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Abstract

This paper compares various methods of smoothed equipercentile equating and linear equating 

in the random groups equating design. Three presmoothing methods (based on the beta binomial 

model, four-parameter beta binomial model and a log-linear model) are compared to postsmoothing 

using cubic splines, linear equating and unsmoothed equipercentile equating. Performance of these 

methods is evaluated by specifying several pairs of population distributions and estimating equating 

error by Monte Carlo methods. The results indicate that both presmoothing and postsmoothing 

methods can improve estimation of the equipercentile equating function and that presmoothing and 

postsmoothing methods provide comparable levels of performance in terms of equating error.





A Comparison of Presmoothing and Postsmoothing Methods in Equipercentile Equating

Two types of smoothing methods have been suggested for improving equipercentile equat­

ing results in the random groups equating design. Presmoothing methods involve smoothing the 

score distributions for the two test forms to be equated before equipercentile equating is performed. 

Postsmoothing methods involve smoothing the equipercentile equating function produced from the 

unsmoothed score distributions. Both presmoothing and postsmoothing methods have been found 

to reduce equating error as compared with unsmoothed equipercentile equating. Kolen (1984) 

concluded that a postsmoothing method based on cubic splines is preferred to unsmoothed equiper­

centile equating. Fairbank (1987) studied seven presmoothing methods and seven postsmoothing 

methods and concluded that of the methods he investigated a presmoothing method based on the 

negative hypergeometric distribution and a postsmoothing method based on cubic splines were the 

preferred presmoothing and postsmoothing methods.

Cope & Kolen (1990) and Hanson (1990) investigated various methods of smoothing distri­

butions of test scores (these methods could be used for presmoothing in equipercentile equating). 

Cope & Kolen (1990) found that smoothing based on the four-parameter beta binomial model (Lord, 

1965) provided more accurate results than smoothing based on the beta binomial (negative hyper­

geometric) model. Hanson (1990) found the four-parameter beta binomial model and a log-linear 

model (Holland & Thayer, 1987) provided the most accurate results of the methods examined. 

The results presented in the papers of Cope & Kolen (1990) and Hanson (1990) suggest that the 

four-parameter beta binomial model and the log-linear model, when used in presmoothing o f score 

distributions, may produce less equating error than presmoothing based on the beta binomial model 

which produced the most accurate results in Fairbank (1987).

This paper investigates the relative performance of unsmoothed equipercentile equating, sev­

eral presmoothing methods (using the two and four parameter beta binomial models, and a log-linear 

model), a postsmoothing method based on cubic splines, and linear equating (Angoff, 1971). The 

relative performance o f these methods is investigated using several example data sets.

Equipercentile Equating

The focus o f this paper is on the random groups equating design. In the random groups 

equating design the new and old forms are each administered to a random sample from a common 

population. Let the random variables X  and Y represent the test scores on the new and old forms
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of the test, respectively, for a random examinee from the population of interest. The test score X is 

to be equated to the test score Y .

The equipercentile equating function is determined by the cumulative distribution functions 

o f X and Y . If the random variables X  and Y  were continuous, then the equipercentile equating 

function would be given by F f ] [Fx (*)] where Fy(y)  =  Pr(K < y ) and Fx(x)  =  Pr(X < *). 

Because X and Y are discrete random variables the equipercentile equating function is not defined. 

To define an equipercentile equating function based on X and Y the common practice is to use the 

equipercentile equating function based on continuous approximations of X and Y . The most widely 

used continuous approximation is based on a uniform kernel being applied to X and Y  to produce 

approximating continuous distributions (Holland & Thayer, 1989). The uniform kernel spreads the 

density at each score point uniformly in a unit interval one-half point above and below the score 

point. This results in a continuous distribution on the interval (—1/2, K  4- 1/2), where K  is the 

number of items on the test. Based on the continuous distribution given by the uniform kernel the 

equipercentile equivalent of raw score / on the new form is given by:

p * ( i ) - P r ( Y  < u*(i))
,-------------- r ^  +  i i * ( 0 - . 5 ,  (1)

P r ( r  = « * ( / ) )

where

p*(i) =  Pr(X < /) +  .5 Pr(X =  / ) ,

and u*(i) is the smallest integer such that p*(i) < P r(y  < u*(i)).

For presmoothing methods of equipercentile equating the distributions of X and Y are smoothed 

before the equipercentile function given in Equation 1 is used. Presmoothing methods of equiper- 

centile equating are based on the premise that smoothing the distributions of X and Y has the 

potential to improve estimation of these distributions and, presumably, the equipercentile equating 

functions based on these distributions. Three general methods of smoothing the observed raw 

score distributions are used in this paper: a log-linear model, the beta binomial model, and the 

four-parameter beta binomial model.

For postsmoothing methods a smoothing procedure is applied to the equipercentile equating 

function produced with Equation 1 using the observed (unsmoothed) raw score distributions. The 

postsmoothing method used in this paper uses cubic splines to smooth the equipercentile equating 

function (Kolen, 1984).
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Log-Linear Model Smoothing

Rosenbaum & Thayer (1987) suggested using log-linear models to estimate the bivariate 

distributions needed for equipercentile equating in the common item equating design. Similar 

log-linear models can also be used to smooth the univarate distributions of X  and Y in the random 

groups equating design. These log-linear models are discussed by Holland & Thayer (1987) and 

Haberman (1974). For the distribution of X  (the same model would be used for the distribution of 

Y)  the model used in this paper can be written as

m

log[N Pr(X =  0] = # )  +  ! ]  f t  «* , (2)

where N  is the sample size, and m <  K.  Estimates of the raw score probabilities based on the 

maximum likelihood estimates o f the parameters of the model given in Equation 2 have the property 

that the first m  moments of the fitted distribution are identical to the first m  moments calculated 

from the observed frequencies. For example, if m  =  4 then the mean, variance, skewness and 

kurtosis of the fitted distribution will equal the mean, variance, skewness and kurtosis computed 

from the observed frequencies.

