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(Abstract)

In this paper, a quadratic curve equating method for equating different test forms under a 
random group data collection design is proposed. Procedures for implementing this method and 

related issues are described and discussed. The quadratic curve method was evaluated using real 
test data and simulated data in terms of model fit and equating error, and was compared to several 
other equating methods. It was found that the quadratic curve method fit many of the real test data 
examined and that when model fits the population, this method could perform better than other 

more sophisticated equating methods. Index terms: Equipercentile equating, smoothing 
procedures, quadratic curve equating, linear equating, random groups equating design.

A Quadratic Curve Equating Method to Equate
the First Three Moments in Equipercentile Equating





In standardized testing, often multiple test forms are needed because examinees need to take 

the test at different occasions and one test form can be administered only once to ensure test 

security. In this situation, it is typically required that test scores derived from different forms are 

equivalent. Efforts can be made in the test construction process to make different forms as nearly 

equivalent as possible (e.g., forms can be built based on the same table of specifications; items can 

be selected to have approximately equal average difficulty level). But often these efforts are not 

enough to ensure test score equivalency for different forms. So, test equating based on test data is 

often performed to adjust test scores so that scores on different forms are more nearly equivalent. 

There are several designs for collecting test equating data. One of the designs is the random groups 

design, in which different test forms are administered to different but randomly equivalent groups 

of examinees.

Under the random groups equating design, the examinee groups that take different test 

forms (for simplicity, say, form X and form Y) are regarded as being sampled from the same 

population. The differences in score distributions for different test forms are attributed to form 

differences and sampling variations of the examinee groups. Equating form X to form Y involves 

transforming the X scores so that the transformed X scores have the same distribution as the Y 

scores. If an assumption can be made that the population distributions for X and Y scores have the 

same shape and only differ in mean and variance, then the linear equating method will be most 

appropriate. Linear equating takes the form
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where x is the score on form X, f ix and j iY are means for form X and form Y, <JX and o Y are 

standard deviations (s.d .) for form X and form Y, and lY(x) is the equated form Y score for x.

If no assumptions can be made about the shape of the population score distributions, 

equipercentile equating method is the method of choice. Equipercentile equating for a discrete score 

distribution is given by

where Pr means probability, p* (x) = Pr(X < x)+.5Pr(X = *) , and u*(;c) is the smallest integer 

such that p*(x) = Pr[Y < «*(*)].

Equipercentile equating based on samples may have large sampling error because for any 

particular score, the equating relationship is based on local frequencies at that score point. Two 

types of smoothing techniques have been introduced to reduce random errors: pre-smoothing and 

post-smoothing. Pre-smoothing smoothes the score distributions for form X and form Y separately 

and equates the smoothed score distributions. Post-smoothing (Kolen, 1984) smoothes the 

equipercentile equating function directly.

Studies have been done to evaluate these methods (see Kolen, 1984, Fairbank, 1987, Cope 

& Kolen, 1990, Hanson, 1990, Hanson, Zeng, & Colton, 1991). Results from Hanson, Zeng, 

and Colton (1991) showed that smoothed equating was more accurate than unsmoothed 

equipercentile and linear methods in terms of mean squared errors. However, linear equating 

consistently had smaller random error, especially when sample sizes were small. This finding 

resulted because the linear method uses only means and standard deviations in computing the 

equating equation and these aggregate statistics typically have small sample variability. However, a 

fundamental limitation of linear methods is that if the shape of the distribution of X scores is 

different from that of Y scores in the population, it could be seriously biased. Although an increase 

in sample size could reduce standard errors of equating, it will not reduce bias. Angoff (1987)
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commented that equipercentile equating lacks a theoretical basis whereas linear equating makes 

strong statistical assumptions which are often violated. He suggested that consideration be given to 

equating methods which employ theoretical models that take into account higher moments. The 

purpose of this study is to propose a quadratic curve equating method, and to compare it with some 

other equating methods. If successful, the quadratic curve method would produce less random 

error than other pre- or post-smoothing equipercentile methods, and less bias than the linear 

method.

