some of which operated on estimates of examinee ability, and some of which operated on
estimates of group ability.
Methods for Estimating Group Domain Score

Six different IRT-based methods for estimating the group domain score were evaluated.
All methods computed an average percent correct (APC) for the group on the domain items. In
addition, the group observed APC on the form taken was computed by averaging the observed
0,1 item responses on the form taken over all items and examinees within a group:

I 13
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where y, was the response of examinee i to item f on the form taken, T was the total number of

items on the form taken, and N, was the number of examinees in group g. The group observed

APC is labeled OBS. OBS was computed to provide a baseline comparison for the [RT-based

estimation methods. The six IRT-based methods and OBS are summarized in Table 1.

See Table 1 at end of report.

For two of the IRT-based methods, a point estimate of ability (6, ) was computed for each

examinee [ within group g from item responses to the single form taken. The estimated domain

score for group g was then computed as
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where Pj(em) was the probability of examinee i in group g (Ng total) responding correctly to

domain item j (J domain items total), computed from a three-parameter logistic (3PL) model
(Birnbaum, 1968). The methods employed for estimating examinee ability included computing
(1) the mean of the posterior distribution (expected a posteriori estimate; Bock & Mislevy, 1982)
and (2) computing the maximum of the likelihood function (Lord, 1980). Domain scores
estimated from the examinee-level expected a posteriori estimates are labeled EAPI. Domain
scores estimated from the examinee-level maximum likelihood estimates are labeled MLEL.

For three of the IRT-based methods, a point estimate of ability (eg) was computed for

each group g based on the single form taken. The estimated domain score for group g was then

computed as

%2 Pi6,) . )
for J domain items, using a 3PL model. The group-level point estimate of ability was computed
by (1) averaging examinee expected a posteriori estimates within a group, (2) averaging
examinee maximum likelthood estimates within a group, and (3) directly estimating mean group
ability using a latent-variable regression model. The procedure employed for estimating mean
group ability using a latent-variable regression model is discussed in the Appendix. Domain
scores estimated from the averaged examinee expected a posteriori estimates are labeled EAP2.
Domain scores estimated from the averaged examinee maximum likelihood estimates are labeled
MLE2. Domain scores estimated from the direct estimates of group means are labeled MU.

For the final IRT-based method, a distribution of group ability p,(8,) was computed from

examinee responses to items on the single form taken, as a discrete approximation to f, the



continuous distribution of ability for group g. The estimated domain score over J domain items

was then computed as

+

Pi(8)f (6)do
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where P (8 ) was the probability of answering domain item j correctly given ability § computed
from a 3PL model, and pg(eq) was group g's probability that ability = e, for g = 1,2,..m
quadrature points. Maximum likelihood estimates of the probabilities pg(eq) were computed

using an EM algorithm; this estimation procedure is discussed in the Appendix. Domain scores
estimated with this method are labeled EM.
The Simulation Study

Rarely in a testing program do examinees take an item set that may be classified as a
content domain; hence the need for estimating domain scores. The lack of actual domain scores,
however, presents a problem for evaluating the performance of domain score estimates. Equating
data offers one possibility, but for most testing programs, it is unlikely to consist of examinees
taking a multitude of forms. In order to obtain item responses for a fixed group of examinees on
both a single form taken and a separate content domain; we performed a simulation study. The
simulation allowed us to evaluate groups' estimated domain scores relative to their actual domain
scores.

The simulation was performed in two stages, with conditions in each stage (i.e., number
of items taken, domain size, number of examinees per group, and differences in difficulty across
forms taken) chosen to reflect conditions in the existing operational testing program. Stage One
systematically manipulated the conditions of the study, whereas Stage Two was modeled to

match the characteristics of three actual test forms from the operational testing program. Thus,



Stage One and Stage Two differ in terms of the characteristics of the distributions used to
generate the item parameters, the number of items taken, and the domain size. Together the data
from Stages One and Two enabled us to evaluate the potential of the estimation procedures when
applied to real data.

At both stages of the simulation, examinee responses to items within a content area were
generated for nine distinct test forms. Six of these test forms were used to define the content
domain. The remaining three forms were each used separately as a form taken, from which the
domain performance for a group was imputed.2 The domain size was always fixed to be six
times the number of items taken. The domain was chosen to be six forms because six was the
number of forms in our operational program that would have been available for release. Items
within content areas on the six forms, while probably not encompassing the content domain were
deemed by content experts as representative of the domain as a whole, and of future items on new
test forms created under the same test specifications. Thus, although the domain scores
computed in the study were not indicative of true domain scores (i.e., based on all possible items
in the domain), they were labeled as such because they were based on a representative sample of
items from the domain.

Stage One

For each condition of number of items taken, six different forms were used to define the

domain (labeled A2, B2, C2, A3, B3, and C3). Three different forms were each used separately

as a form taken (labeled Al, B1, and C1), from which the domain performance for a group was

: Although the items on the form taken may be included in the domain, we chose to exclude them to match an
operational situation where a new form is administered each year, but the domain remains constant to enable
comparisons of group performance across years. The constant domain also enabled us to examine the consistency of
the domain score estimates across different focms taken in the study.
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imputed. The number of items taken per form was fixed at 5, 10, or 20 items with domain sizes
of 30, 60, and 120 items, respectively. For cach item size, domain scores were estimated for
school sizes of 25, 50, and 100 examinees per school. These are typical sample sizes for schools
participating in the reporting services for our operational testing program (a minimum of 25
examinees per school is required to participate). At each school size, 100 schools were
simulated; the schools are treated as replications in the analyses. The items and schools were
simulated to be independent of one another across the 5, 10, and 20 item conditions. Namely,

separate items and schools were generated for 5, 10, and 20 items taken.