In this paper maximum likelihood is used to estimate the parameters in Equation 2. The 

procedure used is that given by Haberman (1974), which is also discussed in Holland & Thayer 

(1987).

Beta Binomial and Four-parameter Beta Binomial Model Smoothing

The beta binomial and four-parameter beta binomial models are strong true score models 

described in Lord & Novick (1968) and Lord (1965). Under these strong true score models the 

probability that a raw score random variable Z (which may be the raw score on either the new or 

old form) equals i (i =  0 , . . . ,  K,  where there are K  items on the test), is given by:

Pr(Z =  ‘) =  J  Pr(Z = i | r )  g (t ) dr ,  (3)

where r  is the proportion correct true score. The conditional error distribution [Pr(Z =  i | r)J is 

assumed to be binomial (with parameters K  and r). For the beta binomial model the true score 

density g(z )  is assumed to be a beta distribution. For the four-parameter beta binomial model the 

true score density is assumed to belong to the four-parameter beta class of densities. The four- 

parameter beta distribution is a generalization o f the beta distribution that in addition to the two



shape parameters (a  and fi) has parameters for the lower (/) and upper (u) limits o f the distribution 

(I > 0 and u <  1).

In this paper estimates of parameters in the beta binomial and four-parameter beta binomial 

models are obtained using the method of moments. For the beta binomial model the observed 

score mean and variance are used to calculate estimates of the two parameters of the true score 

distribution (Lord & Novick, 1968, page 517). For the four-parameter beta binomial model the 

first four moments of the observed score distribution are used to calculate estimates of the four 

parameters of the true score distribution as described by Hanson (1991). After estimates of the 

parameters of the true score distribution are obtained the observed score distribution is calculated 

using the procedure described by Hanson (1991).

Postsmoothing Using Cubic Splines

A cubic spline method for smoothing an equipercentile equating function has been described 

by Kolen (1984) and Kolen & Jarjoura (1987). A smoothing cubic spline function is fit to the 

equipercentile equating function (computed from the observed raw score distributions) relating 

scores on the new form to scores on the old form. The degree of smoothing is controlled by a 

smoothing parameter s. Selecting s =  0 leaves the equipercentile equating function computed 

from the observed distributions unchanged. Selecting s to be very large (e.g., s =  999) results in a 

linear function.

A second smoothing cubic spline function is fit to the equipercentile equating function relating 

scores on the old form to scores on the new form (using the same smoothing parameter as that used 

for first smoothing cubic spline). The smoothed equipercentile equating function is taken as the 

average of the smoothing cubic spline relating scores on the new form to scores on the old form 

and the inverse of the smoothing cubic spline relating scores on the old form to scores on the new 

form. The smoothing cubic spline is not computed for some scores at the extremes (both low and 

high scores) —  equivalents for these scores are found by linear interpolation.

Method

To investigate the performance of smoothed equipercentile equating methods, population dis­

tributions of test scores for new and old forms are specified and equating error is estimated by 

Monte Carlo methods. The population distributions are defined using data from test administra­

tions. Results will be given for five pairs o f population distributions.

4
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The first pair of population distributions are defined using data from two 30-item subsets 

from a professional licensure exam. The 30-item subsets were used as a set of common items 

for equating to two different links (this exam is equated using a common item equating design). 

The two sets of common items were chosen to result in scores that are approximately parallel to 

one another. The two sets of common items were in separately timed test sections. One of these 

two subsets of items is designated as the new form and the other subset of items is designated 

as the old form for the purposes of this study. Table 1 gives the sample statistics for each form 

for a sample of 39,765 examinees (each examinee took both sets of items). The distributions of 

scores for the new and old forms are presented in Figure 1. For these two score distributions the 

population distributions are taken to be the observed distributions as presented in Figure 1 mixed 

with a uniform distribution. The purpose of this minimal smoothing of the distributions (via the 

mixing with a uniform distribution) was to smooth large fluctuations in the equipercentile equating 

function (which is to be considered the population equating function) for low scores. If /?, is the 

probability of raw score i based on the observed data then the smoothed probability (p *) to be used 

as the population distribution is given by p f  =  .999 /?; +

The second pair o f population distributions is defined using data from two forms of a 20-item 

Reading test which is the basis of one of the reading subscores reported on the ACT Assessment. 

The two forms contain the same items but the items are in a different order in each form. One 

of these forms is designated as the new form and the other form is designated as the old form 

for the purposes of this study. Table 1 gives the sample statistics for each form for randomly 

equivalent samples of 82,073 examinees for the new form and 83,709 examinees for the old form. 

The distributions of scores for the new and old forms are presented in Figure 2. For these two score 

distributions the population distributions are taken to be the observed distributions as presented in 

Figure 2.

The third and fourth pairs of population distributions are based on samples used in equating 

forms of the ACT Assessment. The third and fourth pairs of population distributions are defined 

with data used in equating two forms of the ACT English (75 items) and Science Reasoning (40 

items) tests, respectively (the two forms for English and the two forms for Science Reasoning are 

different forms). For both pairs of forms one of the forms is designated as the new form and the 

other form is designated as the old form for the purposes of this study. Table 1 gives sample statistics 

for the two forms for randomly equivalent samples of 3,158 (new form) and 3,293 (old form) for
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the English test and randomly equivalent samples of 2,831 (new form) and 2,898 (old form) for 

the Science Reasoning test (the samples for the English test and Science Reasoning test are from a 

different test dates).