The Quadratic Curve Equating Method

In choosing such a nonlinear equating function, the following aspects were considered:

(1) The function should be more flexible than the linear function.

(2) The function should preserve beneficial properties of linear equating, such as using 

statistics with small random errors and being computationally simple.

(3) The performance of this method should be comparable to more complicated techniques 

like smoothed equipercentile equating in most, if not all, testing situations.

Based on the preceding considerations, a quadratic curve to relate scores on form X to form

Y was proposed which takes the form

q(x) = ax2 + bx + c . (3)

The coefficients a, b, c are so determined such that the equated X scores will have the same 

mean, standard deviation (s.d.) and skewness as the form Y scores. The difference between this 

relationship and linear equating relationship is that it has one additional squared term and that 

skewness is taken into account in computing the equating function.

The assumption underlying this method is that if population distributions are used and the 

appropriate quadratic equating relationship is established to equate the first three moments, then all
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the moments of the equated X score distribution will be the same as those of the Y score 

distribution.

In order to determine coefficients a, b, and c using the method of moments, the following 

set of non-linear equations needs to be solved:

The left hand side of these equations are functions of a, b, c, the first six moments of X 

scores, and the first three moments of Y scores. When population distributions are not known, 

sample moments are used. The Newton-Raphson method (Press, 1992) could be used to 

simultaneously solve this set of equations for a, b and c iteratively. Another easier way to find 

these coefficients is to utilize the property that linear transformation does not change the skewness 

of a score distribution. The procedure is as follows.

First, let us define skewness of Y as

Find d so that Z=X+dX^ will have same skewness as Y; i.e., Sk(Z)=Sk(Y). This can be done 

using an iterative numerical method. Second, Let b equal the ratio of s.d. of Y to s.d. of Z; i.e.,

E[ q(X)] -E(Y)  = 0 (4)

(5)

(6)

where E represents expectation. If q ( X) is substituted in these equations, we get:

E[aX2 + bX + c ] - E ( Y )  = 0 (7)

(8)

(9)

(10)
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b -  < We know that b Z will have same s.d. and skewness as Y because multiplication by
s. d .(Z )

the constant b does not change the skewness of Z. Then add a constant c so that c+b(x+dx2) has 

same mean, s.d. and skewness as Y. The three coefficients for equation (3) are then easily 

determined.

Some Technical Issues

Symmetry: One of the requirements for an equating method is symmetry. That is, the same 

equating relationship should result whether X is equated to Y or Y is equated to X. This quadratic 

function is clearly not symmetric because different orders of moments are used for X and Y scores. 

Kolen (1984) proposed an average of two equating relations obtained when X  is equated to Y and

Y is equated toX.  However, this treatment still does not yield exactly symmetric results. For the 

quadratic method, a weighted average of two equating functions will be used. Suppose for a given 

score x, the equated score obtained from one direction is _y, , that from the other direction is y2 , 

and the two first derivatives at score point x  are ds and d2 , then the weighted average is

y  = wiy , + ( l - w l)yi ,
where

tan\. 5arctan(dj )+.5arctan(d2 )| -  d2
w t -  — ------------------------------------- *-------, if d , *  d 2\

dt - d 2

or

Wj = 0 . 5 , if dj = d2

This weighted average is guaranteed to be symmetric for the linear case. For the quadratic 

curves in this situation, the curvature can be expected to be very small. Thus, a good 

approximation to symmetry can be assumed. Note that generally the weights are different at 

different x scores.
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Equating at Extreme Scores: Equating at both ends of score range is problematic for nearly 

all equating methods. This issue also concerns the quadratic method. In implementing the post­

smoothing method, Kolen (1984) excluded the upper half percent and the lower half percent of the 

data in computing the spline function and use two straight lines to link the ends of the spline to the 

two unequated end scores. This practice was also adopted in the present study.

Methodology and Data

The proposed quadratic curve equating was evaluated in two aspects: model fit and 

sampling error.

