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variable, X y rep resen ts a single B ernoulli tria l and is d istributed as B in{P(0j),l} . Then,

B-(0i) = Prob(X  = x |6  = 0j) = P ^ ) *  Q C ej1-*, w here

1, correct response
x -

0, incorrect response

F or this test item , the probability  o f observing X  = x  under the alternative hypothesis is 

U nd er th e  null hypothesis, the probability  of observing X  = x  is tt(0o). T he functions, and

tt(0o), are  called likelihood functions of jc, and a ratio  of these two functions, L(x) = 7r(01)/7r(0O),

is called a  likelihood ratio .

Tw o e rro r probabilities, a  and  0 , can be defined, w here

Prob(choosing H : if H 0 is true) = a  

and

Prob(choosing H 0 if H x is true) = /?.

W ald (1947) sta ted  tha t even though the nom inal e rro r rates, a  and f3, a re  established prio r to 

testing, the actual e rro r  rates observed in practice, a* and  /?’, are  bounded from  above by functions 

o f the nom inal rates, o r a* < a / ( l -(3) and < >3/(1 -a). W ald (1947) also defined two likelihood 

ratio  boundaries th a t a re  functions of a and j8. T hese boundaries a re  A  and B , w here the lower 

boundary = B  > 0 / ( l - a )  and the upper boundary = A  < (1 -(3)/a.

A ccording to  W ald’s SPRT, item  responses are  observed in sequence, x v  x 2, *n, and

following each observation, the likelihood ratio, L(xt, x 2 ^ 1 0 0 ,0 ^ , is com puted, assuming 

conditional independence, w here

^ ,( 0 ,) w2(0 ,) ... *rn(e ,)
L(x„ x2, ...,Jfn |0 o,0 l) = ------------------------------------ .
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Abstract

Sequential probability ratio testing (SPRT), which usually is applied in situations requiring a 

decision between two simple hypotheses or a single decision point, is extended to include 

situations involving k decision points and [(£ + l)-choose-2 ] sets of simultaneous, simple 

hypotheses, where k>  \ . The multiple-decision point or multiple-category SPRT procedure can 

be used to classify examinees into k + 1 categories using computer adaptive methods. Computer 

simulations utilizing a 2 0 0 -item pool of previously calibrated test items show that the multiple- 

category SPRT method controls misclassification error rates adequately, provided that the number 

of decision points is not too large.
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Multiple-Category Classification Using a Sequential Probability Ratio Test

W ald’s (1947) sequential probability ratio testing (SPRT) procedure has been used with cognitive 

tests to classify examinees into one of two categories (e.g., pass/fail, master/nonmaster, 

certified/noncertified) (Reckase, 1983). In other words this procedure is useful for determining 

whether an examinee more likely belongs to one of two states or conditions: either an individual 

has ability or latent trait greater than or equal to some minimum value, 5 or that same individual 

has ability less than the minimum value, 5. The value, 5, is frequently called a passing score or 

decision point.

One way to test the composite hypothesis that either the examinee has latent ability less 

than 5 versus that the examinee has latent ability greater than or equal to 6 , is to consider simple 

hypotheses, H0 or H,, regarding the unidimensional latent trait or ability (0S) of the examinee 

taking the test. These simple hypotheses can be written as

H0: 0j = 0O 

vs.

H,: Qi = 6, ,

where 0 ; is an unknown parameter of the distribution of the dichotomous response to a particular 

test item, X (Silvey, 1975). Usually, 0O and 0, represent decision points that correspond to lower 

and upper limits, respectively, of the passing criterion or threshold, 8 , where 0O < 5 < 0,. The 

SPRT can then be used to test the composite hypotheses, H0: 0j < 5 versus Hj: 0j > 5 by 

considering two weaker hypotheses, say co0 = {0:0<0O} and C0 j = {0:0>0j} (Silvey, 1975; Wald, 

1947).

In the case of cognitive testing, X  can be assumed to follow a binomial distribution. If 

P(0j) is the probability that examinee i responds correctly to an item, and Q(0j) = 1 - P(0j) is the 

probability of an incorrect response from examinee /, then, for this single item, the random



variable, X, represents a single Bernoulli trial and is distributed as B in{P(0j), 1}. Then,

71(0,) = Prob(x = * |e  = e,) = P(e,r Q W 1 ,

where

1 , correct response x  =
0 , incorrect response .

For this test item, the probability of observing X = x  under the alternative hypothesis is 7t(0(). 

Under the null hypothesis, the probability of observing X  = x  is tc(0o). The functions, 71(0!) and 

7t(0o), are called likelihood functions of x, and a ratio of these two functions, L(a) = 7c(0 ,)/7t(0 o), 

is called a likelihood ratio.

Two error probabilities, a  and p, can be defined, where

Prob(choosing H, if H0 is true) = a  

and

Prob(choosing H0 if H, is true) = p.

Wald (1947) stated that even though the nominal error rates, a  and p, are established prior to 

testing, the actual error rates observed in practice, a  and p \  are bounded from above by 

functions of the nominal rates, or a ‘ < a /(l-p )  and p* < p /(l-a ). Wald (1947) also defined fwo 

likelihood ratio boundaries that are functions of a  and p. These boundaries are A and B , where 

the lower boundary^ B > p /( l-a )  and the upper boundary ~ A < ( l-p )/a .

