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Abstract

A problem frequently confronted in IRT applications is that the item parameters 

calibrated using more than two independent samples of subjects must be expressed on the 

same scale. The existing methods were developed for a pairwise transformation, that is, 

from one scale to the other. The purpose of the present study is to introduce a common 

scale transformation method which can simultaneously find a vector of transformation 

functions for placing the parameter estimates from two or more item pools on a specified 

common scale. Two examples are presented to illustrate the usefulness of the method.
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An IRT Scale Transformation Method For 
Parameters Calibrated From Multiple Samples of Subjects

Because of the indeterminant nature of the latent variable IRT models, the parameter 

estimates obtained from different independent calibrations may not be on the same scale. A linear 

transformation can be performed to place them on an arbitrary scale while preserving the same item 

characteristic functions. The scale transformation procedure requires that at least some of the items 

be common to the different calibrations. A number o f procedures have been proposed for IRT scale 

transformation. Marco (1977) proposed using the mean and standard deviation of the 6-parameter 

estimates of the common items to determine the transformation function. Loyd and Hoover (1980) 

described a method which used the mean of the b-parameter estimates and mean o f the a-parameters 

estimates. Haebara (1980) and Stocking and Lord (1983) introduced loss-minimization methods for 

computing the transformation coefficients. These methods are based on minimizing a loss function 

that reflects the errors involved in the process of transforming the estimates of parameters in one 

metric to another. Baker and Al-Kami (1991) compared a loss-minimization method (Stocking & 

Lord, 1983) with a summary statistics based method (Loyd & Hoover, 1980). They found that the 

loss-minimization method was less sensitive to atypical combinations of underlying ability, item 

difficulty, and discrimination than are the methods based on summary statistics.

IRT parameter scale transformation is a directional process, that is, from one scale to another 

scale. Baker and Al-Kami (1991) used the terms from  and to to make the direction of 

transformation explicit. The existing methods are all for a pairwise transformation, that is, there is 

one from scale and one to scale. If there is a need to compare parameter estimates from more than 

two item pools, the current practice is to find the transformation functions in a number of 

independent pairwise processes. The purpose o f the present study is to introduce a common scale 

transformation method which can find a vector of transformation functions that place parameter 

estimates from two or more item pools on a common scale in one minimization process. Two 

examples are presented to illustrate the usefulness of the method.
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Method

According to the three-parameter logistic model, Pi (0, a,-, /?/, c / | the probability o f a correct 

response to item i by a person with ability level 0, is defined as:

P‘ - C' + - l . l a j e - b , ) ’ (1)
\ +  e ‘

where a, is usually called the item discrimination, /?/ the item difficulty, and q  the probability that a 

person with a very low ability gives a correct response. By the nature of this logistic model, the 

origin and unit of the ability and difficulty metric are undetermined. A linear relationship exists 

between any pair of IRT parameter scales (Lord, 1980).

Transformation for Two Item Pools

Consider two item pools: Pool 1 and Pool 2, which share a set of k common items. Pool 1 

and Pool 2 were calibrated using two nonequivalent random samples drawn from Population 1 and 

Population 2 , respectively. Let ©]/ denote a vector of item parameter estimates: a i / ,  t>\( and c i/ 

for common item i in Pool 1, and a>2 ,- denote a vector of item parameter estimates: «2/1  &2i and 

C2i for common item i in Pool 2. Because coj, and &2 / are on different parameter scales, /*(0, 

©ii) and P(0, ©2/) are not necessarily the same even though they are for the same item.