Because of the rough shape of the equipercentile equating function based on the observed 

distributions (see the top panels of Figures 8 and 9), the pairs of population distributions based on 

the English and Science Reasoning test data will be defined with model based fitted distributions. 

For the English test the log-linear model given in Equation 2 with m  =  9 is used as the fitted 

distribution for the new form and the four-parameter beta binomial model is used as the fitted 

distribution for the old form. For the Science Reasoning test the four-parameter beta binomial 

model is used as the fitted distribution for both the new and old forms. Figures 3 and 4 present the 

observed and fitted distributions for the English and Science Reasoning tests, respectively.

The likelihood ratio chi-squared goodness of fit statistics for the new and old forms of the 

English test are 52.96 (with 65 degrees of freedom) and 90.85 (with 70 degrees of freedom), 

respectively. The likelihood ratio chi-squared goodness of fit statistics for the new and old forms 

of the Science Reasoning test are 32.96 (with 35 degrees o f freedom) and 39.91 (with 35 degrees 

of freedom), respectively. Only the chi-squared statistic for the old form of the English test is large 

when compared with a chi-squared distribution with the appropriate degrees of freedom. Based on 

the relatively large sample size used in computing the goodness of fit statistic and the visual display 

of the fitted distribution given in Figure 3 it is concluded that the fitted distribution for the old form 

of the English test is, for practical purposes, adequate.

The fifth pair of population distributions are based on samples used for equating two forms of 

the PLAN Math test (40 items). One of the forms is designated as the new form and the other form 

is designated as the old form for the purposes of this study. Table 1 gives sample statistics for the 

two forms for randomly equivalent samples of 2,190 for the new form and 2,176 for the old form. 

Again, because of the relatively small sample sizes, the population distributions based on these 

two sample distributions will be defined with model based fitted distributions. For the new form 

the four-parameter beta binomial model is used and for the old form the log-linear model given in 

Equation 2 with m  =  6 is used. The likelihood ratio chi-squared goodness of fit statistics for the 

new and old forms are 41.39 (with 35 degrees of freedom) and 43.2 (with 33 degrees of freedom), 

respectively. Figure 5 presents the observed and fitted distributions for the new and old forms. The 

fitted distributions appear to provide a reasonable fit to the data.
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For each of the pairs of population test score distributions, 500 samples for each of five 

sample sizes (100, 250, 500, 1000 and 3000) are drawn. For each of the 12,500 pairs of sample 

distributions (5 pairs of population distributions by 5 sample sizes by 500 samples) ten estimated 

equating functions are computed.

One of the estimated equating functions computed is the equipercentile equating function based 

on the observed data (the unsmoothed equipercentile equating function). Applying Equation 1 to 

compute the equipercentile equating function can be problematic when there are zero frequencies 

in one or both of the raw score distributions. Consequently, before computing the equipercentile 

equating function using Equation 1, the observed distributions are mixed with a uniform distribution 

to eliminate score combinations with zero probability. If p t is the probability of raw score i 

based on the observed data then the modified probability (/>*) for that raw score is given by 

p f  =  .999999 pi +  .000001 f_1, where t is the number of score categories (for the number correct 

test score this is the number of items plus one).

Five equipercentile equating functions based on presmoothing methods are computed. Three 

of the estimated equating functions are based on log-linear model smoothing (using three alternate 

models). The models are distinguished by the highest degree polynomial used in the model (m of 

Equation 2). The three models to be used will be those corresponding to m  =  3, m =  4 and m =  6. 

The value m  =  3 was chosen as the minimum value to be used since it has been our experience in 

practice that m =  3 is the smallest value that provides an adequate fit for test score distributions. 

The value m  =  6 was chosen as the maximum value to be used since it has been our experience that 

in most cases a model with w <  6 provides an adequate fit to score distributions. The two other 

estimated equating functions using presmoothing methods are based on the beta binomial model 

and the four-parameter beta binomial model.

Three equipercentile equating functions are based on postsmoothing methods. These three 

methods correspond to smoothing parameters s =  .50, s =  .25 and s =  .10.

The remaining equating method is linear equating. For linear equating the raw score equivalent 

on the new form of raw score i on the old form is given by the linear function

Cv oy
----i +  \ L y -------- t l x  , (5)
&X Ox

where f i x  and/tip are the means and ax  and cry are the standard deviations of X  and Y.  An estimate 

of the linear equating function is obtained by substituting sample moments for population moments 

given in Equation 5.
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Figures 6 through 10 display the equating functions for the 10 equating methods to be studied 

for the Licensure test, ACT Reading subscore, ACT English test, ACT Science Reasoning test 

and PLAN Math test, respectively. The equating functions are computed based on the observed 

score distributions. In Figures 6, 8, 9 and 10 the population equaling functions based on the fitted 

distributions described previously are also presented (in Figure 9 the population equating function 

is identical to the equating function given by four-parameter beta binomial model).

If e( i ) is the estimated old form raw score equivalent to new form raw score i given by a 

particular equating method and e(i)  is the raw score equivalent given by the population equating 

function, then the mean squared error for the equating method at raw score i is given by

For each of the ten equating methods for a particular sample size and pair of population 

distributions the mean squared error at raw score / is estimated using the 500 pairs of sample 

distributions as

Criteria

E[e{i)  -  e( i )]2 , (6)

where E stands for expected value (the expected value is over the pair o f random variables used to 

determine e(i)).  The mean squared error can be written as

E[e{i)  -  +  [c (0  -  A2(o]2 - (7)

where

= E[e(i)] .