Form Taken
# items taken) Domain
(

Al (5 items)
B1 (5 items)
C1 (5 items)
Al (10 items)
B1 (10 items)
C1 (10 items)
Al (20 items)
B1 (20 items)
C1 (20 items)

Forms A2, B2, C2, A3,B3,C3

(5 items x 6 forms = 30 domain items)

Forms A2, B2, C2, A3, B3,C3

(10 items x 6 forms = 60 domain items)

Forms A2, B2, C2, A3,B3,C3

A R AR

(20 items x 6 forms = 120 domain items)

Data Generation

School ability (eg) was sampled from an N(0,.4) distribution. Within each school,

examinee ability (Om) was sampled from an N(GX,.6) distribution. The variances were chosen so
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that within-school variability would be greater than across school variability. For each test form,
distinct sets of item parameters were generated for a 3PL model. The a parameters were sampled
from a lognormal distribution with mean 1.13 and variance .36, for all item sizes on all forms.
The ¢ parameters were sampled from a beta distribution with ot = 6 and § = 16, for all item sizes
on all forms. The b parameters were sampled from an N(.5,1) distribution on forms Al, A2, and
A3; an N(0,1) distribution on forms Bl, B2, and B3; and an N(-.5,1) distribution on Forms C|,
C2, and C3. Manipulating the mean of the normal distribution for the & parameters created, for 5
and 10 items taken, differences in difficulty across forms of the magnitude observed for some
content areas in the operational testing program. (For example, for 5 items taken, the observed
APC was .59 for Form Al, .73 for Form B1, .71 for Form Cl, and .67 for the domain, based on
N=17,500 taking each form.) For 20 items taken, the form difficulty differences were larger than
observed in the operational testing program, which represented a worse case scenario for the
domain score estimates. For each examinee, item responses for the nine forms were coded 0 or |
by comparing the 3PL item probability to a randomly drawn uniform deviate, where the item
probability was computed using the generated examinee 9 and the generated item parameters.
Evaluation of the Domain Score Estimates

For each combination of school size and item size, the APC for a school on the content
domain was estimated using the EAP1, MLE1, EAP2, MLE2, MU, EM, and OBS methods. In
each method, the parameters for the forms taken and the domain were assumed known, and the
generated ("true") parameters were used. Three separate domain score estimates were computed
for each school under each method, first using item responses to Form Al, then responses to

Form B1, and finally, responses to Form C1. Because item responses were generated for the six
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domain forms, we were able to compute the actual domain score for each school by averaging
observed responses on the domain items over all domain items and examinees within a school™:
1 13
N_g7§’,§‘y" : (6)
Equation 6 differs from Equation 2 (computation of OBS, the observed APC for the form taken)
only in that the computation is based on the / domain items, rather than the T items on the form
taken. The actual domain score was the same for all three forms taken.

Each domain score estimation method was evaluated using two criteria: the accuracy of
the estimated domain scores and the consistency of the estimated domain scores across the three
forms taken. The accuracy of the estimated domain scores was measured by computing, for each
school on each form taken, the absolute value of the difference in the estimated domain score and
the actual domain score (ABSDIF). Operationally, we would prefer ABSDIF be no greater than
.05 because larger differences might lead schools to draw the wrong conclusions about their
performance. The consistency of the estimated domain scores across forms taken was measured
by computing for each school the standard deviation of the estimated domain scores across the
three forms taken. Assessing variability over forms taken is important because schools should
receive similar estimates of their domain score regardless of which form they take. If the
esttimated domain scores are not consistent across forms, the school could draw different

conclusions depending upon which form the examinees took.

3The actual observed domain score was computed as the measure of the true domain score (rather than using the true
school or examinee abilities in place of the estimated abilities) because with real data applications, this is the only
available measure with which to evaluate the domain score estimates. Using this standard will enable us to compare
results of this study to results of a future study based on real data, tn which students take an actual domain of items.
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Accuracy. Figures 1-3 summarize the ABSDIF for the conditions where there were 5
items taken, 10 items taken, and 20 items taken, respectively. Within these figures (and all
subsequent figures), the methods are labeled at the right side of the figure according to their order
at 100 examinees per school. A legend for the methods is also given below the horizontal axis.
In Figures 1-3, the ABSDIF was averaged, for each school size, over the 100 schools and over the
three forms taken, and thus is summarized over 300 schools at each school size. The plots
indicate that both OBS and MLE2 performed very poorly on the average, while EAP1, MLEI,
EAP2, MU, and EM all showed much greater accuracy. The EM method showed the greatest
accuracy of all methods, on average, particularly with the 5-item test length, although the other
IRT-based methods (except MLLE2) approached the accuracy of the EM method as the number of

items taken increased.

See Figures 1-3 at end of report.

As the number of items taken increased, the accuracy of all methods except OBS typically
improved. The items and schools were simulated to be independent of one another across the 5,
10, and 20 item conditions; OBS did not improve because the difficulty of the three forms taken
relative to the domain difficulty was more diverse as the number of items increased. The
observed APC for the form taken can give fairly accurate estimates of the true domain score for
small numbers of items if the difficulty of the form taken is very similar to that of the domain.
But if the tests are not balanced at the content area level, it is unlikely that each form will be
similar in difficulty to the domain.

