
A C T  Rese&rcli Report Series 95«2

A Note on a Relationship Between 
Covariance Matrices and Consistently 
Estimated Variance Components

rid I. Woodruff



For additional copies write: 
A C T  Research Report Series 
P.O. Box 168 
Iowa City, Iowa 52243

©1995 by The American College Testing Program. All rights reserved.



A Note on a Relationship Between Covariance Matrices 
and Consistently Estimated Variance Components

David J. Woodruff





Abstract

The one observation per cell two-way items by examinees random 

effects ANOVA with all error components zero is considered. The 

estimated variance components are expressed as functions of the inter­

item covariance matrix and the inter-examinee covariance matrix. These 

expressions show that under the random effects model if the inter-item 

and inter-examinee covariance matrices are unconstrained then both the 

number of items and the number of examinees must approach infinity 

for the estimates of any of the variance components to be consistent. 

However, if these two covariance matrices are constrained so that each 

has homogeneous variances and covariances, then consistent estimates 

of the variance components can be obtained without both the number of 

items and the number of examinees simultaneously approaching infinity.
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A Note on a Relationship Between Covariance Matrices 
and Consistently Estimated Variance Components

In applications of the random effects ANOVA model to measure­

ment data, usually little if any consideration is given to the covariance 

structure of the data—the focus is on the variance components. The 

purpose of this note is to explore the relationship between the covariance 

structure of the data and the variance components and to demonstrate 

that when the covariance structure of the data has Scheffes (1959, p. 

264) compound symmetric form, then consistent estimates of the 

variance components can be obtained more simply than when the 

covariance structure of the data is unconstrained. This simplification 

under compound symmetry has an important advantage for the practical 

application of the model. Hocking, Green, and Bremer (1989) developed 

the random effects ANOVA model with the assumption of compound 

symmetry for the covariance structure, and they presented diagnostics 

for deciding on the appropriateness of the model under this covariance 

structure, but they did not motivate the usefulness of the compound

symmetry assumption as this note does.
Consider the / by J data matrix Y = |y^| that results from

administering I items to J examinees. Two covariance matrices can be

computed from Y: the J by J inter-examinee covariance matrix 

SQ = {s ((j, j ' ) } j  y -i (computed using I- 1 as the divisor) and the I by I

inter-item covariance matrix S = {s  (computed using J -1 as

the divisor). The i or j  subscript associated with the elements of a sample 

covariance matrix denote the index over which the elements are 

computed, for example,
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S j  (i, n = X (yy - y t  )(y0- - y c,)/ (<J -l).

The data matrix Y  will be modeled using a one observation per cell 

two-way random effects ANOVA model. A complete and detailed 

development of this model may be found in Scheffe (1959, Chap. 7) 

where the model equation is given, the variance component parameters 

are defined, and method of moments variance component estimators are 

developed as functions of observed mean-squares. See also Searle (1971, 

Chap. 9) or Hocking (1985, Chap. 10). Note, however, that for simplicity 

and without loss of generality all error component values are assumed to 

be zero so that the error variance equals zero. Furthermore, no 

distributional assumptions are made about the observations or the 

model components.

Using results given by Hocking et al. (1989), the method of 

moments variance component estimators given by Scheffe (1959 Chap. 7) 

also can be expressed as functions of the two sample covariance 

matrices:

X I s t { J . f )  
.2 _  j= l  f > j _________ (1)

/ /

(2)
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(3)

(4)

Note that the interaction variance component estimator can be expressed 

as a function of either or Sp.

A parameterization of the random effects ANOVA model in terms of

covariance matrices gives an interesting perspective on this model. Two

underlying countably infinite dimensional parametric covariance 

matrices, = [ o9{j, f ) }  and 'Ln = .,_j> can be postulated.

Conditional on any random sample of I items, let denote an I by I

inter-item parametric covariance matrix whose elements are a subset of 

the elements of 5 .̂ Conditional on any random sample of J examinees,

let ILqj denote a J by J inter-examinee parametric covariance matrix

whose elements are a subset of the elements of Assume that

and satisfy the compound symmetry structure of Scheffe (1959, p.

264) so that

(5)

(6)

where J is the identity matrix and J  is a matrix of all ones and the 

dimensions of I  and J  are countably infinite. It then follows that is
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completely determined by the two parameters and yn which are the 

same for any selection of J items; hence, is invariant under any 

selection of I items. Similarly, is completely determined by the two 

parameters Cq and ye which are the same for any selection of J  

examinees; hence is invariant under any selection of J examinees.