Model Fit

Like the linear equating method, this new method makes an assumption about the true 

population equating relationship. The assumption underlying the new method basically states that 

the true population equating relationship is quadratic in form. How well this method performs 

logically depends on how close the true equating is to the quadratic form in real testing situations. 

Although population score distributions are almost never available in practice, sample distributions, 

especially large sample distributions can provide valuable information about this issue. In this 

study, real test data were used to assess model fit for this method. For each pair of test forms, five 

different equating methods were applied and plotted for visual examination: unsmoothed 

equipercentile equating, spline post-smoothing with smoothing parameter s=0.2 and s=0.5, 

quadratic curve equating, and linear equating. The first four central moments of the equated X 

scores with the quadratic curve method were also computed. If the assumptions of this method are 

met, the kurtosis of the equated X scores would be expected to be close to that of the Y scores. 

Under normality, the sampling variance of kurtosis equals 24/N where N is the sample size (see 

Kendall & Stuart, 1977, pp. 258). The extent to which the model fits the data can be partially



assessed by comparing the difference of the kurtosis after equating and the standard deviation of 

absolute kurtosis differences.

The first two pairs of data are the same as the first two pairs used in Hanson, Zeng, and 

Colton (1991). The first pair consists of two 30-item subsets from a professional licensure exam. 

The second pair consists two 20-item subsets of two forms of Reading subtests of ACT 

Assessment. Each of these data sets have very large sample sizes (over 38,000 and 82,000 

respectively). So the unsmoothed equipercentile equating relationship can be taken as the 

population equating.

Data from an operational equating of the ACT Assessment were also used. These data 

contain seven forms (form A to form G) for each of the four tests: English with 75 items, 

Mathematics with 60 items, Reading with 40 items and Science with 40 items. For each test, seven 

pairs of distributions were used for equating (form A to B, B to C ... G to A).

Sampling Error

Because the quadratic curve method uses aggregate statistics, like the linear method, it 

would be expected to have less sampling variance than the unsmoothed equipercentile method or 

even the smoothed equipercentile methods when the model assumptions are met. Parametric 

bootstrapping methods (Efron, 1982) were used to assess the sampling error of this equating 

method and compare it to the unsmoothed equipercentile method, the linear method, and the spline 

post-smoothing method. First, a pair of population distributions was defined using either 

smoothed sample distributions or very large sample distributions. Second, sample distributions 

with sample size N  (three different sample sizes were used in this study. For the long test of 75 

items N=500, 2000, and 3000; for short tests of 20, 30 and 40 items, N=250, 500, and 2000) 

were generated from the population distributions by computer and equatings with various methods 

were performed. Third, the second step was repeated n (in this study, n=200) times and evaluative 

indices were computed for each score point.
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The study by Hanson, Zeng, and Colton (1991) showed that pre-smoothing and post­

smoothing yielded comparable results in terms of mean squared error. So it is sufficient to just use 

post-smoothing to represent smoothed equipercentile methods.

Three types of population distributions were used. The first type was two pairs of observed 

distributions with very large sample sizes. These observed distributions were taken directly as the 

population distributions. These were the 30-item licensure exam subtests and the 20-item Reading 

subtests described previously.

The second and third types were the results of smoothing ACT Assessment score 

distributions using log-linear smoothing method (Hanson, 1992). The second type was intended 

to represent situations where the equipercentile equatings with smoothed score distributions were 

close to the quadratic function. The third type were to represent situations where the equipercentile 

equatings with smoothed score distributions were not close to the quadratic function. The third 

type was used also to assess the robustness of the quadratic curve method to model violation.

From initial examination of the equating functions from different methods, English forms A and B, 

Science forms G and A were selected to represent the second type and Reading forms A and B 

were selected to represent the third type. Pearson %2 statistics for model fit were examined to 

determine the degrees of the log-linear model. Figure 7 gave plots of the equipercentile equating 

and other equatings based on three pairs of smoothed score distributions.

The evaluative indices are bias, standard error (s.e.), and root mean squared error (RMSE). 