Figure 1 shows that MLE2 was the least accurate of all methods, including OBS. For the

maximum likelihood ability estimates, examinees with all correct, all incorrect responses, or
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unusual response patterns were assigned arbitrary values of 5. (Mislevy and Bock (1990) state
that it is necessary to set some limit, perhaps £5 standard deviations of the latent distribution, as
upper and lower bounds for @ in maximum likelihood estimation.) When the examinee MLE(Q)s
were averaged, the result was either a large positive or negative estimate for the school (much
more extreme than the average EAP), which, in turn, either drove the school's estimated APC for
the domain up or down. As the number of items increased, the accuracy of MLEZ improved,
probably because there were fewer responsc patterns receiving arbitrary @ values. MLEI
appeared to be less affected by the arbitrary 6 values being assigned, as it performed fairly
similarly to EAP1, EAP2, and MU. The different order of averaging to compute the group

domain score for the MLEI and MLE2 methods (i.e., computing 9, for examinees via MLE
estimation and averaging P(O,g) over examinees and items, versus averaging 9, over examinees

to obtain @, and averaging P(8,) over items) yielded very different results.

The quartiles of the ABSDIF summarized across same size schools and forms (N=300 at
each school size) are given in Table 2. The median value observed is labeled Q2; the 75th and
25th percentiles are labeled Q3 and QI, respectively. Q3 and Q1 may be considered to be rough
error bands for the absolute difference observed in the typical (median) school. With a few
exceptions, the mean values in Figures 1-3 were higher than the median values in Table 2,
suggesting that large absolute differences in some schools pulled the average above the absolute
difference observed in the typical school. The quartiles show that the EM method performed
comparatively well for most school sizes and items taken, particularly relative to the accuracy of

the OBS method.

See Table 2 at end of report.
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The domain score estimates were also evaluated across schools in terms of the proportion
of times the absolute difference between the actual and estimated domain score was greater then
or equal to .05 (summarized in Table 3). The proportions for OBS were quite large for all school
sizes and items taken. The EM method consistently yielded the lowest proportions of the IRT-
based methods (except for 50 examinees per school under 20 items taken). The other IRT-based
methods showed much poorer performance than the EM method for 25 and 50 examinees per
school at 5 and 10 items taken. With school sizes of 100 and items sizes of 10 and 20, the IRT-
based methods (except MLE2) approached the accuracy of the EM method in terms of
proportions. The robustness of the EM method to the underlying true distribution of school

ability is examined in a later section.

See Table 3 at end of report.

Consistency. Figures 4-6 show the standard deviation of the estimated domain scores on
the three forms taken, averaged over same size schools for 5, 10, and 20 items taken, respectively
(N=100 at each school size). The plots demonstrate that on the average, OBS provided the most
inconsistent estimate of all methods across forms. Clearly, if the forms taken differ in difficulty,
schools will receive dissimilar domain score estimates across forms when the observed APC for
the form taken is used as a domain score estimate. MLEZ2 also was highly inconsistent across
forms. For 5 and 10 items taken, EAP1 and EAP2 provided the most consistent domain score
estimates across forms, followed by the EM method. The greater consistency of the EAP
methods may have been due to the inward shrinkage of the examinee ability estimates (examinees

with scores at either extreme are pulled toward the group). Such inward shrinkage is typical of
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Bayesian methods. As the number of items taken increased, the consistency of the EM estimates

approached that of the EAP1 and EAP2 estimates.

See Figures 4-6 at end of report.

Stage Two
Data Generation

Stage Two of the simulation was performed to create item responses like those obtained
by randomly equivalent groups on three actual test forms. As in Stage One, data were generated
for three different content areas of varying length (5, 9, and 14 items; the lengths observed on the
actual forms), for nine total forms (three forms taken and six domain forms). The domain sizes
were fixed at six times the number of items taken (30, 54, and 84 items, respectively). Three
school sizes were used (25, 50, and 100 examinees per school) and 100 schools were simulated at
each size. Target parameters were obtained by calibrating the items from three content areas for
the three actual test forms using BILOG (Mislevy & Bock, 1990). The target parameters for each
form were used to generate item responses to a form taken, creating three separate forms taken.
Item responses generated from these parameters yielded form difficulties that were very similar to
the form difficulties observed in the real data.

For the six forms in the domain, parameters were generated to be like the target
parameters. The a parameters for the domain items were generated from a lognormal distribution
with mean and variance equal to that observed in the real parameters over the three actual forms
(mean 1.22 and variance .10 for 5 items taken, mean 1.05 and variance .05 for 9 items taken,
mean .94 and variance .07 for 14 items taken). The b parameters for the domain items were

generated from a normal distribution with mean and variance equal to that observed in the real
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parameters over the three actual forms (mean .76 and variance .29 for S items taken, mean .72
and variance .41 for 9 items taken, mean -.05 and variance .43 for 14 items taken). The ¢
parameters for the domain items were generated from a beta distribution with mean and variance
equal to that observed in the real parameters over the three actual forms (o=5.25 and 3=25.01 for
5 items taken, o=10.03 and B=68.52 for 9 items taken, a=11.74 and 3=45.13 for 14 items taken).
Evaluation of the Domain Score Estimates