According to W ald’s SPRT, item responses are observed in sequence, x lt x2, xa, and 

following each observation, the likelihood ratio, L(x l5 x 2 xn|0o,0!), is computed, assuming 

conditional independence, where

7ti(0i) 7^(0,) ... 7tn(0,)
L(JCi, x 2, xn|0 o,0 ,) =

71,(00) 7T2(0o) ... 7Tn(0o)
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The likelihood ratio is then compared to the boundaries, A and B. If 

L(jc,, x2, ..., xn 1 0 0 ,0 !) > A , then Hj is accepted and the examinee is classified as 0; > 5. If 

L(*,, x2, ..., jcn|0o,0 t) < B, then H0 is accepted and the examinee is classified as 0; < 5. If 

B < L(x,, x2, xn|0o,0,) < A, no decision is made and another item response must be observed

if a decision is to be made with the specified error rates.

Any test administered with the SPRT procedure is, by its very nature, adaptive in that 

examinees with different abilities (i.e., different values of 0 ,) could have different expected test 

lengths, nt, the number of items that must be administered before a classification is made. 

Typically, those examinees with 0j < 0O or 0f > 0! will have shorter expected test lengths than 

those with 0 O < 0 } < 0 1#

To facilitate the SPRT procedure for criterion-referenced testing, the value of 5 usually 

corresponds to a minimum proportion, p(5), of m items in the item pool that an examinee is 

expected to answer correctly in order to be classified as 0; > 0,. If p($) is known a priori, then 

5 can be found by solving for 5 in the expression, /;(5) = Mm £  Pj(8 ), j = 1 ,2 , m. The item 

functions, Pj(5), are typically expressed as 3-parameter logistic item response functions with 

known (i.e., calibrated) item parameters.

Values for 0, and 0O are selected according to the precision that is desired. Values of 0O 

and 0 , that are close to each other imply high precision, while greater differences in 0 O and 0 , 

imply less precision. Normally, 0, and 0O are selected to be equidistant from 8 , although this is 

not a necessary condition for the SPRT procedure. The region from 0O to 0, is known as the 

indifference region because there is usually an amount of indifference associated with the 

classification made for individuals within that region. The distance, |0j - 0O|, is the width of 

the indifference region. Test length is a function of this region; for fixed values of a  and (3, a
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larger indifference region results in shorter expected test lengths for all examinees (Reckase, 

1983; Spray & Reckase, 1987).

Within the context of an adaptive test, the m items in the item pool are usually ranked

1 through m on the basis of item information at the decision point, p(5) or equivalently, 8 , and 

then administered in sequence to each examinee. Therefore, many examinees could receive some 

of the same items as all other examinees taking the sequential test. Because this is usually 

undesirable from a test security standpoint, some randomization scheme can be employed to 

assure that item-exposure rates (i.e., the number of times that any item is presented to examinees) 

are controlled.

In addition there is usually some maximum number of test items or maximum test length 

(MTL), that, from a practical standpoint in terms of testing time, can be presented to a single 

examinee. Frequently, a forced classification is made once this maximum number of items has 

been reached and no classification under the likelihood ratio test has occurred. Typically, after 

reaching this maximum test length, log{L(jt!, x2, *max)} is compared to the log of the SPRT 

boundaries, A and B. Classification is then made according to some distance rule, for example 

by MIN{ |logL(x„ x2> *m„)-log/4|, |logL(x„ x 2t ..., xm„)-logfl | }. For tests where MTL is

fairly small, forced classifications can occur for many examinees. The effect of forced 

classification on the SPRT procedure is to alter the actual classification error rates, a  and (3‘, 

reducing the classification accuracy.

Multiple Categories

When a testing situation requires classification into more than two categories, such as into 

one of a number of entry level courses, a modified SPRT procedure can be used (Wetherill,
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1975). The purpose of this paper is to describe one such multiple-category modification and to 

report on the results of computer-simulated SPRTs requiring multiple classifications.

A Sequential Probability Ratio Test Involving Two Decision Points

Suppose that the purpose of a SPRT is to classify an examinee into one of k+ 1 categories 

(e.g., hierarchically ordered mathematics courses), where k is the number of decision points 

required. For the following discussion, it is assumed that k = 2. The three categories of possible 

mutually exclusive classification are 0i < 8 h < 0; < 52, or 0; > 8 2. The values of 5, and S2 

are established or known a priori. However, because the usual SPRT tests hypotheses about 

single values of 0 S defined by the endpoints of the indifference region, such a region must be 

constructed around each decision point. One such endpoint can be chosen midway between 8 , 

and 8 2 or (8 , + MID1ST) where MIDIST = (S2 - 8^/2. This 0 value is labeled 02, while another 

0 value (0^ can be chosen, such that 0} = 8 j - MIDIST. This result gives an indifference region 

around 8 , of size |0 2 - 0 J ,  = 2 X MIDIST. A similar indifference region can be constructed 

around S2 using 02 and 03 as indifference region endpoints, where 03 = S2 + MIDIST. These 

three values of 0 form the set {0t, 02, 03}, where 0, < 02 < 03. Once these values of 0 are 

established, three sets of SPRT hypotheses can be formulated:

H3:0i = 0 1
HT:e ( = e2’ H ^ e , -  h ^ - b,-

All three sets of hypotheses are tested after each item response is obtained, and the 

following decisions are made, based on the results of these tests:

Decision 1 is made (0> < 8 ^ when H, and H 3 are both accepted.