For any score x  on form X, denote e(x) as the true (or population) equated score and es(x) as

equated score based on sample s with any particular equating method. The mean equated score 

based on n samples is

The estimated bias is
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e ( x ) - e ( x ) .

The estimated standard error is

The estimated root mean squared error is

J-'Z(i(x)-e(x))2.

These indices are computed for all the raw score points and estimated root mean squared 

errors are plotted for all the methods being compared. Weighted averages of these indices weighted 

by the X score population distribution are also computed by the formula:

k
^j(index)Pr(X -  x) ,

where k is the number of items.

The root mean squared errors for five above mentioned equating methods were plotted 

along the score scale for visual comparison. Weighted averages of absolute bias, standard error, 

root mean squared cttot(RMSE) and estimated standard error of RMSE were tabulated.

R esults

Descriptive statistics for all real data equatings are summarized in Table 1 (see Table 1 at the 

end of the report). Because of the adjustment to achieve symmetry, the first three central moments 

of form X after equating were not exactly the same of those of form Y. But this adjustment had



little effect on means and standard deviations except for one case. (ACT Mathematics form C and 

form D where the adjustment resulted in a 0.019 difference in s. d.); skewness was affected only 

at the third decimal point except for one case. The equating functions for the real test data sets are 

plotted in Figure 1 through Figure 6. The plots showed that the quadratic equating is more flexible 

and provides better fit in most cases than the linear equating method.

Figures 1 and 2 plot the equating functions for the two sets of large sample data. Here, the 

unsmoothed equipercentile equatings are regarded as population equatings. The post-smoothing 

functions were closer to the population equating because that the unsmoothed equipercentile 

equating is very smooth. The quadratic curve equating appears to fit the two population equatings 

quite well. The maximum biases are within 0.2 score points. The kurtosis difference were reduced 

by about half after equating in both cases.

The plots of equating functions based on ACT Assessment operational equating data sets 

(Figure 3 through 6) showed that the quadratic curve method performed quite well in smoothing 

the equipercentile equating function in most cases. In many cases, the quadratic equating function 

was between post-smoothings with s=0.2 and s=0.5. The quadratic method did not perform well 

in 3 to 4 cases (Math C to D, Math D to E, Reading A to B, and perhaps Reading B to C), where 

the unsmoothed equipercentile equatings displayed an "S" shape. Examination of the kurtosis 

revealed that these cases correspond to the highest after-equating kurtosis differences among all the 

28 quadratic equatings. The standard error of sample kurtosis for a sample size of 2900 is 0.091. 

The standard error for the kurtosis difference for two independent samples of size of 2900 is thus 

about 0.129. The average absolute kurtosis difference before equating is 0.163. The average (over 

all equatings conducted) absolute kurtosis difference after equating is 0.097 which is smaller than 

the standard deviation of the sample difference. The number of absolute kurtosis differences that 

are smaller than 0.129 is 20 out of 28. These results suggested that the quadratic curve method fits 

this set of operational equating data sets reasonably well.

Population equatings for three pairs of distributions used in the simulation are shown in 

Figure 7. Root mean squared errors for five different equating methods based on five pairs of

10



population distributions were plotted in Figure 8 through Figure 12. Figures 8 and 9 contain plots 

of RMSE of equatings for samples drawn from two large sample data sets: the 30-item Licensure 

test and the 20-item ACT Reading test

For the Licensure test, the quadratic method performed about the same as the 

postsmoothing methods for the small sample size and performed better than these methods for the 

large sample size. For the 20-item Reading test, the quadratic method performed better than the 

smoothing methods at some score ranges but not at others. Note that in these two cases, linear 

equating had remarkably small RMSE, especially when sample sizes were small. This finding is 

probably due to the small form difference in both cases.

Figures 10 and 11 present RMSE plots for situations in which the quadratic function 

apparently fit the population equating relationship well. For these two cases, both the smoothing 

methods and the quadratic method improved over the unsmoothed equipercentile methods. The 

amount of improvement of post-smoothing methods is consistent with the results in Hanson, 

Zeng, and Colton (1991). Clearly, in these two cases, the quadratic method performed better than 

all other methods regardless of the sample sizes. But the better performance is more consistent 

along the score scale for small samples than for large samples.