The first term in Equation 7 is the variance of e(i) and the second term is the squared bias of £(/), 

The average mean squared error for an equating method is given by

K

E[e( i )  -  e ( i ) f  Pr(X = i ) . (8)
i=0

This can be written as the sum of the average variance and average squared bias

K K

£  E[e(i) -  n Hi)f  Pr(X =  /) +  £  [e(0 -  Pr(X =  i ) . (9)

500

(10)
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where es (0  is the old form raw score equivalent of new form raw score i for sample s. The variance 

and squared bias of e(i)  are estimated in a similar manner. Estimates of the average mean squared 

error are obtained by substituting the estimates of the mean squared error for each raw score into 

Equation 8. An estimate of the standard error of these estimates of the average mean squared error 

is obtained from the usual estimate of the standard error of a mean (the standard deviation divided 

by -v/500). Estimates of the average variance and average squared bias are obtained analogously 

using Equation 9 with an estimate of given by

j  500

s o o 5 > < f>-
5 = 1

Results

Estimates of average squared bias and variance (Equation 9), average mean squared error 

(Equation 8), and the standard error of the average mean squared error for each of the ten equating 

methods and five sample sizes for population distributions based on the Licensure test, ACT Reading 

subscore, ACT English test, ACT Science Reasoning test and PLAN Mathematics test are given in 

Tables 2 through 6, respectively. The average mean squared error, if no equating were performed 

(i.e., using an identity function as the equating function) are 0.18, 0.20, 57.64, 0.51 and 23.40 for 

the population equating functions corresponding to Tables 2 through 6, respectively. If a value of 

average mean squared error for a particular equating method is larger than the corresponding value 

of average mean squared error under no equating then not equating would be preferable to equating 

using the equating method in question. In Table 2 none of the equating methods have average mean 

squared error less than 0.18 for sample sizes of 100 and 250, so that for those sample sizes not 

equating would be preferable to equating using any of the ten equating methods. In Tables 3 and 5 

no equating method has lower average mean squared error than not equating for the sample size of 

100. In Tables 4 and 6 equating is preferable to not equating for all sample sizes.

A summary of the results presented in Tables 2 through 6 is presented in Table 7.. Table 

7 gives, for each pair of population distributions and sample size, the equating method with the 

lowest average mean squared error from Tables 2 through 6 and all methods with average mean 

squared errors within two standard errors of this minimum average mean squared error (using the 

standard error corresponding to the method with the minimum average mean squared error). The 

two standard error rule is arbitrary and there are some cases, especially for the larger sample sizes,
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in which methods not listed in Table 7 we would judge to provide results comparable in practical 

terms to the methods listed.

The results in Tables 2 through 6 indicate that for all population distributions and sample sizes 

at least one of the methods of smoothed equipercentile equating produced less equating error than 

unsmoothed equipercentile equating. Each of the methods of smoothed equipercentile equating and 

linear equating had an average mean squared error that was close to the minimum average mean 

squared error in at least one case. In other words, each of the methods of smoothed equipercentile 

equating and linear equating worked well for at least one sample size by population distribution 

combination.

Average variance tends to dominate average squared bias for lower sample sizes. Consequently, 

for lower sample sizes the methods that tend to have lower average variance (at the expense of higher 

average squared bias) tend to perform best. At higher sample sizes variance decreases and bias 

becomes more of a factor in the average mean squared error. Consequently, at higher sample sizes 

the bias of a method is an important factor in the performance of the method. Because the bias of a 

method depends on the population equating function, different methods perform best with different 

population equating functions for larger sample sizes.

Figures 11 through 15 present estimates of the mean squared error by score point (Equation 6) 

for eight of the equating methods for sample sizes of 250 and 1000 for the population distributions 

based on the Licensure test, ACT Reading subscore, ACT English test, ACT Science Reasoning 

test and PLAN Mathematics test, respectively. Mean squared errors are not presented in Figures 

11 through 15 for the presmoothing method based on the Log-Linear model of degree 4 and the 

postsmoothing method using a smoothing parameter of .25 due to the similarity of the curves for 

these methods to the curves that are presented in the figures. The range o f raw scores given in 

Figures 11 through 15 exclude scores at the bottom of the scale with low probabilities of occurrence 

in the population taking the new form. The general level of the mean squared error curves reflects 

the average mean squared errors given in Tables 2 through 6.

Discussion

The results provide evidence that both presmoothing and postsmoothing methods can improve 

estimation of the equipercentile equating function in the random groups design. An improvement 

in the estimation of the equipercentile equating function resulted from smoothing for all population 

distributions and sample sizes considered.
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The results indicated that presmoothing and postsmoothing methods can produce results com­

parable with one another. The results do not support a conclusion that either presmoothing or 

postsmoothing methods should be preferred in all cases. The only cases in which there was not 

a postsmoothing method that performed as about as well as the best performing presmoothing 

method, or vice versa, was for sample sizes of 100 where, in a couple of cases, the beta binomial 

presmoothing method performed significantly better than any of the three postsmoothing methods. 

It is possible that if postsmoothing methods with a larger smoothing parameter had been included in 

this study at least one of these methods would have performed as well as the beta binomial method 

in these cases.

Presmoothing based on the beta binomial model (along with linear equating in some cases) 

resulted in the smallest equating error when the sample sizes were small. In these cases the bias 

introduced by the beta binomial and linear methods was not large relative to the variance of the 

other smoothed equipercentile methods, although there were cases in which linear equating resulted 

in large equating error for even small sample sizes when the bias of linear equating was large (e.g., 

the ACT English test and PLAN Mathematics test). With large sample sizes the bias of the beta 

binomial method was typically large compared to the variance of the other smoothed equipercentile 

methods resulting in larger average mean squared error for the beta binomial method relative to 

other smoothed equipercentile methods in this situation. This result suggests other presmoothing 

methods will probably result in smaller equating error than using the beta binomial model for large 

sample sizes.

