
A C T  R e se a rc li R ep o rt S e ries  9 7 - 5

Unidimensional Approximations 
for a Computerized Test When 
the Item Pool and Latent Space 
are Multidimensional

Judith A. Spray 

Abdel-fattah A. Abdel-fattah 

Chi-Yu Huang 

C. Allen Lau

MZT July 1997



For additional copies write;
ACT Research Report Series 
PO Box 168
Iowa City, Iowa 52243-0168

© 1997 by ACT, Inc. All rights reserved.



Unidimensional Approximations for a Computerized 
Classification Test When the Item Pool and 

Latent Space Are Multidimensional

Judith A. Spray 
Abdel-fattah A. Abdel-fattah 

Chi-Yu Huang 
ACT

C. Allen Lau 
The Psychological Corporation





ABSTRACT

The primary concern or focus of a certification or licensure test is to obtain valid 

criterion-referenced information regarding a candidate's competency to practice. When 

the test is administered by computer, a valid pass/fail decision can be made with fewer 

items than an equivalent paper/pencil test by targeting items at the passing score and 

using a likelihood ratio approach such as the one utilized in the sequential probability 

ratio test or SPRT. When administered on a computer, the SPRT is frequently referred 

to as a computerized classification test or CCT (to distinguish it from the usual 

computerized adaptive test or CAT). If the CCT is IRT-based, an assumption of 

unidimensionality is usually required, and the concern is when the item pool is not 

essentially unidimensional. This study investigated the effects that a multidimensional 

item pool and latent ability space have on the accuracy of the decisions made using 

CCT The results show that the procedure may be fairly robust to such assumption 

violations.





U n id im e n s io n a l  A p p r o x im a t io n s  f o r  a  
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The primary concern or focus of a certification or licensure test is to obtain valid 

criterion-referenced information regarding a candidate's competency to practice. When 

the test is administered by computer, a valid pass/fail decision can be made with fewer 

items than an equivalent paper/pencil test by targeting items at the passing score and 

using a likelihood ratio approach such as the one utilized in the sequential probability 

ratio test or SPRT. When administered on a computer, the SPRT is frequently referred 

to as a computerized classification test or CCT (to distinguish it from the usual 

computerized adaptive test or CAT) and a high degree of accuracy of the classification 

decision can be obtained (Spray & Reckase, 1996). The concern is when the item pool 

is not essentially unidimensional, because many of the professional certification and 

licensure examinations are constructed from complex blueprints with content domains, 

cognitive levels, and practice levels as typical blueprint dimensions. Even when the 

blueprint consists only of different content categories, they are frequently quite diverse. 

For example, it is common to see a professional practice blueprint contain very specific 

categories covering the professional subject matter as well as more general areas such 

as Professional Issues or Administration.

When we first began to study the possible effects of a multidimensional item pool 

on the classification accuracy of CCT using SPRT procedures, we anticipated that we 

would be able to produce a multidimensional SPRT procedure analogous to the 

unidimensional one, so that, if it was determined that an item pool was, indeed
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multidimensional, we could implement the modified procedure to guarantee minimum 

classification errors. Having access to multidimensional IRT estimation procedures 

ensured that we could calibrate a multidimensional item pool and then simply 

implement the modified SPRT CCT algorithms designed to handle the 

multidimensionality of the item pool.

The Unidimensional Case

In the unidimensional case, assume that the item pool fits say, the 3-PL IRT model, 

P(Y=1 |0,fl,f7,c). A passing score is established by using some subset of the item pool 

called a standard reference set. The standard reference set of m items within the item pool 

mirrors the examination blueprint in terms of major category definitions, proportions of 

items included within each domain, item difficulty, and other pertinent characteristics. 

A passing score or passing rate, p, is obtained on the standard reference set by some 

established method (e.g., the Angoff procedure) and an equivalent latent passing score 

is obtained in the usual way by solving for 0 in the relationship,

1 m
p = —E Pi(Yi=1le/«AcP' wm ,=1

The value of 0 that satisfies this relationship, 0p, divides the unidimensional latent 

space into two mutually exclusive regions: candidates with latent ability, 0jr who truly 

are minimally competent (0; > 0p) versus those who are truly not minimally competent 

(0j < 0p). See Figure 1.
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Figure 1: Unidimensional passing score.
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The SPRT CCT procedure selects items from the item pool for administration based 

or ranked on some statistical or psychometric criterion such as maximum item 

information at 0p, after considering the usual selection adjustments involving content 

constraints, item exposure control, and so on. After each item has been administered to 

a candidate, the response is used to update a simple likelihood ratio. As soon as the 

weight of response evidence (i.e., the response string, yu y2, ..., yn) clearly supports one 

decision over the other, testing ceases after the nth item has been administered and the 

candidate is classified accordingly.

