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Abstract

Not infrequently, investigators assume that reliability for groups is greater than 

reliability for persons, and/or error variance for groups is less than error variance for 

persons. Using generalizability theory, it is shown that this "conventional wisdom" is not 

necessarily true. Examples are provided from the course evaluation literature and the 

performance testing literature.
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Some Measurement Characteristics of

Aggregated Versus Individual Scores

It is often stated that if a test is not reliable enough for making decisions about 

individuals, or if error variance for individuals is unacceptably large, then the test should 

be used only for making decisions about groups. Implicit in such statements is an 

assumption that reliability for groups is necessarily larger than reliability for persons, and 

error variance for groups is necessarily smaller than error variance for persons. In this 

paper, such statements or assumptions will be called the "conventional wisdom." The 

purpose of this paper is to show that this conventional wisdom is not necessarily true, and 

to identify specific conditions that lead to contradictions of this conventional wisdom.

These issues are considered in the context of generalizability theory (Cronbach, 

Gleser, Nanda, & Rajaratnam, 1972), without a full explication of all the details of the 

theory. Readers unfamiliar with generalizability theory can consult Cronbach et al. 

(1972), Brennan (1992a), or Shavelson and Webb (1991). Also, many aspects of 

reliability (or generalizability) of group means have been treated by Kane and Brennan 

(1977). A brief introduction to generalizability theory is provided by Bennan (1992b).

Generalizability Coefficients for Groups 

with Two Random Facets

When persons (p) are nested within groups (g ) and crossed with items (/), the 

design is denoted (p:g) x /, and the linear model is

X  ■ — U, + U. ~ + Li ~ + + Li + Li • ~ . (1)pi:g ^  ^g p:g w ^gi ^pi:g v '

The terms to the right of the equality (except |i) are uncorrelated score effects with 

expectations of zero, and the ji . ~ term is the interaction effect confounded with other 

sources of error. The variances of these score effects are called variance components.
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For this design, if groups are the objects of measurement, then the universe of 

generalization consists of the p  and i facets. If, in addition,/? and i are both random, then 

the generalizability coefficient for generalizing over samples of k items and n persons 

within each group is

£p2 = — 2 2 T  ' ^
4 + op:g/n + G~i + cpl :gln

where a 2, -  G2./& and a 2, = a 2. Jk .
V P]'-% pi:g

It is important to note that n in Equation 2 is the number of persons within a group, not 

the larger number o f persons across all groups.

Assuming that p  and i are both random implies that replications of the 

measurement procedure would involve different sets of persons and items or, 

equivalently, that an investigator wants to generalize to a larger set o f persons and items 

than those in a particular measurement procedure. This assumption seems especially 

sensible for programs such as NAEP, which uses a type of matrix sampling design.

From the perspective of generalizability theory, traditional measurement error is 

most closely associated with generalizing over samples of items. It is important to note, 

however, that traditional measurement error is not necessarily the only, or even the most 

important, source of unreliability for inferences about group means. As noted by Feldt 

and Brennan (1989):

The test results for any given year reflect not only the character of the 

instructional program but also the character of students enrolled at that 

specific moment. These individuals must be regarded as a sample, in a 

longitudinal sense, from the population that flows through the district 

schools over a period of years. A curricular judgment can be in error if a 

particular year’s class happens to be unusually strong or weak. Thus, even



if authorities were privileged to know the true scores of current students, 

there could be substantial sampling error in using the results of one class 

to infer something about the impact of a program. An estimate of the 

reliability of class means must take this into account, (p. 127)

In short, in most circumstances, generalizing over both items and persons seems sensible in 

examining the reliability of group means.

Using the notational system introduced above, when persons within a single 

randomly selected group are the objects of measurement, the generalizability coefficient 

is

P'g fig

It is important to note that Equation 3 is for persons within a group, not across groups.

The generalizability coefficient for all persons across groups is

g p:g gl phg

Note that for both of the coefficients in Equations 3 and 4, persons are the objects of 

measurement and the universe of generalization involves the items facet, only.

Usually, when comparative statements are made about reliability coefficients for 

groups and persons, the intended interpretation of reliability for persons is given by 

Equation 4. Therefore, a central focus of this paper is to compare Equation 2 and 

Equation 4. In particular, it is of interest to identify conditions under which E < E . 

One such condition is = 0 , which is an unlikely occurrence implying that all group 

means are equal.