Accuracy. Figures 7-9 summarize the ABSDIF for the conditions where there were 5, 9,
and 14 items taken, respectively (averaged over schools and forms taken). As observed in Stage
One, MLE2 performed very poorly, while EM yielded the most accurate domain score estimates
over all three item sizes. The greatest advantage for the EM method over the other IRT-based
methods appeared to be in the 5-item case. OBS performed very well for 14 items taken because
the forms were very similar in terms of difficulty, and the domain difficulty was simulated to be
very similar to the form difficulties. OBS performed less well for the S and 9 item content areas
because form difficulty and domain difficulty differences were much larger than in the 14-item
case. The MLEI estimates were more accurate in Stage Two than in Stage One, showing very
similar accuracy to the EM estimates for 9 and 14 items taken. There may have been fewer
unusual response patterns receiving arbitrary ability estimates in Stage Two than in Stage One, so

that the MLE1 method may have performed better.

See Figures 7-9 at end of report.

The quartiles of the ABSDIF summarized across same size schools and forms are given
in Table 4, while the proportion of times the ABSDIF was greater or equal to .05 over the three

forms taken is summarized in Table 5. Tables 4 and 5 show the best overall performance for the
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EM method, although the method showed slightly less accuracy in Stage Two than in Stage One.
MLE| showed a fairly similar performance across Stage One and Two; EAPI, EAP2, MLE2, and
MU all showed less accuracy tn Stage Two than in Stage One. In Stage Two, OBS performed
very poorly for 5 and 9 items taken, but similarly to most of the IRT-based methods for 14 items

taken. Again, this was due to the similar difficulties of the three forms taken and the domain.

See Tables 4 and 5 at end of report.

Consistency. Figures 10-12 show the standard deviation of the three domain score
estimates within schools, averaged over same size schools for 5, 9, and 14 items taken,
respectively. As observed in Stage One of the simulation, the EAP1 and EAP2 estimates were
the most consistent across forms taken, for all item and school sizes. The EM and MLEI
methods showed similar consistency across forms for all item and school sizes. Even though the
accuracy of OBS was very similar to the accuracy of the EM, EAP2, and MLEI methods for 14
items taken, the IRT-based methods showed greater consistency in thei‘r domain score estimates
across forms taken at this item size. Even where the difficulty of each form taken was very
similar to the domain difficulty, the IRT-based methods appeared to provide slightly more

consistent domain score estimates.

See Figures 10-12 at end of report.
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Additional Analyses
The Effect of Calibrating Items on Form Taken

In the computation of domain scores, the item parameters for both domain items and
items on the single forms taken were assumed known. In real applications, item parameters will
have to be estimated for the test forms. If calibrating test items adds error to the domain score
procedures, the accuracy of the IRT-based estimates may be affected. To address potential loss
due to parameter estimation, we re-ran the S-item condition from Stage One using estimated
parameters for the form taken, rather than the "true" generated parameters. The parameters were
estimated from the generated item responses using BILOG (Mislevy & Bock, 1990). The
accuracy and consistency results (for three forms taken and 100 schools at each size of 25, 50,
and 100 examinees) of the IRT-based methods at each school size were virtually the same,
regardless of whether the estimated or true parameters were used to estimate school and
examinee ability. In this case, the calibration sample size was quite large over all school sizes
(N=17,500) so that the true parameters were probably fairly closely replicated in the calibration.
With small sample sizes, the calibration may be less accurate and the accuracy of the domain
score estimates may be affected.

The calibration was also probably aided by the fact that the item response data fit the
calibration model. Provided the IRT models used fit the data (and calibration sample sizes are
adequate), item calibration should pose little problem to the accuracy of the domain score
estimates. If the IRT models are not appropriate, calibration may lead to some loss of accuracy in
the domain score estimates. Thus, it is important that the performance of these procedures be
verified with an application to real test data under calibration conditions that would exist in

practice.
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The Effect of Domain Size

Because the domain size always increased as the number of items taken increased, it was
unclear whether improvements in accuracy and consistency of the IRT-based domain score
estimates were due to the increase in the number of items taken, or the increase in the domain
size. We examined this issue in two ways: (1) by comparing results for domain sizes of 60 and
120 items for 20 items taken, and (2) by comparing results for domain sizes of 30 and 60 items
for 5 items taken.

First, we halved the domain size for the 20-item condition in Stage One and compared the
accuracy and consistency results (for three forms taken, and 100 schools at each size of 25, 50,
and 100 examinees) to those obtained for the domain size of 120 items. For the 60-item domain
size, the first 60 items of the 120-item domain were treated as the domain, so that item responses
were the same for items 1-60 in the 60-item and 120-item domains. For both the 60-item and
120-item domain sizes, the item responses to the forms taken remained the same. Second, we
created a domain size of 60 items for the 5-item condition, and halved the domain size to
compare accuracy and consistency of the estimation methods under domain sizes of 30 and 60
items. For the 30-item domain size, the first 30 items of the 60-item domain were treated as the
domain, so that item responses were the same for items 1-30 in the 30-item and 60-item domains.
The item responses to the forms taken remained the same for each domain size.