Suppose (0 2 / is transformed via some linear transformation to «(i,2)/' > that is on the 

parameter scale defined in calibrating Pool 1, such that

A

° (1,2)1 = = A(l,2)^2i + B(1,2> and c(l,2)i = c2i » (2)

where A ^ 2 ) and B ^ ^) ^  ^ e  slope and intercept of the linear transformation function. After these 

transformations,© 1/ and ©(1,2)1 are on the same parameter scale. Let 0i denote an ability level on 

the scale defined in calibrating Pool 1, then the following relationship can be established:

(3)
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Suppose the abilities of the subjects in Population 1 has a known probability density function (pdf) 

g(0l). The expected proportion correct (EPC) score for item / given &\i for the potential subjects 

from Population 1 is

s (< y „)=  ] p ( 6 u d ) , M e 0 d e „  (4)

and the EPC score for item i given W(i,2)t for the same population of subjects is

S(Q )a .2> )= ]P ^ a ) (, v l) g W d e >’ (5)

From Equation 3 we know that Equations 4 and 5 are approximately equal, that is

or

eo ©o

For one item and the identical c-parameter estimates, we can find a transformation that will make the 

left and right sides of Equations 6 and 7 exactly the same. For two or more items, there may not 

exist a transformation that will make the left and right sides of Equations 6 and 7 exactly the same 

for all items. The difference is

DC OO

<5, = S ( f t> ,,) -* (< » ,,2),)=  -  I W ’& o a J M W r  («)

By minimizing for all the k common items, the common scale transformation coefficients 2) 

and B(j 2 ) can be found. Thus, a loss function can be defined as

i
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k
G(A(1,2)» B(l,2)) = X S i  W

1=1

A set of transformation coefficients which minimize the loss function Q can be found by solving the 

following equation system:

d(2(A (i .2> B(l,2)) ^  q 

^A(l,2)

^ 6 ( An.2>» Bn.2)) _ q

(10)

The partial derivatives needed in Equations System 10 are derived as follows.

d (? (A (1.2> b (1.2)) _  2 £  J  dS(fij(li2)f) 

^ A (l,2) /=  1 ' ^Ai.2)

where

< » ( © „ ,„ )  7 -1 .7 (1  - C2iK ( 0 ,
— -  -1 7u  ( 6  - B  - A  b )A -1 i  & ( “ ] ) “ “ ] • ( 1 ^ )

^1 .2 ) A(i,2)l[ + e i

where

r)*l(fh \ % 1 n /3̂ ,'7u2' (01 Avnhi< (̂1,2)
f { l - c 2i ) a 2ie_____________ < \ a \

S B  "J A n . *Waev ^t71>(1.2) — ^1,2)1 j

The integrals involved in the partial derivatives can be approximated numerically to any 

specified degree of precision using a Gauss quadrature formula. The pdf g can be estimated from
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the calibration samples. If the marginal maximum likelihood estimation method(e.g., BILOG, 

Mislevy & Bock, 1991) is used to calibrate the item parameters, an empirical 0 distribution is 

estimated along the item parameters. The empirical 0 distribution consists of a set of quadrature 

points and associated weights which can be used in the loss function.

Alternatively, any distribution that is on the 0 scale of the Pool 1 items can be used for 

computing the loss function, because Equations 3, 6 and 7 hold for any 0 value. A simple choice is 

a uniform distribution. Using a uniform 0 distribution to compute the expected proportion correct 

score is analogous to using an arbitrary set of points along the 0 scale to compute the true score.

This procedure is used in an implementation of the Stocking & Lord method (Baker & Al-Kami, 

1991).

The loss function defined in Equation 9 is different from the loss function in the Stocking & 

Lord method. The major difference is that Stocking & Lord's loss function is based on the squared 

difference between the two true scores computed with the two sets of parameter estimates for the 

common items whereas the loss function introduced in the present study is based on the squared 

differences between two EPC scores summed over the individual common items.

The loss functions of the proposed method and Stocking & Lord's method differ from that 

of Haebara’s method in two aspects. First, Haebara's loss function consists of two components, 

one is based on the discrepancies resulted in transforming scale 2 to scale 1 and the other is based on 

the discrepancies resulted in transforming scale 1 to scale 2 using the inverse of the scale 2 to scale 1 

transformation function. The loss functions of the proposed and Stocking & Lord’s methods do not 

contain the second component in Haebara's loss function. Second, in Haebara's loss function, the 

discrepancies between two sets of item parameter estimates are squared at various individual ability 

levels for all the individual common items before the summation over items. An investigation of the 

advantages and disadvantages for these loss functions is beyond the scope o f the present paper but 

certainly deserves further study.