9 9 2The inequality £p^ < Epp is also true when k —» °° because in that case E = 1

and £p^ = + < Consequently, it seems likely that long tests that are



highly reliable for decisions about persons will be less reliable for decisions about 

groups. For example, the following estimated variance components were obtained from 

an administration of the ACT Assessment Mathematics test in schools (i.e., groups) in a 

particular state:

a 2 = .0016, c2 = .0329, a 2 . = .0009, and a 2.. = .1809.8 p-g gt pt-g

The ACT Mathematics test contains k = 60 multiple choice items, and the average 

number of students per school was about n = 145. For these values

Ep2 = .86 < Ep2 = .92 .
P

2 2 Even with such a large value for n , Ep^ is still less than E i n  large part because the

ACT Mathematics test is very reliable for person-level decisions.
9 9

Equations 2 and 4 also imply that £p^ < Ep^ is true when n = 1, which suggests
2 2that < Ep^ is more likely to be true for small values of n than for large values.

However, in general, for 1 < n < and 1 < k < «= there appears to be no simple, necessary

2 2relationship among the variance components that guarantees that £p^ < £ p ^ . Even so, 

there are sufficient conditions that do pertain. One such condition is discussed next.

A Sufficient Condition

Note that, for a given value of k, the maximum value of Equation 2 occurs when 

n —» oo, in which case



Clearly, if (Ep2 1 n —> °°) < Ep2 then Ep2 < Ep2 . Therefore, whenever Equation 5 is
S P S P

smaller than Equation 4, Ep2 < Ep2 . Consequently, we will focus on Equations 4 and

5 to obtain a sufficient condition for Ep^ to be smaller than Ep~;. Letting
O r

K  = and (6)

L = a > p / : « ’ (7)

Equation 4 can be written

EP2„ = °̂  + <#*

m

V  +r^wK ) ”g T (  L  )°* f

__________ £ __________

Equation 5 is smaller than Equation 8 when
K \ r L +  l \  ,

< 1 ,

(8)

K +  1 L

which implies that (KL + K) < {KL + L). This inequality is true whenever K <L.

It follows that, £ p 2 < £ p 2 
v 8 r P

whenever

< • (9)

or equivalently whenever



Loosely speaking, these results mean that reliability for groups is less than reliability for 

persons whenever the proportion of persons' universe score variance attributable to 

groups is less than the proportion of persons’ error variance attributable to groups. (This 

statement is "loose" primarily because it does not explicitly specify that generalization is 

over both persons and items from the infinite universe of generalization for both facets.) 

The condition in Equation 9 or Equation 10 might hold, for example, if schools (i.e., 

groups) have highly similar universe scores, but at a particular time students in different 

schools have been exposed to different subsets of the tested topics.

Since and the right side of Inequality 10 is invariant

over k . Consequently, this inequality is equivalent to

(1 , )
P'-g gt pi-g

9 9which is sometimes more convenient to use. In short, £ p  < Ep if Inequality 9, 10, or
$ P

9 911 holds. As noted previously, this is a sufficient condition for Ep^ < £p^ — it is by no

9 9means a necessary condition. That is, £p^ can be smaller than £p^ even if Inequality

9, 10, or 11 does not hold.

Two Examples

Discussed next are two examples that illustrate circumstances under which 

£p^ < Ep^ . The first example is from the course evaluation literature. It illustrates a 

circumstance under which the sufficient condition in Equations 9, 10, or 11 is satisfied. 

The second example is from the performance testing literature.

Example 1. Kane, Gillmore, and Crooks (1976) studied the generalizability of 

class (i.e., group) means in the context of student evaluations of teaching. One of the 

questionnaires they studied was administered in all courses taught in the Physics

°̂ +c



Department at the University of Illinois, Urbana-Champaign. "Fifteen classes that had

twenty or more students were randomly selected, with the restriction that only one section

taught by each instructor was included in the sample (Kane et al., 1976, p. 177)." Thus,

there is a Unking of each class with a unique instructor, and generalizations about class

means are effectively generalizations about instructors.

The questionnaire contained a set of k = 8 "attribute" items (e.g., ability to answer

questions) that were analyzed separately from other items. For these items,

a 2 = .03, o2 = .17 , a 2. = .05, and c 2 . = .28 . 
g P'g gi Pl'g

Using Equation 11

o2 ()3 o2 . OS
~  = . 150 < = .152 .

a2 + a2 ’  -20 " a2. + a2. " -33
g P‘8 &  pt:g

Therefore, these data satisfy a sufficient condition for £ p 2 < Ep2 , which means that £ p 2
A O

< £p^ for a]] pairs of values for n and k. For example, if n = 20 and k = 8,

Ep2 = .65 < £ p 2 = .83 .' P

Example 2 . Shavelson, Baxter, and Gao (1993) provide an extensive discussion 

of the sampling variability of performance assessments in the context o f several data sets. 