Figure 12 contains plots of RMSE for a situation where the population equating 

relationship does not fit a quadratic function. Apparently, there is no advantage to using this 

method over using the unsmoothed equipercentile method. Interestingly, when the sample size is 

small, the linear method had the smallest RMSE in the middle score range; when sample size is 

large, virtually no method shows real improvement over unsmoothed equipercentile method in this 

case.

Tables 2 through 6 (see Table 2 through 6 at the end of the report) contain the average 

values of absolute bias, standard error, and RMSE, weighted by the X score population 

frequencies. For the first and second type of populations, all the standard errors were much larger 

than the absolute bias except for the linear method. So the RMSE values were mainly attributed to 

standard errors. For the first type populations (Table 2 and 3), the quadratic method had slightly

11
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better average performance than the smoothing methods in one case and had slightly worse average 

performance in the other case. For the second type populations (Table 4 and 5), the quadratic 

method generally had better average performance than the smoothing methods. This is more 

evident for small sample sizes than for large sample sizes. As we already knew, unsmoothed 

equipercentile equating is unbiased. Increasing sample size (thus reducing random error) to certain 

level would surely make this method the best choice. Post smoothing with small smoothing 

parameter is close to unsmoothed equipercential method. It is observed from the results of the 

present study that when sample size is large, post-smoothing with small smoothing parameter is 

usually a favorable choice. For the third type populations (Table 6), the quadratic method had 

smaller average standard error but not absolute bias. The larger average RMSE were attributed to 

larger bias. Post-smoothing with larger smoothing parameters produced larger bias, but a smaller 

standard error than that with smaller smoothing parameters. In almost all the cases, linear methods 

always had smaller standard errors.

Discussion and Conclusion

In searching for an appropriate polynomial function to model the equating relationship, we 

considered adding one cubic term to the quadratic function so that kurtosis could also be equated. 

But doing so was found undesirable for two reasons. First, it makes computation much more 

complicated. Second, sample kurtosis has much more random error than skewness. The variance 

of sample kurtosis is four times that of sample skewness (see Kendall & Stuart, 1977, pp. 258). 

Higher order polynomial functions might be investigated in the future if these issues can be 

properly resolved. The quadratic function could be studied as the first step in this direction.

Linear and equipercentile equating both have advantages and limitations. Smoothing 

methods are aimed at reducing the random error of the equipercentile methods but they usually 

involve complicated mathematical manipulation and computer programming. Also, they often 

require subjective judgment about model parameters. The quadratic equating method proposed in



this paper provides another approach to reduce random error as well as bias. Both the idea and 

computation are simple, and implementation of the quadratic method does not require subjective 

judgment.

The results based on the real test data in this study showed that the quadratic method 

worked well for most but not all of the test data. When the population equating relationship was 

close to a quadratic in form, this method clearly displayed smaller random error and bias than other 

sophisticated methods for both small and large sample sizes. However, procedures need to be 

derived to judge whether or not the quadratic method adequately fits the population based on 

sample data. An examination of the equipercentile equating relationship and the kurtosis difference 

before and after the quadratic equating might be helpful if this procedure were to be used in 

practice.
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Tabic 1. Descriptive Statistics for Observed Data before and after Quadratic Curve Equating

Mean S.d. Skewness Kurtosis Kurt. diff. Kurt. diff. Sample size
before equat. after equaL 

Licensure Subtest (30 items)_____________________________________________________________
New form before equatinj 
New form after equating 
old form

18.880
19.157
19.157

3.680
3.430
3.430

-0.130
-0.304
-0.308

2.786
2.934
3.051 0.265 0.117

38765

38765

ACT Reading Sublest (20 items)
New form before equatinj 12.300 3.757 -0.205 2.391 82062
New form after equating 12.688 3.580 -0.278 2.449
old form 12.688 3.580 -0.280 2.522 0.131 0.073 83693