The accuracy and consistency results at each school size were very similar across the two
domain sizes, for both 5 and 20 items taken. This indicated that the accuracy and consistency of
the IRT-based domain score estimates were being affected by the number of items taken rather

than the size of the domain.
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The Robustness of the EM Method

Because the EM algorithm utilized a normal distribution as the starting value for each
school ability estimate (see Appendix), we considered the possibility that the EM method may
have performed well in the simulation because the underlying true distribution of school ability
was itself normal. To assess the robustness of the EM method (and the other IRT-based
methods) to the underlying distribution of school ability, we generated examinee s within
schools from a uniform distribution and assessed the performance of the methods. (The EM
method still employed a normal distribution as the starting value for school ability.) As in Stage

One and Two, school ability (eg) was drawn from an N(0,.4) distribution. Within each school,
examinee ability was sampled from a uniform distribution with mean 6, and variance 3.0. Within

school variability was five times greater in the uniform distribution case than for the normal
distribution case (between-school variability remained constant). Domain score estimates were
computed for the same conditions as Stage One (5, 10, 20 items taken, and 100 schools at each
size of 25, 50, and 100 examinees), and evaluated with respect to the accuracy and consistency of
results.

The results for the EM method were consistent with results noted in Stage One. Namely,
the EM method did not show decreased accuracy or consistency from what it showed in Stage
One. The results for the other IRT-based methods also appeared consistent with results in Stage
One. As found with an underlying normal distribution, the IRT-based methods, except MLE2,
provided more accurate domain score estimates than OBS. Of the IRT-based methods, the EM
method showed the greatest accuracy, for all item sizes. The performance of the EM method
under a uniform distribution provides some evidence for the robustness of the procedure against

nonnormal distributions.
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Discussion

Computing IRT estimates of ability from as few as five items is clearly a questionable
practice; ability estimation may be quite poor when based on such a small number of items. With
the added limitation of small group sizes, it may be unwise to consider reporting group-level
domain scores estimated from performance on a form taken when certain conditions hold.
Evaluating the performance of the IRT-based domain score estimates from a position of absolute
accuracy suggests that there are some accuracy problems for some combinations of items taken
and group size, although it appears less so for the EM method than the other IRT-based methods.
Evaluating the performance of the IRT-based domain score estimates from a position of relative
accuracy (relative to the observed performance on the form taken) suggests that it would be
preferable to report an IRT-based domain score estimate rather than the observed performance on
the form taken, even for very small numbers of items taken and small group sizes.

From a position of absolute accuracy, it appears that the EM method might be applicable
with as few as 5-10 items taken and domain sizes of 30 items, if there are an adequate number of
examinees per group (i.e., at least 50). As the number of items taken increases, group sizes of 25
examinees might be sufficient for applications of the EM method to estimate the group average
domain score, and the other IRT-based methods might be appropriate also with larger group
sizes. However, if the entire distribution of domain scores is to be summarized instead of the
average domain score, the EM method may be preferable because it is the only distribution-based
method. For example, in an application of the EAP1 and EM domain score estimation methods
to group sizes of 2,100 (ACT, 1997), domain scores corresponding to examinees at the 90™ and
10" percentiles showed some inward shrinkage for the EAP1 method, but not the EM method.

For the EAP1 method, examinees with scores at either extreme were pulled toward the group, so
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that the estimated domain score was higher than the actual domain score at the 10" percentile and
lower than the actual domain score at the 90" percentile,

Of the IRT-based methods, the EM method showed the greatest promise, particularly with
S items taken and small group sizes, although the EAP1, EAP2, MLEI, and MU methods all
performed comparatively well at times. Under conditions of few items taken and small group
sizes, utilizing an entire distribution of ability in the domain score computation appears to yield
more accurate domain score estimates than those based on a point estimate of ability. As the
number of items taken increases, the accuracy of the point estimates of ability likely improves
and the accuracy of the domain score estimates based on a point estimate approaches that of the
domain score estimates based on the entire group ability distribution.

The poor performance of MLE?2 relative to MLE] suggests that the arbitrary assignment
of ability levels to individuals with improbable response patterns was an ineffective method of
dealing with the maximum likelihood estimation problem, when the maximum likelihood
estimates were to be aggregated over examinees. Alternative procedures, such as a biweight
estimator might produce more robust estimates of latent ability than maximum likelihood
estimation (Mislevy & Bock, 1982). Averaging examinee EAP(Q)s to estimate group ability was
much more effective than averaging the MLE(0)s. Although averaging the examinee EAP(9)s
provided a very simplistic estimate of group ability, the EAP2 method appeared to perform as
well as the MU method, which gave a more complicated point estimate of group ability. In
addition, estimating ability at the examinee level and averaging probabilities over examinees and
items appeared equally as effective for some conditions as using a point estimate of group ability

and averaging probabilitics over items.
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From a position of relative accuracy, all of the IRT-based estimates except MLE2 were
more consistent and accurate than OBS when the forms were dissimilar in terms of difficulty.
Although the estimation of ability under the IRT methods may have been quite poor in some
cases, the summary of performance over domain items and examinees within a group aided in
improving the accuracy of the IRT-based domain séore estimates, particularly as group size
increased. OBS was much more influenced by differences in form difficulty than were the IRT-
based domain score estimates. Although the OBS method gave fairly consistent and accurate
domain score estimates across forms taken when differences in form and domain difficulty were
small, it performed very poorly when form difficulty differences existed. OBS would also
perform poorly if there were no differences in difficulty among different forms taken, but the
difficulty of the forms taken differed from the difficulty of the domain. As a result, if groups use
the observed APC on the form taken as a gauge, they may draw different (and incorrect)
conclusions about domain performance depending upon which form the group was administered.