For the method based on the log-linear model, adding parameters to the model will generally 

result in lower bias but greater variance of the resulting estimated equating functions. For smaller 

sample sizes a model with fewer parameters can result in lower average mean squared error than 

a model with more parameters if the bias introduced by the simpler model is small compared to 

the variance of the more complex model. Effects analogous to adding parameters to the log-linear 

model are achieved by decreasing the smoothing parameter in postsmoothing.

It is likely that an important factor in the performance of the presmoothing methods in practical 

situations is the appropriateness of the models used for smoothing the score distributions. In using 

any of the presmoothing methods, the fit of the model to the raw score distributions should be 

evaluated. A necessary condition for using a particular presmoothing method in practice would 

be that the model fit the data well. Assessment of model fit may involve formal tests of model fit
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(chi-squared goodness of fit statistics) and informal analyses of model fit such as residual analyses 

and various graphical displays.

The results of this study and practical experience with data from several testing programs 

indicate that presmoothing based on the four-parameter beta binomial model and the log-linear 

model will usually provide an adequate fit to observed distributions of test scores if the sample 

sizes are large enough (around 1000 or more). The log-linear model has an advantage over the 

four-parameter beta binomial model in that it can potentially fit a wider class of distributions than 

the four-parameter beta binomial model. The cost involved in this greater flexibility is that a model 

selection process must be used to choose a particular log-linear model to use. In this paper three 

fixed log-linear models were used. In applied settings the user would likely evaluate several log- 

linear models and pick the simplest model that fit the data adequately. Haberman (1974) discusses 

model selection for models such as those given in Equation 3. Agresti (1990, Chapter 7) discusses 

some general methods for selecting log-linear models.

The process of selecting a log-linear model, or selecting a smoothing parameter in cubic spline 

postsmoothing, could introduce errors that were not present in the results reported in this paper. 

For example, Hanson (1990) compared smoothing of univariate test score distributions based on 

the four-parameter beta binomial model and the log-linear model given in Equation 2. In Hanson 

(1990) a model selection process was used for each sample to select a log-linear model to use. It 

was found that the four parameter beta binomial model provided more accurate results than the 

log-linear model for all sample sizes less than 5000. It is likely the log-linear model would have 

performed better in Hanson (1990) if a procedure like the one followed in this paper had been used 

with a fixed model being used for all samples. Conversely, the accuracy of the log-linear model in 

this paper may have been less if some model selection procedure had been used for each sample to 

select a model. Similarly, the accuracy of postsmoothing when a smoothing parameter is chosen 

for each sample may be less than the procedures studied in this paper in which the same smoothing 

parameter was used for each sample.

The assumption made for the beta binomial and four-parameter beta binomial models that the 

conditional error distribution is binomial may not in many cases be very realistic. It has been our 

experience that using the more general conditional error distribution given by Lord’s two-parameter 

approximation to a compound binomial distributions (Lord, 1965) does not seem to improve the 

fit of the model using a four-parameter beta true score distribution in the examples we have looked
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at. Consequently, for the purpose o f smoothing a univariate raw score distribution the assumption 

o f a binomial error distribution seems adequate. If an estimate o f the true score distribution is 

needed (other than for simply computing the estimated observed score distribution) a more realistic 

error distribution than the binomial distribution should probably be used in most cases (e.g., Lord’s 

two-parameter approximation to a compound binomial distribution).

C language source code for functions that compute all the equating function estimates discussed 

in this paper is available from the first author.
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Table 1. Descriptive Statistics for Observed Data.

Licensure Test (30 items)
Mean s.d. Skewness Kurtosis Sample Size

New Form 
Old Form

18.88
19.16

3.68
3.43

-0.13 2.79 
-0.31 3.05

38.765
38.765

Mean
ACT Reading (20 items) 
s.d. Skewness Kurtosis Sample Size

New Form 
Old Form

12.30
12.69

3.76
3.58

-0.21 3.40 
-0.29 2.54

82,073
83,709

Mean
ACT English (75 items) 
s.d. Skewness Kurtosis Sample Size

New Form 
Old Form

52.50
45.07

12.10
12.99

-0.37 2.55 
-0.02 2.25

3,158
3,293

Mean
ACT Science Reasoning (40 items) 

s.d. Skewness Kurtosis Sample Size
New Form 
Old Form

21.63
22.17

5.70
5.38

0.06 2.63 
0.23 2.55

2,831
2,898

P-ACT+ Mathematics (40 items)
Mean s.d. Skewness Kurtosis Sample Size

New Form 19.54 7.72 0.28 2.28 2,190
Old Form 14.93 6.79 0.81 3.42 2,176
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Table 2. Average Squared Bias, Variance and Mean Squared Error for the Licensure Test.