ACT English (75 items)
Form A before equating 48.482 13.088 -0.089 2.187 0.185 0.030 2968
Form A after equating 51.325 12.753 -0.320 2.373
Form B before equating 51.325 12.755 -0.322 2.423 0.236 0.050 2748
Form B after equating 48.571 12.207 -0.168 2.286
Form C before equating 48.571 12.207 -0.167 2.302 0.121 0.016 2921
Form C after equating 51.156 12.206 -0.409 2.553
Form D before equating 51.156 12.205 -0.406 2.532 0.230 0.021 2903
Form D after equating 50.741 12.204 -0.312 2.436
Form E before equating 50.741 12.204 -0.313 2.395 0.137 0.041 2880
Form E after equating 51.273 12.770 -0.380 2.465
Form F before equating 51.273 12.770 -0.381 2.521 0.126 0.056 2853
Form F after equating 50.070 12.876 -0.306 2.428
Form G before equating 50.070 12.876 -0.308 2.372 0.149 0.056 2800
Form G after equating 48.482 13.091 -0.085 2.217

ACT Mathematics (60) items
Form A before equating 28.463 10.569 0.481 2.535 0.282 0.143 2968
Form A after equating 30.300 12.198 0.256 2.327
Form B before equating 30.301 12.187 0.276 2.148 0.287 0.179 2748
Form B after equating 29.758 11.563 0.415 2.281
Form C before equating 29.758 11.567 0.424 2.463 0.315 0.182 2921
Form C after equating 31.080 12.741 0.179 2.298
Form D before equating 31.082 12.722 0.208 2.060 0.403 0.238 2903
Form D after equating 28.937 11.448 0.296 2.116
Form E before equating 28.937 11.450 0.305 2.367 0.307 0.251 2880
Form E after equating 29.819 11.358 0.380 2.444
Form F before equating 29.819 11.358 0.380 2.424 0.057 0.020 2853
Form F after equating 30.389 11.109 0.321 2.375
Form G before equating 30.389 11.108 0.324 2.253 0.171 0.122 2800
Form G after equating 28.463 10.566 0.474 2.392



Table 1 (continued). Descriplive Statistics for Observed Data before and after Quadratic Curve Equating

Mean S.d. Skewness Kurtosis Kurt. diff. Kurt. diff. Sample size
before cquat. after equat

ACT Reading (40) items
Form A before equating 24.804 6.584 -0.024 2.375 0.108 0.059 2968
Form A after equating 25.350 7.581 -0.065 2.386
Form B before equating 25.350 7.581 -0.061 2.117 0.258 0.269 2748
Form B after equating 25.669 6.577 -0.141 2.158
Form C before equating 25.669 6.578 -0.150 2.466 0.349 0.308 2921
Form C after equating 25.837 6.896 -0.185 2.492
Form D before equating 25.837 6.896 -0.185 2.459 0.007 0.033 2903
Form D after equating 25.314 6.955 -0.099 2.408
Form E before equating 25.314 6.954 -0.102 2.312 0.147 0.096 2880
Form E after equating 24.731 6.821 0.026 2.275
Form F before equating 24.731 6.822 0.031 2.385 0.073 0.110 2853
Form F after equating 25.452 6.511 -0.139 2.458
Form G before equating 25.452 6.512 -0.140 2.483 0.098 0.025 2800
Form G after equating 24.804 6.585 -0.022 2.434

ACT Science (40) items
Form A before equating 24.153 6.439 -0.192 2.553 0.148 0.042 2968
Form A after equaling 22.661 7.077 0.200 2.543
Form B before equating 22.659 7.064 0.170 2.373 0.180 0.170 2748
Form B after equating 22.227 6.964 0.231 2.400
Form C before equaling 22.330 6.964 0.232 2.431 0.058 0.031 2921
Form C after equating 24.122 6.640 -0.044 2.415
Form D before equating 24.122 6.642 -0.048 2.496 0.065 0.081 2903
Form D after equaling 22.965 6.515 0.061 2.477
Form E before equaling 22.965 6.515 0.060 2.463 0.033 0.014 2880
Form E afler equating 22.374 6.334 0.175 2.495
Form F before equating 22.374 6.334 0.173 2.443 0.020 0.052 2853
Form F after equating 22.439 7.073 0.110 2.426
Form G before equating 22.439 7.072 0.111 2.405 0.038 0.021 2800
Form G after equaling 24.153 6.438 -0.191 2.511



Table 2. Average Absolute Bias, Standard Error and Root Mean Squared Error for the Licensure Subtest.