Using the EPC scores has some potential advantages in developing an iterative procedure for 

finding a common scale for the item pools that involve differential item functioning (DIF) items.
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Some authors (e.g. Kim & Cohen, 1992, Lautenschlager & Park, 1988) pointed out that the scale 

transformation may be seriously affected by the presence of DIF items. After an iteration of scale 

transformation, the EPC scores can be computed for all common items. If the EPC scores differ too 

much for a common item, then this item may be suspected as a DIF item. The next iteration of scale 

transformation can performed without the suspicious DIF item and the EPC scores are compared 

again to detect additional suspicious DIF items. The iteration procedure stops when no more 

suspicious DIF items are involved in the common item set. Detailed technical and practical issues 

will be addressed in another study.

Transformation for Multiple Item Pools

The method developed for scale transformation for two item pools can be extended for three 

or more item pools. First consider an example of 3 item pools. Pool 1 and Pool 2 share a set of 

items that are common to both, and Pool 2 and Pool 3 share a set of items that are common to both. 

Pool 1 and Pool 2 have a direct link because they have a common item set. Pool 1 and Pool 3 do not 

have a direct link because they do not have a common item set, but they have an indirect link because 

both pools have a direct link to Pool 2. If we want to compare items in Pool 1 with items in Pool 3, 

using pairwise transformation methods, we need to first transform parameters of items in Pool 1 to 

the scale of Pool 2 then use the Pool 2 to Pool 3 transformation function to further transform them to 

Pool 3 scale. Alternatively, Pool 2 can be transformed to Pool 1, and Pool 3 can be transformed to 

Pool 2, then to Pool 1. In common scale transformation method, a vector of transformation 

functions that transform the parameters estimates of all the from scales to the to scale are found in 

one minimization process.

In the general case, m (m>2) item pools are calibrated using m independent samples of 

subjects. In order to perform a common scale transformation, we assume that every pair o f the m 

item pools are linked either directly by a common set of items, or indirectly through a chain of pools 

which are directly linked pairwisely. Let us assume that the scale of Pool 1 items is referenced as a 

common scale, so the parameter estimates of the other m- 1 item pools are to be transformed to this 

scale. The selection of the common scale is arbitrary. Any of the m scales can be referenced as a
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common scale. Let (O(ij)i denote a transformation for the parameter estimate of common item i in 

Pool j  to scale 1, that is

A

(15)

where and are the slope and intercept of the linear transformation function that 

transforms the parameter estimates from scale j  to scale 1 and j =2 to m.

Let <j> denote a set of indices for all the items that are common to at least two item pools. Let 

\j/, denote a set of indices for the pools that contain item i. For example, \|// = {1,2,3} means that 

item i is a common item shared by Pools 1, 2 and 3. After all the parameters are transformed to 

scale 1, the expected proportion correct scores for item i e  <{), given the transformed item 

parameters will be close to each other. We can have the relationship:

Let T  denote a vector whose elements are A ^ ^  and j=2 to m. The loss function <2(T) can be 

defined as

* s (Q )(lk )^  fo r-/'G V/ and ;** . . (16)

(17)
<E0 Ij/' ;e

where

(18)

and g(6i) is the ability pdf estimated in the calibration of Pool 1 items. Alternatively, the g (0 |) in 

Equation 18 can be replaced by a uniform distribution. Equation 17 can be minimized by setting its 

first order partial derivatives to zero, that is
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3 G ( T )  „  . 3 G ( T )  . 0  . . . .
-----------=  O a n d  ------------=  0 ,  f o r y = 2  to  m .  ( 1 9 )

3 A ( W )  3 B ( 1 j )

The first order partial derivatives are derived as the follows:

d < 2 (T )  V  f N 7  rn/  A  \ \

0 j )  ,e* ke\ffr k>j (I J )