Sample Size = 100

Squared
Bias Var. MSE s.e.(MSE)

Unsmoothed 0.006 0.590 0.597 0.023
Linear 0.028 0.373 0.401 0.020
Beta Binomial 0.027 0.369 0.395 0.019
4-para. Beta Binomial 0.004 0.466 0.470 0.021
Log-Linear 3 0.004 0.444 0.447 0.022
Log-Linear 4 0.006 0.534 0.540 0.025
Log-Linear 6 0.009 0.614 0.623 0.028
Post Smooth 0.50 0.026 0.469 0.496 0.026
Post Smooth 0.25 0.017 0.477 0.494 0.025
Post Smooth 0.10 0.013 0.507 0.520 0.024

Squared
Bias

Sample Size = 250

Var. MSE s.e.(MSE)
0.002 0.258 0.260 0.009
0.027 0.155 0.181 0.008
0.026 0.154 0.180 0.007
0.002 0.198 0.200 0.008
0.001 0.185 0.187 0.008
0.001 0.216 0.217 0.008
0.003 0.249 0.252 0.010
0.010 0.196 0.206 0.009
0.006 0.200 0.207 0.009
0.005 0.214 0.220 0.009

Sample Size = 500

Squared
Bias Var. MSE s.e.(MSE)

Unsmoothed 0.003 0.145 0.148 0.005
Linear 0.027 0.081 0.109 0.004
Beta Binomial 0.027 0.082 0.109 0.004
4-para. Beta Binomial 0.002 0.108 0.111 0.005
Log-Linear 3 0.002 0.100 0.102 0.004
Log-Linear 4 0.002 0.122 0.125 0.005
Log-Linear 6 0.004 0.138 0.142 0.005
Post Smooth 0.50 0.011 0.109 0.120 0.005
Post Smooth 0.25 0.007 0.111 0.118 0.005
Post Smooth 0.10 0.006 0.118 0.123 0.005

Squared
Bias

Sample Size = 1000 

Var. MSE s.e.(MSE)
0.002 0.067 0.068 0.002
0.027 0.034 0.061 0.002
0.027 0.034 0.061 0.002
0.002 0.046 0.048 0.002
0.001 0.042 0.043 0.002
0.001 0.053 0.054 0.002
0.002 0.061 0.063 0.002
0.009 0.042 0.051 0.002
0.005 0.044 0.048 0.002
0.004 0.048 0.051 0.002

Squared
Bias

Sample Size 

Var.

= 3000 

MSE s.e.(MSE)
Unsmoothed 0.001 0.024 0.025 0.001
Linear 0.027 0.012 0.038 0.001
Beta Binomial 0.026 0.011 0.038 0.001
4-para. Beta Binomial 0.001 0.015 0.016 0.001
Log-Linear 3 0.001 0.014 0.015 0.001
Log-Linear 4 0.001 0.019 0.020 0.001
Log-Linear 6 0.001 0.021 0.022 0.001
Post Smooth 0.50 0.007 0.014 0.021 0.001
Post Smooth 0.25 0.004 0.015 0.019 0.001
Post Smooth 0.10 0.003 0.016 0.019 0.001
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Table 3. Average Squared Bias, Variance and Mean Squared Error for the ACT Reading Subscore.

Sample Size = 100 Sample Size = 250

Squared
Bias Var. MSE s.e.(MSE)

Unsmoothcd 0.004 0.506 0.511 0.020
Linear 0.010 0.336 0.345 0.020
Beta Binomial 0.004 0.340 0.344 0.020
4-para. Bela Binomial 0.004 0.418 0.423 0.020
Log-Linear 3 0.003 0.392 0.396 0.020
Log-Linear 4 0.004 0.432 0.437 0.021
Log-Linear 6 0.005 0.477 0.482 0.021
Post Smooth 0.50 0.013 0.326 0.339 0.021
Post Smooth 0.25 0.008 0.360 0.368 0.020
Post Smooth 0.10 0.006 0.414 0.420 0.020

Squared
Bias Var. MSE s.e.(MSE)

0.001 0.225 0.226 0.008
0.007 0.146 0.153 0.008
0.002 0.149 0.152 0.008
0.001 0.182 0.183 0.008
0.001 0.171 0.172 0.008
0.001 0.189 0.190 0.008
0.002 0.207 0.208 0.008
0.005 0.153 0.158 0.008
0.002 0.165 0.167 0.008
0.002 0.184 0.186 0.008

Sample Size = 500 Sample Size = 1000

Squared Squared
Bias Var. MSE s.e.(MSE) Bias Var. MSE s.c.(MSE)

Unsmoothed 0.001 0.109 0.110 0.004 0.000 0.058 0.058 0.002
Linear 0.007 0.070 0.077 0.004 0.007 0.038 0.045 0.002
Beta Binomial 0.003 0.071 0.074 0.004 0.002 0.037 0.040 0.002
4-para. Beta Binomial 0.001 0.087 0.088 0.004 0.000 0.047 0.047 0.002
Log-Linear 3 0.001 0.081 0.082 0.004 0.001 0.043 0.044 0.002
Log-Linear 4 0.001 0.090 0.091 0.004 0.000 0.048 0.049 0.002
Log-Linear 6 0.001 0.100 0.101 0.004 0.000 0.052 0.053 0.002
Post Smooth 0.50 0.005 0.071 0.076 0.004 0.004 0.037 0.041 0.002
Post Smooth 0.25 0.002 0.078 0.080 0.004 0.002 0.041 0.043 0.002
Post Smooth 0.10 0.001 0.088 0.089 0.004 0.001 0.047 0.047 0.002

Sample Size = 3000

Squared
Bias Var. MSE s e.(MSE)

Unsmoothed 0.000 0.018 0.019 0.001
Linear 0.007 0.012 0.019 0.001

< Beta Binomial 0.002 0.011 0.014 0.001
4-para. Beta Binomial 0.000 0.015 0.015 0.001

\ Log-Linear 3 0.001 0.013 0.014 0.001
Log-Linear 4 0.000 0.015 0.015 0.001
Log-Linear 6 0.000 0.016 0.017 0.001
Post Smooth 0.50 0.003 0.012 0.015 0.001
Post Smooth 0.25 0.001 0.013 0.015 0.001
Post Smooth 0.10 0.001 0.015 0.015 0.001
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Table 4. Average Squared Bias, Variance and Mean Squared Error for the ACT English Test.