Our examination of real data showed that test form differences did exist at the content
area level of the magnitude we simulated. When test forms are not equated or balanced at this
fine of a level, form differences of this magnitude are probably likely for some content areas, and
the difficulty of individual forms may differ from the difficulty of the domain. In testing
programs where the differences in form difficulty are small at the level of reporting, it may be
suitable to report the observed APC on the form taken as representative of the domain APC. For
form differences of the magnitude observed in this study, one of the IRT-based methods would
probably provide a more suitable domain score estimate.

Two separate applications of the methodology presented in this paper provide additional

support for the findings of this study. First, the EAP1 and EM methods were applied in an
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independent simulation modeling conditions specific to the NAEP Geography and Science tests
(ACT, 1997). The study used operational NAEP parameters to generate data, as opposed to
simulating parameters, and the data consisted of both multiple choice and open-ended items.
Second, the EAP1, MLEI, EAP2, MLE2, MU, EM, and OBS method‘s were a.pplied to equating
data consisting of randomly equivalent groups taking eight test forms for a large-scale operationat
testing program. (Note that this is a different testing program than the program we based the
Stage One and Stage Two simulations on.) This application utilized item parameters calibrated
on the equating group, and thus provided some check of whether the IRT model is appropriate for
the real data. If the IRT model were inappropriate, we would expect the IRT-based methods to
perform more poorly when applied to real data. Results from both of the applications were
similar to results noted in this study (i.e., in terms of relative and/or absolute accuracy of the IRT-
based methods and consistency of results across forms taken) and provide additional, independent
confirmation of our conclusions about the feasibility of estimating group domain score
performance and reporting school-level domain scores for our operational testing program.
Because of the nature of each study, however, we are still cautious about generalizing
findings to our operational testing program. The simulation studies are somewhat artificial in
that the data fit the IRT model used (although the application with equating data suggested that
the IRT model was probably appropriate). In the application to equating data, no individual took
the entire domain, and groups within test centers were not necessarily randomly equivalent, so
that comparisons of domain score estimates based on one group’s form taken to the actual
performance of several different groups on the domain items may have been somewhat
inaccurate. Further, the item calibration procedure for both the equating data and the simulation

studies differed from how calibration would have to be performed operationally to place domain
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items from different forms on the same scale. Operational item calibration may add some error to
the procedure in real applications.

While the results of all three studies suggest that the EM method may be a suitable
method for estimating average domain scores under less than optimal conditions of small group
sizes and small numbers of items taken, we intend to verify its performance with an application
in which examinees are administered entire domains. ACT is in the process of conducting a
study in which examinees within schools take a “domain” of items within a content area, where
the domains were created from six operational test forms. Thus, we will be able to compare each
school’s estimated domain scores to the domain score actually observed. This information, along
with the results of the studies already performed, should enable us to more fully evaluate the

group-level domain score estimation procedures.
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Appendix
Estimating Mean Group Ability Using a Latent-Variable Regression Model (MU Method)

Group means of B were estimated using the cell-means regression model

8=XpB+¢, (7

where X was an (N x G) design matrix indicating group (with N total observations over all G
groups), f§ was a (G x 1) vector of regression weights (mean 9 for each group), and 8 (N x 1) was
missing for all individuals. A vector of group means was obtained using least squares

estimation:

A= B=xx)'x0. (8)

The (G x 1) vector X'@ was estimated by

X0 =NDp, 9)
where p was a (G x 1) vector of correlations between each column of X and the vector g

(subsequently labeled Q(Xg,@) to signify the column of X corresponding to group g), D was a (G

x G) diagonal matrix of the standard deviations of the columns of X, and N was a scalar
representing the total number of observations over all G groups.

Assuming that  ~ N(O,1), Q(Xg,ﬁ) was computed as (Nicewander & Lain, 1994)

P(X.8) = (10)

2
I& A +a
_zphix(XRJUf) ;
T =1 a;
where a was the item discrimination parameter from a 3PL model for item ¢ on the form taken
' p

(with T items total on the form taken). PpisXp U, was a corrected-for-guessing biserial between

each column of X and each column of U, the (N x T) matrix of item responses, computed as
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p pt.biy, m

1 ; “Cr
(e "”[ (u )ﬂ

where rr, was the observed item p-value for item ¢ on the form taken, ¢, was the item guessing

Pl X U )= (1)

parameter from a 3PL model, p .. was the point-biserial correlation between item ¢ and group
g, and ¢[ ] was the height of the ordinate of the normal distribution at the point on the abscissa
(i.e., the z-score, (I)'][ ]) that divided the distribution into the areas (z,— ¢,/ 1 —c)and I - (&, —c,
/1 —c,). Group means estimated by this method are an approximation to group means estimated
by Mislevy's (1985) EM-based solution.

Estimating Distributions of Group Ability Using an EM Algorithm (EM Method)

Maximum likelihood estimates of p(6,), group g's probability that ability = 0, forg =1,

2, ...., m quadrature points, were computed iteratively using an EM algorithm. The E-step at

iteration s consisted of computing for each g (see Woodruff & Hanson, 1996)

[ r{6,r0.u8, )"""} p,(6,)"
(w) _ t=1

{ [12(6: 70,8, )""‘} p(6: "
I=

=

' (12)

(s)

where n, ~ was the number of the Ng examinees within group g for whom ability is equal to 9,

y,, was the response of examinee i to item 7 on the form taken, Pl(eq) was the probability of

answering item ¢ correctly computed from a 3PL model, and Q:(Gq) =1- Pl(eq). Normalized

densities from a normal distribution were used as initial starting values for the p, (9 )(0)

{s)

The M-step at iteration s consisted of using the n, ™ computed in the E-step to compute



(s)
sl ngq

p.(6,) (13)

&

(s+1)

The values of P, ((-) )"’ computed in the M-step at iteration s were used in the E-step at iteration

s+1.