The likelihood ratio, L(yu ya,~. le o M  is computed at two distinct points, 0() and 0„ 

along the (unidimensional) latent ability space with 0O < 0p < 0„ or

True Fait XL True Pass

e

(2 )



where 7t; = P ^ l-P ,)1̂ , i = 1,2,.... The likelihood ratio is then compared to boundaries A 

and B that are functions of the classification error rates, a  (false positive) and p (false 

negative), to be tolerated within the test (Spray & Reckase, 1996; Spray & Reckase, 1987; 

Wald, 1947). Wald (1947) showed that A > p/(l-a) and B < (l-[3)/a.

If L(y„ y2, ... |Oo,0i) > A, the examinee is classified as passing.

If L(y„ y2, ...100,0!) < B, the examinee is classified as not passing.

If B < L(yt, y2, ... |0O,0,) < A, no decision is made and another item response must be 

observed if a decision is to be made within the specified false positive and false negative 

error rates.

The M ultidimensional Case

If the items within the pool are fit by a multidimensional model, say the linear or 

compensatory 3-PL MIRT model with q distinct dimensions and the usual item 

parameters (a, d and c) and the passing rate is established as before, then

-  m

P = - E P , ( Y ,= 1 | 0 A .....V , 4 , C/). (3)
m ,=i

If we define the function, F(0„02,...,0tl) = 1/m SPi(Yi=l |0|/02/...0t|,a/i,c), 

then any candidate with latent ability vector (0,, 02, ..., 0q) that satisfies F > p, is truly 

minimally competent2. Values of (0lr 02, ..., 0q) for which F = p, abbreviated as V , 

define the curve in the latent space that divides the space into two mutually exclusive 

regions. See Figure 2 where q = 2, for example.

4
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Figure 2: Two-dimensional passing function, Vp.

Problems in Extending the SPRT Procedure for a Multidimensional Item Pool

In the unidimensional case, as each item is administered to a candidate, the values 

of 0O and and the item parameters can be used in the 3-PL function to yield unique 

values that are used to update the likelihood ratio. However, if the SPRT procedure 

were to be extended to the multidimensional situation, then we would need to define 

the likelihood ratio as before along two distinct curves, V0 and V„ approximately 

parallel to V . The values of that satisfy V0 and V, do not necessarily produce

constant probability values for each item. Thus, the likelihood ratio cannot be updated 

by two unique values, 7t0 and it,, following the administration of each item. In addition 

there is no single point at which items can be ranked because multidimensional 

information computed along Vp varies. Although some approximations are possible, 

there did not appear to be a straightforward, exact extension of unidimensional SPRT 

to the multidimensional case.
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Unidimensional Approximations to the Multidimensional Case

When an exact SPRT extension did not appear to be feasible, we began to investigate 

how estimated unidimensional item calibrations in an estimated unidimensional latent 

space would perform on multidimensional items in a multidimensional latent space. It 

was obvious that the degree of unidimensional robustness would depend almost entirely 

on two events: (1) the degree to which a unidimensional reference composite, 0‘, as 

estimated from IRT calibration software such as BJLOG, would align with V p in the true, 

multidimensional latent space in such a way as to minimize classification errors and (2) 

whether examinees with true, multidimensional ability vectors, Vi and thus with some 

true classification status relative to V , would be sorted correctly along 0" relative to the 

(unidimensionally approximated) latent passing score. See Figure 3.

Figure 3: Passing score contours and the unidimensional reference composite.

Stated another way, the accuracy of the unidimensional approximation would 

depend upon (1) the degree to which 0’ was perpendicular to V and (2) how close the



jth candidate's unidimensional latent approximation, 0j’ came to sorting that candidate 

with true ability vector, (0,j, 02j, ..., 0qj), correctly.

There are several factors which may impact on these two events. These include the 

degree or strength of the multidimensionality of an item and the ability of the examinee 

(and, thus, the interaction of the two) (Reckase, 1990), the degree of curvalinearity of Vp 

projected onto the latent space, and the discrimination of the item to sort candidates into 

the correct category. Based on these three factors, we set up conditions for SPRT CCT 

simulations. For these simulations we examined (1) the degree of multidimensionality 

of the item pool relative to the multidimensional latent space of the examinees; and (2) 

different values of the passing proportion, p, The primary question to be answered by 

the simulations was, Are there certain conditions under which the unidimensional 

approximation to the multidimensional SPRT will still yield tolerable CCT errors?