Sample Size = 100 Sample Size = 250

Squared
Bias Var. MSE s.e.(MSE)

Unsmoothed 0.015 6.583 6.598 0.223
Linear 1.853 4.295 6.148 0.221
Beta Binomial 0.217 4.258 4.475 0.212
4-para. Beta Binomial 0.081 5.198 5.280 0.220
Log-Linear 3 0.268 4.936 5.204 0.222
Log-Linear 4 0.192 5.469 5.661 0.224
Log-Linear 6 0.086 6.007 6.094 0.226
Post Smooth 0.50 0.023 5.144 5.167 0.215
Post Smooth 0.25 0.018 5.555 5.573 0.219
Post Smooth 0.10 0.018 5.967 5.985 0.221

Squared
Bias Var. MSE s.e.(MSE)

0.010 2.822 2.832 0.088
1.852 1.795 3.647 0.082
0.238 1.818 2.056 0.084
0.073 2.167 2.240 0.088
0.203 2.093 2.296 0.087
0.178 2.291 2.469 0.088
0.047 2.505 2.552 0.089
0.044 2.149 2.193 0.085
0.023 2.321 2.343 0.086
0.017 2.531 2.548 0.088

Unsmoothed
Linear
Beta Binomial 
4-para. Bela Binomial 
Log-Linear 3 
Log-Linear 4 
Log-Linear 6 
Post Smooth 0.50 
Post Smooth 0.25 
Post Smooth 0.10

Sample Size = 500

Squared
Bias Var. MSE s.e.(MSE)

0.004 1.493 1.497 0.057
1.843 0.955 2.798 0.053
0.223 0.969 1.192 0.055
0.067 1.150 1.216 0.057
0.178 1.110 1.288 0.057
0.170 1.215 1.386 0.057
0.029 1.302 1.331 0.057
0.039 1.128 1.167 0.057
0.016 1.211 1.227 0.056
0.009 1.326 1.335 0.057

Sample Size = 1000

Squared
Bias ___ Var. MSE s.e.(MSE)

0.002 0.750 0.752 0.025
1.844 0.486 2.331 0.024
0.220 0.489 0.709 0.024
0.065 0.562 0.627 0.024
0.160 0.551 0.711 0.026
0.170 0.602 0.772 0.024
0.025 0.648 0.673 0.024
0.034 0.556 0.591 0.024
0.016 0.600 0.616 0.024
0.007 0.659 0.666 0.024

Squared
Bias

Sample Size 

Var.

= 3000 

MSE s.e.(MSE)
Unsmoothed 0.002 0.246 0.248 0.009
Linear 1.843 0.157 2.000 0.008
Beta Binomial 0.221 0.159 0.380 0.009
4-para. Beta Binomial 0.060 0.184 0.244 0.009
Log-Linear 3 0.167 0.180 0.347 0.009
Log-Linear 4 0.167 0.195 0.362 0.009
Log-Linear 6 0.021 0.210 0.232 0.009
Post Smooth 0.50 0.027 0.186 0.214 0.009
Post Smooth 0.25 0.014 0.198 0.212 0.009
Post Smooth 0.10 0.007 0.213 0.220 0.009
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Table 5. Average Squared Bias, Variance and Mean Squared Error for the ACT Science Reasoning Test.

Sample Size = 100 Sample Sizc = 250

Unsmoothed
Linear
Beta Binomial 
4-para. Beta Binomial 
Log-Linear 3 
Log-Linear 4 
Log-Linear 6 
Post Smooth 0.50 
Post Smooth 0.25 
Post Smooth 0.10

Squared
Bias Var. MSE s.e.(MSE)

0.008 1.610 1.618 0.058
0.019 1.017 1.035 0.056
0.023 1.005 1.028 0.055
0.007 1.272 1.279 0.058
0.013 1.161 1.174 0.057
0.011 1.331 1.342 0.058
0.012 1.511 1.524 0.060
0.023 1.232 1.256 0.059
0.013 1.303 1.316 0.058
0.008 1.412 1.420 0.057

Squared
Bias Var. MSE s.e.(MSE)

0.004 0.699 0.703 0.024
0.016 0.441 0.457 0.023
0.021 0.439 0.461 0.023
0.003 0.544 0.547 0.024
0.008 0.504 0.511 0.024
0.004 0.568 0.572 0.024
0.004 0.623 0.627 0.024
0.009 0.501 0.510 0.023
0.006 0.557 0.563 0.024
0.004 0.622 0.626 0.025

Unsmoothed
Linear
Bela Binomial 
4-para. Beta Binomial 
Log-Linear 3 
Log-Linear 4 
Log-Linear 6 
Post Smooih 0.50 
Post Smooih 0.25 
Post Smooih 0.10

Sample Size = 500

Squared
Bias Var. MSE s.e.(MSE)

0.001 0.322 0.322 0.010
0.014 0.190 0.205 0.009
0.019 0.190 0.209 0.009
0.001 0.237 0.237 0.010
0.006 0.220 0.225 0.009
0.001 0.248 0.249 0.010
0.001 0.277 0.277 0.010
0.006 0.211 0.216 0.009
0.002 0.241 0.243 0.010
0.001 0.275 0.276 0.010

Sample Size = 1000

Squared
Bias Var. MSE s.e.(MSE)

0.001 0.168 0.168 0.005
0.015 0.101 0.115 0.005
0.019 0.100 0.119 0.005
0.000 0.123 0.123 0.005
0.006 0.116 0.122 0.005
0.000 0.129 0.129 0.005
0.000 0.142 0.143 0.005
0.006 0.106 0.112 0.005
0.002 0.122 0.123 0.005
0.001 0.140 0.141 0.005

Squared
Bias

Sample Size 

Var.