The E-steps and M-steps were repeated until the relative difference in the log likelihood
from iteration s to iteration s+] was < .0001. At each iteration, the log likelihood was computed
as

In(L " = ZIDE{HP:((M )y Q.(8, )] p(6, ). (14)

i=/ g=17

while the relative difference was computed as

lin(z f"-1n(L J"|
| L) | (13)

Several different levels of convergence were considered, ranging from .0l to .00000001.
Because the results across schools did not vary much with different levels, .0001 was chosen to
enable fairly quick convergence within schools. Reported results are based on 41 equally spaced

quadrature points ranging from -4 to +4 (consecutive quadrature points differed by .20).






TABLE 1

Methods for Estimating Group Domain Score.

Ability Estimation

Method (Based on Form Taken) Computation of Group Domain Score
EAPI] Compute 8, for examinee {
in group g via EAP estimation LLZEP (9
i\ Ui
MLE! Compute 6, for examinee i Ne T =t
in group g via MLE estimation
EAP2 Compute 0, for group g as
average of examince EAP(Q)s
MLE2 Compute 8, for group g as 72 Pj( 0. )
average of examinee MLE(@)s
MU Compute eg for group g using
latent-variable regression model
) 1 J m
EM /A\pprommate f(6) for group g _Zz P, ( 0, )P (eq )
using EM algorithm {f (8)=p (8 )] J S
113y
— N Y
OBS N, T ‘Z;g; !

J = number of items in domain
T = number of items on form taken
Ng = Number of examinees in group g

m = number of quadrature points

Pj(e) = probability of answering domain item j correctly at ability 6
px(ea) = probability far group g that ability = eq at quadrature point ¢
y, = response of examinee { to item ¢ on the form taken



TABLE 2

Quartiles for the Absolute Difference in School Estimated and Observed Domain Scores,
Summarized over Same Size Schools and Forms Taken (N=300), Stage One.

Method

Items School
Taken  Size Quartile EAPI MLEI EAP2 MLE2 MU EM OBS

5 25 Q3 0582 0598 0532 1695 0606 .0380  .0973
Q2 0309 0332 0284 .1066 0328 0200  .0680

Ql 0140 0171 0125 0564 0134 0122 0440

50 Q3 0533 0522 0483 .1668 0469 .0300 .0904

Q2 0291 0307 0258 1158 0270 0177 0657

Ql 0132 0144 0120 .0489 0116 0090  .0407

100 Q3 0454 0450 0393 1596 0350 .0205 0837

Q2 0259 0286 .0245 0886 0196 0121 0640

Ql 0130 0126 0109 0416 0090 .0058 0445

10 25 Q3 0364 0335 0332 0750 0467 0265 1170
Q2 0223 0216 0210 0503 0259 0155 0613

Ql 0113 0099 0098 0240 0113 .0083 0260

50 Q3 0335 0280 0307 0712 0311 0186 1184

Q2 0207 0170 0180 0477 0190 0111 0584

Ql 0104 0073 0101 0212 0086 .0054  .0234

100 Q3 .0300 0245 0271 0746 0256 0136  .1160

Q2 0194 0148 0163 0446 0142 .0079  .0593

Ql .0097 .0083 0082 0217 0070 .0038  .0223

20 25 Q3 0294 0240 0222 0574 0425 0215 .1465
Q2 0181 0149 0132 0351 0250 .0128 1137

Q1 .0080 0067 0062 0161 0114  .0063  .0374

50 Q3 0238 0197 0177 0520 0302 0145 1484

Q2 0140 0114 0103 0316 0187 0094  .1166

Ql .0070 .0062 0050 0168 0091 .0045 0293

100 Q3 0242 .0180 0158 0556 0307 0125 .1446

Q2 0155 0104 0092 .0300 0182 .0064  .1193

Ql 0082 0054 0041 0142 0090 .0027 0307

Q3 is the 75th Percentile, Q2 is the Median, and Q1 is the 25th Percentile for the Absolute
Difference.



TABLE 3

Proportion of Times ABSDIF > .05 over Same Size Schools and Forms Taken (N=300),
Stage One.

Method

Items  School
Taken Size EAPI MLEI EAP2 MLE2 MU EM OBS

5 25 .3000 3567 2733 7800 3100  .1533  .6933
50 2667 2733 2333 7467 2333 0700  .6667
100 2100 1800 1700 7067 (1033 .0067  .6900
10 25 1033 0933 0767 5033 2167 .0400 .6033
50 0867 0200 0633 4867 0900 .0033  .5567
100 0533 .0033 0333 4567  .0300 .0000 .5667
20 25 0400 0300 0167 3100 1600 0100 7000
50 0167 0000 .0033 2833 .0667 .0033 .6767

100 .0300 .0000 0200 2833 0300 0000 .6667




TABLE 4

Quartiles for the Absolute Difference in School Estimated and Observed Domain Scores,
Summarized over Same Size Schools and Forms Taken (N=300), Stage Two.