Method

An item pool was created from the multidimensional calibration of six forms of the 

ACT Assessment Mathematics Test3 using the computer program, NOHAKM4. There 

are 60 items on each form of the ACT Assessment Mathematics Test. Thus, the item 

pool was composed of six parallel test forms and totalled 360 items. Previous 

multidimensional analyses of this mathematics achievement test had identified two, 

distinct dimensions for each form of the test, and all items in the pool had been fit to a 

linear, multidimensional IRT model or MIRT model of the form,

P(Y = 1 |0j,02, a ^ a ^ c )  = c + (l-c )  ty[d+ a '0] ,  (4)

7



where P(Y=1 [0,f i 2,aua2,d,c) is the probability in a two-dimensional space of a correct 

response, fl, and a2 are item discrimination parameters, d is a scaler parameter related to 

item difficulty, c is a lower asymptote and (f) is the normal distribution function. The 

resulting item parameter estimates were used as known (true) parameters for the 

remainder of the study. The means of these estimates were as follows:

a, = .9320

a2 = .6383

d = -.7946

c = .1786

In order to simulate different levels or degrees of multidimensionality, the value of 

a2 was premultiplied by a constant. For dimensionality condition A, a2 = (1.5)*a2; for 

dimensionality condition B, ^  = (1.0)*a2 (i.e., the original set of item parameters); for 

dimensionality condition C, = CS)»a2. Thus, the A  set was theoretically more 

multidimensional than B, and B was more multidimensional than C. In addition to the 

strength of the second dimension of an item, the correlation (p) between 0, and 02 was 

considered (Reckase, 1990) and was either .00 or .50. These different sets of pool 

manipulations have been labeled A0, B0, C0, and A 5, B 5, C 5.

The effect that the passing level, p, has on classification accuracy was also of 

concern. Because the contour of the passing score function,

F(01,02,...,0<1) = 1/m XP(Y=1 |01,02,...0,qa,^,c) = p

on the two-dimensional latent space, (0,,02) is not a straight line, the amount of curvature 

and the position of the contour line relative to the unidimensional passing score would

8
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certainly affect classification accuracy. Three values of p were used in the simulations: 

.4 (the lowest passing standard), .6, and .8 (the highest passing standard). See Figure 4, 

for example, where the three contours from the original item pool (B) have been 

projected onto the two-dimensional latent space.
t

t Figure 4: Three different passing functions.

\
----------------------------------------------------------------------------------->

Responses to all 360 items in the pool were then generated for 2,000 examinees 

drawn at random for each of these seven parameter sets according to the appropriate 

MIRT parameters and bivariate density for 0,, 02. The latter was assumed to be bivariate 

normal with mean vector, 0, unit variances and covariance equal to p. Each set of 0/1 

responses (2,000 by 360) was calibrated with the unidimensional computer program, 

BILOG.

For each set of unidimensional item calibrations, the (unidimensional) pool passing 

score was obtained by the method described previously (i.e., the unidimensionally 

estimated proportion-correct true score, 1/m £  P(0‘), was set equal to p and then solved



for the passing score, 0p*, along the reference composite, 0‘). This value of the latent 

passing score was used in the SPRT CCT simulations, along with the (unidimensionally 

estimated) item parameters. For each simulation, 100,000 examinees were sampled from 

a bivariate normal population described above and were administered the SPRT CCT. 

The true classification status of each candidate was thus known because the location of 

(0,i,02i) relative to V p was known. The response to each item in the simulation was made 

using the true, (multidimensional) IRT model. However, the selection of items for 

administration, the updating of the likelihood ratio, and the evaluation of the stopping 

point of the test were all determined using the unidimensional approximations.

Because actual CCTs are usually constrained in some way (e.g., by length constraints 

or exposure or content controls), the simulated CCTs were run under several constraint 

conditions: (1) the No constraint condition where items were administered solely on 

their rank on I(0p) at 0p and the test was allowed to terminate according to the SPRT 

stopping rule; (2) the Length constraint condition where a 60-item minimum and a 120- 

item maximum were imposed on the test (i.e., no decision could be reached until at least 

60 items were administered and the test was terminated after the administration of the 

120th item)5; and (3) the Length + Exposure constraint. The latter constraint imposed 

the minimum and maximum lengths under the previous condition but included a 

simulated item exposure control in which items were selected for administration by a 

random draw from a stratum depth of 10 items. In other words, the first item 

administered to an examinee was selected from the top ten items ranked at 0p. The 

second item selected for administration was chosen from the next ten items ranked at 

0p, and so on. This latter condition was thought to emulate actual constraints usually



observed in real CCTs. The nominal error rates for all of the tests were set at a  = p -  

.05.