One such data set is from the California Assessment Program (CAP) which conducted a 

voluntary statewide science assessment in 1989-1990 with approximately 600 schools. 

Students took five performance tasks involving identifying materials that serve as 

conductors, classifying leaves, identifying unknown rocks, estimating and measuring 

characteristics of water, and discovering reasons why fish w'ere dying. The design 

employed by Shavelson et al. (1993) is more complicated than the (p:g) x / design 

considered in this paper, but a subset of their results gives



®g = -07’ &p-.g = -23- &gi = -07- and ^pi-.g = -43-

10

In this case, oj'/Co2 + a 2 ) = .23, o^./Co2 . + a 2 . ) = .14, and Inequality 11 is not g g PS gr gi pi'g M J
satisfied. However, there are numerous combinations of values of n and k for which 

Ep2 < Ep2 . For example, when n ~ 20 and k = 5

Ep2 = .70 < Ep2 = .75 . vg r P

Recalling that the CAP involved k = 5 performance tasks, it can be shown that

Ep2 < Ep2 whenever n < 33. Furthermore, for any value of k, £ p 2 < Ep2 when

n < 14. In other words, no matter how many performance tasks are employed in the

CAP, the conventional wisdom about group reliability being larger than person reliability

will be incorrect if the number of persons within schools is less than 15.
o 9

These examples illustrate that Ep^ < is not simply a mathematical 

possibility. It is a likely occurrence in numerous circumstances, especially when 

variability of persons within groups, a  , is relatively large.

Error Variances for Groups With Two Random Facets 

Just as the conventional wisdom suggests that reliability for groups is greater than 

reliability for persons, so too investigators often implicitly or explicitly assume that error 

variance for groups is less than error variance for persons. However, as discussed next, 

this conventional wisdom about error variances is not necessarily true, either.

The error variance associated with Ep^ in Equation 2 is the relative error variance 

for group mean scores when generalization is over both persons and items:

cr2^  ) = a 2 In + a 2, + a 2, Jn ' gJ p:g gl pf'g ( 12)



For £ p 2 in Equation 4 the relative error variance for person mean scores when 

generalization is over items is

We wish to determine conditions under which a  (5 ) > cr(5  ).
8 P

From Equations 12 and 13, a (8 ) > G (S ) whenever

a 2 jn  + a 2. Jn > a 2 .
P-8 pig pi-8

Multiplying both sides by n and collecting terms gives

a 2. > ( r c - l ) o 2, .
pg pig

2
Dividing both sides by gives

> ( " - 1) ( ,4 > 

The left side of the above inequality is the signal/noise ratio associated with the 

generalizability coefficient in Equation 3 for the reliability of persons within a randomly 

selected group, EPp.g • Since a generalizability coefficient can be viewed as the ratio of 

signal (i.e., universe score variance) to signal plus noise (i.e., relative error variance), 

Inequality 14 is equivalent to

2
„ aP ' K . > n - 1___

CT2 T o 2 , ( « - D + 1 '
P-g pl-g

Therefore, a necessary condition for CT(8 ) > g2(6^) is
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Ep2p.g > ( n -  l)/« . (15)

[These results for relative error variance, a  (5), also hold for absolute error variance, 

o 2(A), because for both groups and persons a 2(A) differs from ct2(5) by the same 

constant, c f / k  -  i.e. o 2(Ag) - o 2(5^) = a 2^ )  - a 2(5/;) = o 2ik  . ]

Clearly, when n —» Inequality 15 will not hold. So, for large values of n, it is 

reasonable to assume that error variance for persons is likely to be larger than error 

variance for groups. However, for small values of n, this need not be so. For example, 

using Inequality 15, ) in the following cases:

n < 20 and Ep^.g = -95, and 

n<  10 and Ep2 = .90.
r ' o

These cases are not so extreme as to be entirely implausible, especially for long tests. 

Consequently, it is unwise to assume that error variance for person mean scores is always 

greater than error variance for group mean scores.