Method

Items School
Taken Size Quartile  EAPI MLEI EAP2 MLE2 MU EM OBS

5 25 Q3 0693 0537 0858 1921 0911 0443 1053
Q2 0413 0320 0551 1411 0579 .0262 0674

Ql 0183 0156 0339 0862 0293 0123 0293

50 Q3 0709 0525 0924 1873 0779 0358 1193

Q2 0424 0316 0562 1283 0458 0189  .0710

Ql 0210 0182 0315 0805 0230 .0075 0393

100 Q3 0557 0425 0799 1879 0712 0252 1165

Q2 0346 0273 0577 .1400 0524 0150  .0653

Ql 0167 0135 0276 1000 0313  .0072  .0385

9 25 Q3 0556 0376 0627 1342 0671 .0363 0719
Q2 0326 0222 0377 0952 0437 0220  .0415

Ql 0141 0115 0183 0559 0208 .0105 0215

50 Q3 0454 0252 0558 1363 0605 .0214  .0608

Q2 0276 0139 .0395 0997 0383 0131 0437

Ql 0132 0062 0206 0621 0200 .0057 0263

100 Q3 0363 0190 0526 1396 0582 .0168 0622

Q2 0236 0117 0384 1076 0398 .0099  .0468

Ql 0113 0062 0186 0748 0238 .0046  .0301

14 25 Q3 0326 0280 0285 .0882 0497 0272 .0305
Q2 0203 0165 0169 0604 0301 .0169 0186

Ql 0104 0075 0078 0318 0160 .0074 0105

50 Q3 0305 0189 0209 0825 0448 0191 0213

Q2 0167 0112 0112 0571 0277 0102 0125

Ql 0076 .0052 0053 0273 0147 .0044  .0051

100 Q3 0287 0146 0163 0791 0401 0125 0162

Q2 0188 0081 0091 0564 0265 0076 0109

Ql 0107 .0035 0039 0301 0139 0039 .0052

Q3 is the 75th Percentile, Q2 is the Median, and Q1 is the 25th Percentile for the Absolute
Difference.



TABLE 5

Proportion of Times ABSDIF > .05 over Same Size Schools and Forms Taken (N=300),
Stage Two.

Method

Items School
Taken Size EAPI MLEI EAP2 MLE2 MU EM OBS

5 25 4267 2700 5567 8967 5733 2100 .6233
50 4433 2767 .5500 8767 4633 1067 .6667
100 3133 1700 .5700 D000 5400 0200 .6267
9 25 2967 .1000 3667 7767 4200 0733 4233
50 .2000 .0200 3333 8000 3533 0133 4133
100 1367 .0033 2833 8467 3567 .0000 .4500
14 25 0700 0333 0367 5833 2467 0367 .0467
50 0167 0000 .0000 5567 1933 0000 .0067

100 0733 0000 0133 5567 1100 .0000  .0000




FIGURE 1. Absolute Difference in School Estimated and Actual Domain Score for 5 Items Taken,
Averaged over Same Size Schools and Forms Taken (N=300), Stage One.
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FIGURE 2. Absolute Difference in School Estimated and Actual Domain Score for 10 Items Taken,
Averaged over Same Size Schools and Forms Taken (N=300), Stage One.
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FIGURE 3. Absolute Difference in School Estimated and Actual Domain Score for 20 Items Taken,
Averaged over Same Size Schools and Forms Taken (N=300), Stage One.
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FIGURE 4 . Standard Deviation of the Estimated Domain Scores over Forms Taken for S Items Taken,
Averaged over Schools of the Same Size (N=100), Stage One.
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FIGURE 5 . Standard Deviation of the Estimated Domain Scores over Forms Taken for 10 Items Taken,
Averaged over Schools of the Same Size (N=100), Stage One.

0.14 +

0.12 4

0.1 1 T
OBS
=
o
=
=
5 0.08 +
a
=)
5
=]
=]
2]
7
% 0.06 +
>,
>
< -
__________________ MLE2
0.04 + ~
0.02 +
0 } | |

25 50 100
Number of Students per School

----- EAP1 — — ‘MLEl ------EAP2 — =~ MLE2 —-—- MU EM OBS




FIGURE 6. Standard Deviation of the Estimated Domain Scores over Forms Taken for 2(} Items Taken,
Averaged over Schools of the Same Size (N=100), Stage One.
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FIGURE 7. Absolute Difference in School Estimated and Actual Domain Score for 5 Items Taken,
Averaged over Same Size Schools and Forms Taken (N=300), Stage Two.
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FIGURE 8. Absolute Difterence in School Estimated and Actual Domain Score for 9 Items Taken.

Averaged over Same Size Schools and Forms Taken (N=300), Stage Two.
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FIGURE 9. Absolute Difference in School Estimated and Actual Domain Score for 14 Items Taken,
Averaged over Same Size Schools and Forms Taken (N=300), Stage Two.
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FIGURE ]0. Standard Deviation of the Estimated Domain Scores over Forms Taken for 5 Items Taken,
Averaged over Schools of the Same Size (N=100), Stage Two.
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FIGURE 11 . Standard Deviation of the Estimated Domain Scores over Forms Taken for 9 Items Taken.
Averaged over Schools of the Same Size (N=100)). Stage Two.
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FIGURE 12 . Standard Deviation of the Estimated Domain Scores over Forms Taken for 14 Items
Taken. Averaged over Schools of the Same Size (N=100), Stage Two.
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