The outcome measure obtained from the simulations was the proportion of 

classification errors made out of 100,000 decisions per simulation. These errors were 

further divided into false positive and false negative error rates.

Results

Tables 1-3 show the total classification errors, false positive and false negative errors 

respectively for all item pools, constraint conditions and passing proportions. Longer 

tests produced more accurate tests, which was expected. The exposure control, in 

general, had more of an effect for the lowest passing proportion (i.e., the easiest test). 

Usually item exposure controls produce less accurate results because less-than-optimal 

items are administered in an effort to control the number of times each item is exposed 

or administered. This was especially true for a passing proportion of .4 for each item 

pool but was less so for the remaining passing proportions.

See Tables 1-3 at end of report.

The degree of pool dimensionality made a slight difference. Overall averages for 

total classification error for pools A, B, and C in the unconstrained condition were .056, 

.042/ and .042, respectively. However, under the Length + Exposure constraint 

condition, the overall averages by pool were .041, .039, and .039 for A, B, and C. Thus, 

pool dimensionality made less difference under more realistic testing conditions. Total 

classification error rates under the most constrained condition (+ Exposure) across all
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levels of multidimensionality and for all passing proportions averaged .039, which is 

approximately the error rates that have been observed with unidimensional pools (Spray 

& Reckase, 1987).
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Table 1
Total Classification Error

MIRT
Dimensionality Constraints

None 
Length 
+ Exposure

.4 .6 .8

Passing Proportion

.066

.063

.063

.071

.058

.047

.040

.032

.024

Bn
None 
Length 
+ Exposure

.050

.049

.062

.051

.037

.039

.024

.019

.015

None .062 .045 .019
C0 Length .061 .032 .014

+ Exposure .066 .041 .012

None .058 .059 .041
A 5 Length .046 .041 .031

+ Exposure .050 .036 .023

None. .050 .054 .036
B 5 Length .042 .039 .025

+ Exposure .059 .037 .020

None .052 .046 .028
C , Length .049 .032 .020

+ Exposure .061 .039 .015
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Table 2
False Positive Classification Error

MIRT
Dimensionality Constraints

.4 .6

Passing Proportion

None .036 .023
A0 Length .034 .020

+ Exposure .024 .016

None .035 .016
B0 Length .037 .012

+ Exposure .029 .016

None .050 .011
C0 Length .052 .011

+ Exposure .036 .019

None .032 .012
A . 5  Length .027 .011

+ Exposure .021 .012

None .019 .020
B 5 Length .014 .011

+ Exposure .015 .014

.8

.005

.006

.008

.001

.001

.005

.000

.001

.004

.003

.003

.006

.002

.001

.006

None 
Length 
+ Exposure

.035

.037

.028

.012

.008

.016

.001

.000

.004
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Table 3
False Negative Classification Error

Passing Proportion

.4 .6 .8
MIRT

Dimensionality Constraints

None .030 .048 .035
A0 Length .029 .038 .026

+ Exposure .039 .031 .016

None .015 .035 .023
B0 Length .013 .025 .018

+ Exposure .033 .023 .011

None .012 .034 .019
C0 Length .009 .021 .013

+ Exposure .030 .023 .008

None .027 .047 .038
A 5 Length .020 .030 .028

+ Exposure .029 .024 .017

None .031 .034 .034
B . 5  Length .028 .028 .023

+ Exposure .044 .023 .014

None 
Length 
+ Exposure

.017

.013

.033

.035

.024

.024

.028

.019

.010
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Endnotes

1. An earlier version of this paper was presented at the 1997 AERA Annual Meeting 
in Chicago.

2. The degree of dimensionality of the item pool and of the latent space need not be 
identical. However, they were identical for this study.

3. We used the ACT Math test because it provided a fairly well established, two- 
dimensional item pool and because the entire item pool was directly proportional to 
the test blueprint, in terms of content areas and proportions of items (i.e., the pool 
consisted of six parallel forms).

4. The lower asymptote was estimated using the unidimensional program, BILOG.

5. If a maximum number of items has been administered and no decision has yet 
been reached, the CCT is terminated by forcing the classification according to some 
distance rule from a likelihood boundary. See Spray and Reckase (1996).
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