- I  <2°)
k e l f / . M i  (1

where

f - 1 - 7 ( 1  -  c „ ) n „ (9 , -

^A.,» J-  .2  [1 + e - . ^ ( e,- .(, , - ^ x ]2 *  •'
( i . y )

and

(21 )

d Q ( T )  ^  f V  r ? r  ^  \- —  = 2 ^ 1  2 ,  ^ -------
(1J) ,6^ kBy/,.k>j (1 J)

-  I  [ « < » < , . „ ) <22>
ketffr k<j  °  0 J )

where

f ^ W = f 17(1 cii>ai:e_____________  _____ g (e  )d6  (23)
jPR J A f| i p-1’70;^6' - '̂.;) ^(I.j)*ji-|2 1 1

(ij) — yV » l 1 + e J

There are a number of well established numerical methods which can be used to minimize the 

loss function Q. The Davidon-Fletcher-Powell (DFP) algorithm was selected to minimize Equations 

17. A computer program in the C language was developed using a set of subroutines provided in 

Numerical Recipes (Press, Teukosky, Vetterling & Flannery, 1992) to perform this algorithm. This 

program is available from the author.
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Example One: Transformation for Two Item Pools

The data used in this example were obtained from administering two forms of a mathematics 

test, Form 1 and Form 2, to two nonequivalent groups of examinees. (Group I consisted of 1637 

examinees and Group J consisted of 1636 examinees). Both forms of the test consisted of 36 

multiple choice items drawn from two item pools, Pool 1 and Pool 2, 11 of which were common 

items. These data were used in the examples in Kolen and Brennan (1995) and are available from 

the authors. The ability and item parameters were calibrated using the BILOG (Mislevy & Bock, 

1991).

The common scale transformation was performed over the 11 common items using the 

proposed method. A uniform distribution in an interval between -4 and 4 was used as the 0 

distribution to compute the EPC scores. This interval was the same as the one BILOG used to 

calibrate the item parameters. The item parameter estimates and the EPC scores on the original 

scales are presented in Table 1. The c -parameters estimates are not presented because they are not 

affected by the scale transformation. It can be seen that the EPC scores for the common items in the 

two pools are quite different. For example, for item 10, the EPC score is 0.369 given the parameter 

estimates from Pool 1 and 0.412 given the parameter estimates from Pool 2. This difference is 

mainly caused by the difference between the two scales.

The transformed parameters estimates were computed for the common scale (scale 1) by the 

proposed common scale transformation method. The transformed a- and 6-parameter estimates and 

the original c-parameter estimates were used to compute the EPC scores. It can be seen from Table 

1 that the EPC scores for the common items are very close for the two item pools. The small 

differences can be attributed to the errors involved in the process of parameter calibration and scale 

transformation.

Example Two: Transformation for Three Item Pools

The item parameter estimates of the 11 common items for Pool 1 used in Example One were 

used in this example as true parameters. These item parameters were linearly transformed to three



10

different scales representing scales for three independently calibrated item pools: Pools 1, 2 and 3. 

These parameters are presented in Table 2 under the label "On Original Scales". The EPC scores for 

the common items on the original scales are also presented in Table 2. Because these three scales 

were different, the EPC scores for the same common item are not the same for the three from scales.

The common scale transformation was performed in the same way as in Example One. The 

transformed parameters and EPC scores are presented in Table 2 under the label "On Common 

Scale". Because the parameters on the three from scales were linear transformations of the true 

parameters, no parameter calibration errors were involved. After the common scale transformation, 

the parameters were placed on a common scale, the a and b parameters and the EPC scores for the 

common items in all three item pools became identical.