Sample Size = 250

Abs. Bias S.E. RMSE s.e.(RMSE)
Unsmoothed 0.041 0.457 0.462 0.027
Linear 0.113 0.388 0.410 0.020
Quad. Curve 0.051 0.403 0.410 0.021
Post Smooth 0.2 0.024 0.405 0.409 0.021
Post Smooth 0.5 0.069 0.387 0.399 0.019

Sample Size = 2000

Abs. Bias S.E. RMSE s.e.(RMSE)
Unsmoothcd 0.019 0.159 0.164 0.003
Linear 0.111 0.132 0.180 0.003
Quad. Curve 0.034 0.140 0.148 0.002
Post Smooth 0.2 0.024 0.143 0.150 0.002
Post Smooth 0.5 0.059 0.140 0.158 0.003

Abs. Bias S.E. RMSE s.e.(RMSE)
0.026 0.298 0.303 0.010
0.117 0.242 0.276 0.008
0.049 0.257 0.265 0.008
0.049 0.257 0.267 0.008
0.088 0.247 0.269 0.007

Table 3. Average Absolute Bias, Standard Error and Root Mean Squared Error for the ACT Reading Subtest

Sample Size = 250 Sample Size = 500

Abs. Bias S.E. RMSE s.e.(RMSE)
Unsmoothed 0.019 0.436 0.436 0.021
Linear 0.062 0.365 0.373 0.016
Quad. Curve 0.028 0.381 0.383 0.017
Post Smooth 0.2 0.034 0.380 0.382 0.017
Post Smooth 0.5 0.051 0.361 0.366 0.016

Sample Size = 2000

Abs. Bias S.E. RMSE s.e.(RMSE)
Unsmoothed 0.010 0.151 0.152 0.002
Linear 0.068 0.124 0.145 0.002
Quad. Curve 0.039 0.132 0.139 0.002
Post Smooth 0.2 0.023 0.130 0.133 0.002
Post Smooth 0.5 0.046 0.122 0.133 0.002

Abs. Bias S.E. RMSE s.e.(RMSE)
0.013 0.301 0.301 0.009
0.063 0.249 0.259 0.007
0.031 0.264 0.266 0.008
0.026 0.258 0.259 0.007
0.047 0.244 0.250 0.007



Sample Size = 500 Sample Size = 2000

Table 4. Average Absolute Bias, Standard Error and Root Mean Squared Error for the ACT English Test (A to B).

Abs. Bias S.E. RMSE s.e.(RMSE)
Unsmoothed 0.081 1.146 1.154 0.139
Linear 0.750 0.919 1.230 0.138
Quad. Curve 0.150 0.978 1.001 0.102
Post Smooth 0.2 0.102 1.029 1.039 0.113
Post Smooth 0.5 0.334 0.984 1.052 0.110

Sample Size = 3000

Abs. Bias S.E. RMSE s.e.(RMSE)
Unsmoothcd 0.038 0.470 0.476 0.024
Linear 0.733 0.370 0.849 0.044
Quad. Curve 0.121 0.396 0.434 0.019
Post Smooth 0.2 0.066 0.419 0.433 0.020
Post Smooth 0.5 0.193 0.406 0.462 0.023

Abs. Bias S.E. RMSE s.c.(RMSE)
0.072 0.592 0.598 0.037
0.685 0.471 0.904 0.057
0.123 0.504 0.538 0.028
0.073 0.530 0.541 0.029
0.218 0.513 0.566 0.031

Table 5. Average Absolute Bias, Standard Error and Root Mean Squared Error for the ACT Science Test (G to A).