= 3000 

MSE s.e.(MSE)
Unsmoothed 0.000 0.057 0.057 0.002
Linear 0.014 0.034 0.048 0.002
Beta Binomial 0.019 0.034 0.052 0.002
4-para. Beta Binomial 0.000 0.041 0.041 0.002
Log-Linear 3 0.005 0.039 0.044 0.002
Log-Linear 4 0.000 0.043 0.043 0.002
Log-Linear 6 0.000 0.047 0.048 0.002
Post Smooth 0.50 0.006 0.036 0.043 0.002
Post Smooth 0.25 0.002 0.041 0.043 0.002
Post Smooth 0.10 0.000 0.046 0.047 0.002
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Table 6. Average Squared Bias, Variance and Mean Squared Error for the PLAN Math Test.

Sample Size -  100 Sample Si/e = 250

Squared
Bias Var. MSE s.e.(MSE)

Unsmoothcd 0.009 2.280 2.289 0.082
Linear 1.099 1.332 2.431 0.067
Beta Binomial 0.350 1.391 1.741 0.072
4-para. Beta Binomial 0.054 1.835 1.889 0.081
Log-Linear 3 0.196 1.762 1.959 0.083
Log-Linear 4 0.069 1.920 1.989 0.082
Log-Linear 6 0.018 2.067 2.085 0.082
Post Smooth 0.50 0.077 1.774 1.851 0.090
Post Smooth 0.25 0.038 1.809 1.846 0.083
Post Smooth 0.10 0.028 1.913 1.942 0.081

Sample Size = 500

Squared
Bias Var. MSE s.e.(MSE)

Unsmoothed 0.001 0.520 0.521 0.020
Linear 1.103 0.297 1.400 0.017
Bela Binomial 0.346 0.315 0.661 0.019
4-para. Beta Binomial 0.045 0.403 0.447 0.020
Log-Linear 3 0.190 0.387 0.577 0.021
Log-Linear 4 0.048 0.421 0.469 0.020
Log-Linear 6 0.002 0.457 0.458 0.020
Post Smooth 0.50 0.033 0.408 0.441 0.021
Post Smooth 0.25 0.008 0.419 0.427 0.020
Post Smooth 0.10 0.001 0.446 0.447 0.020

Squared
Bias

Squared

Var. MSE s.c.(MSE)
0.006 0.960 0.966 0.032
1.110 0.534 1.643 0.026
0.363 0.561 0.924 0.029
0.054 0.739 0.793 0.031
0.149 0.713 0.862 0.032
0.060 0.773 0.834 0.031
0.009 0.849 0.858 0.031
0.056 0.724 0.780 0.033
0.021 0.748 0.769 0.032
0.012 0.807 0.819 0.031

Sample Size = 1000

Bias Var. MSE s.e.(MSE)
0.001 0.228 0.229 0.008
1.106 0.122 1.228 0.007
0.350 0.128 0.478 0.008
0.055 0.169 0.224 0.008
0.179 0.161 0.341 0.010
0.049 0.174 0.223 0.008
0.001 0.194 0.195 0.008
0.033 0.171 0.204 0.008
0.012 0.176 0.188 0.008
0.003 0.189 0.192 0.008

Sample Size = 3000

Squared
Bias Var. MSE s.e.(MSE)

Unsmoothcd 0.000 0.083 0.084 0.003
Linear 1.103 0.045 1.148 0.002
Beta Binomial 0.343 0.048 0.391 0.003
4-para. Beta Binomial 0.055 0.063 0.118 0.003
Log-Linear 3 0.180 0.060 0.240 0.005
Log-Linear 4 0.050 0.064 0.114 0.003
Log-Linear 6 0.001 0.072 0.073 0.003
Post Smooth 0.50 0.016 0.064 0.081 0.003
Post Smooth 0.25 0.007 0.066 0.073 0.003
Post Smooth 0.10 0.002 0.070 0.072 0.003



21

Table 7. Best Performing Equating Methods in Terms of MSE and Equating Methods 
within 2 Standard Errors of the Best Method.

Sample Size
100 250 500 1000 3000

Licensure BB,L BB,L,LL3 LL3,BB,L LL3 LL3.BB4
ACT Reading PI ,BB,L,P2 BB,L,P1,P2 BB4-,P1,P2,LL3 BB,P1 ,P2,LL3 BB,LL3,P,LL4,BB4
ACT English BB BBJP1 P1,BB,BB4J>2 PI ,P2,BB4 P
ACT Science BB,L L,BB ljbb .p i P1,L,BB,LL3 BB4,P1,P2,LL4,LL3
P-ACT Math BB,P2,P1 P2,P1,BB4,P3 P2,P1 ,BB4,P3,LL6 P,LL6 P3,P2,LL6

L = linear
BB = beta binomial
BB4 = four-parameter beta binoimal
LL3 = log-linear 3
LL4 = log-linear 4
LL6 - log-linear 6
PI = postsmoolhing .50
P2 = postsmoothing .25
P3 = postsmoothing .10
P = all three postsmoothing methods
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Figure 1. Observed distributions for Licensure test.
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Figure 2. Observed distributions for ACT Reading subscore.
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Figure 3. Raw Score Distributions for ACT English test.
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Figure 4. Raw Score Distributions for ACT Science Reasoning test.
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Fitted Distributions

Raw Score

F igureS . Raw Score Distributions for PLAN Mathematics test.
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Figure 6. Equating functions for Licensure test using observed data.
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Figure 7. Equating functions for ACT Reading subscore using observed data.
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Figure 8. Equating functions for ACT English test using observed data.
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Figure 9. Equating functions for ACT Science Reasoning test using observed data.
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Figure 14. Mean squared error of equating methods for ACT Science Reasoning test.
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