This invariance under compound symmetry has an important effect on 

the consistency of the variance component estimators.

The situation is similar but not identical to joint estimation of IRT 

models where distinct parameters are associated with each item and 

each examinee, and both the number of items and the number of 

examinees must simultaneously approach infinity to obtain consistent 

estimates of the model parameters (Haberman, 1977). In the 

unconstrained random effects ANOVA model, a set of parameters (a 

variance and covariances) is associated with each item and each 

examinee, and both the number of items and the number of examinees 

must simultaneously approach infinity to obtain consistent estimates of 

the variance component parameters which are functions of the item and 

examinee variances and covariances. However, if the inter-item and 

inter-examinee covariance matrices are constrained to have the 

compound symmetric form, then the number of variances and 

covariances is fixed at four, and consistent estimates of the variance 

component parameters can be obtained without both I and J  

simultaneously approaching infinity. This will now be demonstrated.

As already noted, Scheffe (1959, Chap. 7) defines the variance 

component parameters and develops method of moments estimators for 

these parameters. The variance component estimators given in 

equations (1) through (4) are algebraically equivalent to Scheffe's method
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of moments estimators and so are consistent estimators because they are 

method of moment estimators (Serfling, 1980). Because Y.n and Z0 are of

countably infinite dimension, when no constraints are placed on the 

structures of £ and there are a countably infinite number of

moments (variances and covariances) to be estimated, and so both I and 

J  must go to infinity to obtain consistency. More specifically,

X X lim st( j ,/ )  x X ^ e ( j ' f )
o* = lim a\ = ------= lim (7)

l , j— j —>00 — 1) / 2 J—>oo <J[J — 1) / 2

I  X lim  S j ( i , V)  I  I  <7^ ( 1,i ')

cro =  lim  <Jd =  lim  1=1 l '^) ;J ~V?"Tn--------~  llm  , 0—  * andB J _ » o o  /(/“ l ) /2  J - > o o  / (J - l ) /2
(8)

= lim
J  —)°°

/ J  r» J  J
X o f(J ) X X <x0( j ,/ )

J=1___________J'=l / > J ____________
J J ( J - l ) / 2

= lim
X X X

i= l___________(=1 i '> i_________
7 7(1 -1)  / 2

(9)
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The purpose of this note is to show that with the compound 

symmetry structure imposed on and the consistency of the

variance component estimators does not depend on both I and J  

simultaneously approaching infinity. Because of the invariance of 2.^

for any selection of J  examinees under compound symmetry for it 

follows that for any random sample of J examinees:

o\ = lim d\ = lim = yQ and (10)
/ —»oo /—» CO

° 2a b  =  ,l lm  =  rl l m ( s f U ) -  M J - f j )  = Ge - r e -  I 1 U/—->CX> J ÔO ' '

and so only I need increase without bound to obtain consistent estimates 

of these two variance components. Because of the invariance of for

any selection I items under compound symmetry for 5 ,̂ it follows that 

for any random sample of I items:

n  ̂a
gb = lim &B = lim s ,(i,i') = y , and (12)

oo J - >  oo J

aAB = \i m °'AB = Ji m ( s j ( 0 - s ( i , i ' ) )  =  c T ^ - y ;r, (13)
J —>oo J —> o o '  J  '

and so only J  need increase without bound to obtain consistent 

estimates of these two variance components. Note that the interaction 

variance component can be consistently estimated as either I or J  

approach infinity under compound symmetry.



In the practical application of the two-way random effects ANOVA 

model (including the items by examinees situation), it is sometimes the 

case that it is expensive or impractical to increase the number of levels 

measured on the first factor but relatively inexpensive to increase the 

number of levels measured on the second factor, and the purpose of the 

study is to get an accurate estimate of the variance due to the second 

factor or to the interaction. If the compound symmetry assumption is 

not satisfied, then increasing the number of levels measured on the 

second factor is insufficient to ensure a more accurate estimate of the 

second factor variance component or the interaction variance component. 

The number of levels of the first factor would also have to be increased, 

at greater expense, to ensure more accurate estimates of the second 

factor variance component or the interaction variance component.

Hocking (1985, Chap. 10) can be consulted for the compound 

symmetric covariance structure formulation of the two-way random 

effects ANOVA model when the error variance is non-zero and there is 

more than one observation per cell. Woodruff (1993) discusses reliability 

estimation and other psychometric issues under this model.
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