Sample Size = 250 Sample Size = 500

RMSE s.e.(RMSE)Abs. Bias S.E. Abs. Bias S.E.
Unsmoothed 0.078 0.809 0.816 0.068
Linear 0.449 0.642 0.813 0.064
Quad. Curve 0.101 0.680 0.694 0.048
Post Smooth 0.2 0.056 0.721 0.728 0.052
Post Smooth 0.5 0.201 0.688 0.726 0.048

Sample Size = 2000

Abs. Bias S.E. RMSE s.e.(RMSE)
Unsmoothed 0.020 0.298 0.302 0.009
Linear 0.463 0.238 0.539 0.019
Quad. Curve 0.103 0.254 0.281 0.008
Post Smooth 0.2 0.053 0.267 0.276 0.008
Post Smooth 0.5 0.132 0.261 0.299 0.009

RMSE s.e.(RMSE)
0.024 0.600 0.603 0.037
0.461 0.483 0.695 0.042
0.101 0.516 0.530 0.028
0.072 0.540 0.547 0.030
0.215 0.527 0.579 0.033



Table 6. Average Absolute Bias, Standard Error and Rool Mean Squared Error for the ACT Reading Test (A to B).

Unsmoothed 
Linear 
Quad. Curve 
Post Smooth 
Post Smooth

Unsmoothed 
Linear 
Quad. Curve 
Post Smooth 
Post Smooth

Sample Size = 250

Abs. Bias S.E. RMSE s.e.(RMSE)
0.056 0.969 0.973 0.103
0.351 0.787 0.883 0.081
0.339 0.854 0.932 0.097
0.119 0.866 0.877 0.083
0.258 0.787 0.839 0.076

Sample Size = 2000

Abs. Bias S.E. RMSE s.e.(RMSE)
0.027 0.341 0.346 0.012
0.359 0.283 0.476 0.018
0.339 0.301 0.472 0.019
0.102 0.314 0.335 0.011
0.192 0.308 0.374 0.013

Sample Size = 500

Abs. Bias S.E. RMSE s.e.(RMSE)
0.042 0.685 0.690 0.047
0.355 0.564 0.689 0.045
0.336 0.620 0.722 0.057
0.101 0.623 0.635 0.039
0.244 0.587 0.647 0.040



Figure 1. Equating functions for ACT Reading subscorc using observed data.

Figure 2. Equating functions for Liccnsurc test using observed data.
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Figure 3. Equating functions for ACT English scorcs using observed dam.
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Figure 3 (continued). Equaling functions for ACT English scores using observed data.
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Figure 4. Equating functions for ACT Mathematics scores using observed data.



Figure 4 (continued). E q u a tin g  fu n c tio n s  fo r A C T  M a th e m a tic s  sc o rc s  u s in g  o b s e rv e d  d a ta .
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FigureS. E q u a tin g  fu n c tio n s  for A C T  R e a d in g  sco rcs  u s in g  o b se rv e d  data .



Figure 5 (continued). Equaling functions for ACT Reading scorcs using observed data.
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Figure 6. Equating functions for ACT Science scores using observed data.



Figured {continued). E q u a lin g  fu n c tio n s  fo r  A C T  S c ic n c c  sco rc s  u s in g  o b se rv e d  d a ta .
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Figure 7. P opulation  eq u atin gs for three pairs o f  d istributions u sed  in sim ulation .



Figure 8. Root mean squared error of equating methods for Liccnsurc test.
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Figure 9. Root mean squared error of equating methods for ACT Reading subtcst.



Figure 10. Root mean squared error of equaling methods for ACT English test (A 10 B).



Figure 11. R oot m ean squared error o f  equating m ethods for A C T  S c ie n c e  test (G to A ).
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Figure 12. R o o t  m ean  squared error o f  eq u a lin g  m eth od s for  A C T  R ea d in g  test (A  to B ).
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