Conclusion

The proposed common scale transformation method provides an alternative approach for 

solving the problem of incompatible IRT parameter estimates calibrated with two or more 

independent samples of subjects. It is a useful method for finding a common scales for item 

parameters from multiple item pools calibrated independently.
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Table 1. The Untransformed and Transformed Item Parameter Estimates and EPC Scores For 

Example One

Item ID Pool ID
On Original Scales On Common Scale

a b EPC a b EPC

1 1 0.455 -0.710 0.666 0.455 -0.710 0.666
1 2 0.442 -1.335 0.699 0.384 -1.341 0.695
2 1 0.584 -0.857 0.680 0.584 -0.857 0.680
2 2 0.573 -1.321 0.717 0.498 -1.325 0.715
3 1 0.754 0.021 0.578 0.754 0.021 0.578
3 2 0.599 -0.710 0.631 0.521 -0.623 0.621
4 1 0.663 0.051 0.557 0.663 0.051 0.557
4 2 0.604 -0.354 0.578 0.525 -0.214 0.563
5 1 1.069 0.961 0.569 1.069 0.961 0.569
5 2 0.990 0.532 0.607 0.861 0.805 0.585
6 1 0.967 0.195 0.505 0.967 0.195 0.505
6 2 0.808 -0.116 0.545 0.703 0.060 0.526
7 1 0.348 2.277 0.388 0.348 2.277 0.388
7 2 0.414 2.554 0.424 0.360 3.129 0.398
8 1 1.458 1.024 0.531 1.458 1.024 0.531
8 2 1.355 0.581 0.559 1.179 0.861 0.533
9 1 0.702 2.240 0.307 0.702 2.240 0.307
9 2 0.634 1.896 0.340 0.551 2.373 0.299
10 1 1.408 1.556 0.369 1.408 1.556 0.369
10 2 1.135 1.079 0.412 0.987 1.434 0.373
11 1 1.299 2.159 0.325 1.299 2.159 0.325
11 2 0.926 2.134 0.344 0.805 2.646 0.297
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Table 2. The Untransformed and Transformed Item Parameter and EPC Scores For Example Two

Item ID Pool ID
On Original Scales On Com m on Scale

a b EPC a b EPC

1 1 0.501 -0.736 0.670 0.501 -0.736 0.670
1 2 0.523 -0.748 0.671 0.501 -0.736 0.670
1 3 0.546 -0.800 0.676 0.501 -0.736 0.670
2 1 0.642 -0.870 0.682 0.642 -0.870 0.682
2 2 0.671 -0.875 0.683 0.642 -0.870 0.682
2 3 0.701 -0.922 0.688 0.642 -0.870 0.682
3 1 0.830 -0.072 0.587 0.830 -0.072 0.587
3 2 0.868 -0.112 0.591 0.830 -0.072 0.587
3 3 0.905 -0.191 0.599 0.830 -0.072 0.587
4 1 0.730 -0.045 0.567 0.730 -0.045 0.567
4 2 0.763 -0.086 0.571 0.730 -0.045 0.567
4 3 0.796 -0.166 0.579 0.730 -0.045 0.567
5 1 1.176 0.783 0.584 1.176 0.783 0.584
5 2 1.229 0.705 0.591 1.176 0.783 0.584
5 3 1.283 0.593 0.600 1.176 0.783 0.584
6 1 1.064 0.086 0.517 1.064 0.086 0.517
6 2 1.112 0.039 0.522 1.064 0.086 0.517
6 3 1.161 -0.046 0.532 1.064 0.086 0.517
7 1 0.383 1.979 0.404 0.383 1.979 0.404
7 2 0.400 1.849 0.412 0.383 1.979 0.404
7 3 0.417 1.689 0.424 0.383 1.979 0.404
8 1 1.604 0.840 0.547 1.604 0.840 0.547
8 2 1.677 0.760 0.555 1.604 0.840 0.547
8 3 1.750 0.645 0.565 1.604 0.840 0.547
9 1 0.772 1.946 0.335 0.772 1.946 0.335
9 2 0.807 1.818 0.348 0.772 1.946 0.335
9 3 0.842 1.658 0.364 0.772 1.946 0.335
10 1 1.549 1.323 0.395 1.549 1.323 0.395
10 2 1.619 1.222 0.406 1.549 1.323 0.395
10 3 1.690 1.088 0.420 1.549 1.323 0.395
11 1 1.429 1.872 0.356 1.429 1.872 0.356
11 2 1.494 1.747 0.369 1.429 1.872 0.356
11 3 1.559 1.591 0.385 1.429 1.872 0.356
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