Note that, if <*2(5g) > ^  necessarily follows that £ p 2 < £ p 2 . To see this,

recall from Equations 2 and 4 that universe score variance for groups can not be larger

2 2than universe score variance for persons. This guarantees that Ep* < £p^ when

o2^ )  > • In other words, Equation 15 is another sufficient condition for

£ p 2 < £ p 2 .
Kg yP

By contrast, if £ p 2 < £ p 2 it does not necessarily follow that •

This is true for the Shavelson et al. (1993) example with n -  20 and k = 5. In this case, it 

has already been shown that £ p 2 < £ p 2 , and ^ ( ^ )  =-03 < o2^ )  = .10. Therefore, it 

is possible for group error variance to be smaller than person error variance (in accord 

with the conventional wisdom), while at the same time group reliability is less than 

person reliability (against the conventional wisdom.)



One Random Facet

To this point it has been assumed that, when group means are the objects of 

measurement, both persons and items are randomly sampled from an infinite universe of 

generalization. Call this the "unrestricted" universe. It has been argued in the 

introduction to the previous section, that in most circumstances this unrestricted universe 

is sensible for examining the measurement charactristics of aggregated scores. However, 

there may be circumstances in which it is reasonable to consider a restricted universe of 

generalization in which persons are fixed and items are random. If so, then replications 

of the measurement procedure would involve the same persons but different sets of items. 

For this restricted universe, generalizability coefficients will be larger, and error 

variances will be smaller, than for the unrestricted universe. Consequently, it is more 

likely that for this restricted universe the conventional wisdom about group reliability and 

error variance holds.

When persons are fixed and items are random, the generalizability coefficient for 

groups is

12) to universe score variance.

Comparing Equation 17 with Equation 13 shows that when generalization is over

error variances holds. However, the conventional wisdom about reliability coefficients

(16)

and the associated relative error variance for group means is

(17)

In effect, fixing persons causes to move from relative error variance (see Equation

items only, o 2(S | P ) < c 2(5 ) as long as n > 1. That is, the conventional wisdom about o P



does not necessarily hold. In particular, as shown in the appendix, (Ep2 \ P ) < Ep2 when
o r

Inequality 9, 10, or 11 holds. That is, if Inequality 9, 10, or 11 holds, then it necessarily 

follows that (Ep2 | P) < Ep2 in the restricted universe. By contrast, Inequality 9, 10, or 

11 is only a sufficient condition for £p^ < Ep£ in the unrestricted universe.

It is also possible to consider Ep2 | /  and tf2^  10  for the case when items are 

fixed and persons are random. If so, then replications of the measurement procedure 

would involve the same items but different sets of persons. This possibility is considered 

by Feldt and Brennan (1989, pp. 127, 135-136). It can be shown that there are conditions 

such that (Ep2 1 / )  < Ep2 and &2(&g 10  > °^(8p) • However, there is a conceptual conflict 

in comparing the magnitude of Ep2 with Ep2 11, and the magnitude of with

o 2^  11). The conflict arises because items are fixed for Ep2 1/  and (^(S I f ) , whereas
o o o

items are random for Ep^ and a (8 ). Therefore, although statements can be made about

the relative magnitudes of these quantities, such comparisons are likely to be misleading.

Summary and Discussion

It has been shown that when persons and items are random the conventional

wisdom that Ep2 > Ep2 and ° 2(8^) < does not necessarily hold. In particular,

a 2/ ^ 2 + a  2 ) < a 2 /(a 2. + a  ? ) is a sufficient condition for Ep2 < Ep2 . Even if this 
s  8 P 8  8i 8l Pt:8 v 8 KP

sufficient condition is not met, there can be various combinations of values for n and k 

such that Ep2 < Ep2 . Also, contrary to the conventional wisdom, ^ (8 ^ )  > o2^ )  

whenever Ep* > (n - \)!n , and for small values of n and long tests this condition might 

well be met.

When persons are fixed and items are random, the conventional wisdom that 

a 2(8g | / >) < a 2(8/?) is true provided n>  1. However, for this restricted universe of
9 I 9

generalization, the conventional wisdom that (Ep* I P )>  %  is false if 

Oj'Ca2 + a 2 ) < (^./(O2. + a 2 ) .g g P-'g g‘ S‘ pi-8
In short, for the cases considered in this paper, the conventional wisdom

necessarily holds only for comparative statements about person vs. group error variance
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when the universe of generalization has persons fixed and items random. In all other 

cases, the conventional wisdom about reliability coefficients and error variances may be 

false. In particular, the conventional wisdom may be false when generalization is over 

both samples of persons and samples of items, which often represents the most sensible 

universe of generalization. For this universe, the form of Equations 2, 4, 12, and 13 

clearly shows that ojj is incorporated in universe score variance when persons are the 

objects of measurement, whereas ojj is incorporated in error variance when groups are 

the object of measurement. Therefore, the magnitude of o? is likely to be very 

influential in whether or not the conventional wisdom holds.

As illustrated by the examples in this paper, violations of the conventional 

wisdom about group means are not merely mathematical possibilities — such violations 

are quite common, although they are seldom reported.

Some of the results presented in this paper may seem to contradict the central 

limit theorem. In its simplest form, the central limit theorem implies that error variance 

for mean scores will be less than error variance for individual scores. This has been 

shown to be true for a universe of generalization in which items constitute the only 

random facet, but not necessarily true for a universe of generalization in which both 

persons and items are random. One of the strengths of generalizability theory is that it 

permits an investigator to disentangle the amount of error attributable to multiple facets. 

This cannot be done (or at least not directly) using the simple form of the central limit 

theorem.

Sometimes investigators appear to assume that statements about the relative 

magnitudes of reliability coefficients are interchangeable with statements about the 

relative magnitudes of the corresponding error variances. As discussed previously, this is
9 9not necessarily true. It is possible that £ p r  < Ep* (against the conventional wisdom) 

while (i° accord with the conventional wisdom). It is important,



therefore, that investigators not generalize from statements about reliability to

statements about error variance, or vice-versa.

Throughout this paper, emphasis has been on discussing conditions under which

Ep2 < E d2 and o 2(8 ) > cr(8  ) — i.e., conditions under which the conventional 
8 KP 8 P

wisdom is reversed. Note, as well, that even if a reversal does not occur, aggregation to a 

group level may have relatively little impact on reliability. For example, for the 

Shavelson et al. (1993) example introduced earlier, if k = 5, there is no value of n such 

that Ep2 is greater than Ep2 by .10 or more, and n > 90 is required for Ep2 to be greater 

than Ep2 by .05. Furthermore, especially for relatively small values of k, Ep2 may be
A O

unacceptably small even if it is larger than Ep^ . This is a distinct possibility in some 

performance testing contexts.

Many writers, including this author, have argued that too frequently reliability 

coefficients are referenced in contexts where error variances would be more appropriate 

Also, in item response theory, there is little attention given to reliability coefficients. 

These two points may seem to suggest that the issues raised in this paper about reliability 

coefficients do not deserve much attention. Such a conclusion would be unfortunate. 

Reliability coefficients (as well as signal/noise ratios) have the distinct advantage of 

providing, in one statistic, a comparison between true (or universe) score variance and 

error variance, whereas examining error variance in isolation often leaves an investigator 

pondering whether or not error variance is to be considered large or small. This is a 

particularly important consideration when examining group means. Aggregation may 

well lead to a sizable decrease in error variance, but this can be very misleading if an 

investigator fails to take into account the corresponding decrease in true (or universe) 

score variance. In short, both reliability coefficients and error variances have utility for 

examining the measurement characteristics of aggregated scores versus individual scores.
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Appendix

A Condition Under Which (Ep2 | P  )< Ep2

Let K  = o j /o 2p:g and L = as in Equations 6 and 7, respectively. It follows

from Equation 8 that

2

£ |V - 2 -----77T\ / U h j  ' (A1)
+ ( r j  ( k + T J

From Equation 16

£p2|P=___ °̂ +ai^___
8 al + °s IKn + ab  + ° 2g i/Ln

Kn + 1 \  2
" ^ T “ K

Kn + I \  2 fLn + 1\ 7
i o r  k + { - u r K i

3
a 2 +

(A2)

In comparing Equations A l and A2, it is evident that (Ep2 | P) < Ep2 when
& P

L + 1 Ln + 1 
K  + 1 < Kn + 1 ’



which is equivalent to

(L+ \)(Kn+ \ )<(K + \)(Ln+ 1) 

LKn +L + Kn + 1 < LXn + K + Ln + 1 

K n - K  < L n - L  

K(n- 1) < L(n- 1)

K  < L

20

Therefore, £ p 2 1P < Ep2 when

cp-/o2. < a2, / a 2.
8 PS  S1 P i -8

which is equivalent to

a2 a2-
------- g----- <  -------- 81------
cy2 + a 2 c 2. + a2.

8 P'S 8t Pi:8

as shown in the text leading to Equation 11
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