Decision 2 is made (8 j < 0j < 8 2) when Hy and H2 are both accepted.



Decision 3 is made (0j > 52) when Hj and H; are both accepted.

Otherwise, testing continues.

For each SPRT, test items can no longer be ranked for sequential administration by item 

information at a single decision point because there is more than one such point. A reasonable 

compromise is to rank items by item information at the decision point that is closer to an 

estimate of the examinee’s ability based upon the responses to previous items. For this study, 

a Bayes estimate of 0S is obtained (Owen, 1975) for each examinee after each item response, and 

the viable test items remaining in the pool are then ranked, by item information, at this decision 

point and administered. The process continues until a decision is reached for each examinee.

Establishing error rates. In order to test the set of three hypotheses given above, desired 

error rates must be provided. These are used to derive the critical values for the likelihood ratio 

tests. Let /?hy designate the probability that 0 = 0h is accepted, given that 0 = 0j is correct, h =

1, 2, 3; j  = 1, 2, 3. The power of any single SPRT is ph|hor and for simplicity, let ph|h 

= Pjy for all h and j. It makes intuitive sense to allow the error rates, /;hy, h *  j, to vary as a 

function of the distance between 0h and 0j. Specifically, the desired error rate should be less 

when the distance between 0 h and 0 j is greater. If dhJ represents the distance (i.e., the absolute 

difference) between 0 h and 0 j, h * j\ then |Dh| = Z \/cihj, summed over /, represents the norm 

of these distances. Then a possible set of error rates with these properties are

Phu = (i

Establishing likelihood ratio boundaries. The likelihood ratio boundaries used to make 

one of the three decisions mentioned above follow straightforward from the simple SPRT 

procedure involving two categories. In order to test H0: 0 = 0h versus H,: 0 = 0j5 the upper 

boundary is p -^ p ^  and the lower boundary is p h|/p h|h, h = 1, 2, 3; j  = 1, 2, 3; h * j  .
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In particular, for the case involving two decision points and three categories, 

if *2, ..., *n|e ,0 2) -  P\\JP\\\ and L (*i, x2, ..., Jrn|0 ,0 3) < P]yJP\11y Decision 1 (0i<51) is 

made;

if L(jc„ x 2, x a 18 2 ,6 3 ) < Pz\Jp2\2 and L(*j, x2, * J 0 28i) > p 2\Jp2\^ Decision 2 ( S ^ O ^ )

is made; and

if L(x,, *2> •••• *n 16 2 ,6 3 ) ^  P 3 |3/P3 |2 and L(*i» * 2 .......*n|63,0i) £ P ^ P 3\\, Decision 3 (0>S2) is

made.

A Sequential Probability Ratio Test Involving k  Decision Points

In general, suppose that the purpose of an SPRT is to classify an examinee into one of 

k + 1 categories, where k is the number of decision points required. For the following discussion, 

it is assumed that k > 2 . The k + 1 categories of mutually exclusive classification are 0j < 8 ,, 

8 , < 0j < 8 2, S2 < 0j < 8 3 , .... , 6 j > 5k. Once again, the values of 8 ,, 8 2, 8 3, etc. are established 

a priori. These might represent the criteria for receiving class grades A , B, C, and so on. In 

order to perform the necessary SPRTs, k + 1 values of 0 must be established in the manner 

described previously (i.e., the values of 0  represent midpoints between adjoining decision points). 

These 0 values are used to test [(k + l)-choose-2] simple SPRTs of the form, 0, versus 02, 0 t 

versus 03, ..., 0, versus 0k+1, 02 versus 03, ..., 0k versus 0k+1. Error rates, p hy, and likelihood ratio 

boundaries remain the same as described previously.

The number of tests necessary for acceptance before a decision is made (i.e., before an 

examinee is classified into one of the k + 1 categories) is k. As before, if item administration 

is terminated before a classification is made (e.g., MTL is reached), then the region of 

classification containing an estimate of the examinee’s ability, 0 i7 can be obtained and used to 

place the examinee into one of the k  + 1 categories. The same situation applies in the k  > 2 case
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as it did in the 2-category case, in terms of the effect of forced classification on the SPRT

procedure and the actual error rates. Classification into categories is not as accurate when item

administration ends when the MTL value is reached.

All [(k + l)-choose-2] sets of hypotheses are tested, and the following decisions are made, 

based on the results of these tests:

Decision 1 is made (0j < 5,) when the k tests of H: 0; = 0, are accepted.

Decision j  is made (Sj., < 0S < Sj) when the k tests of H: 0t = 0j, j  = 2, 3, ... , k, are

accepted;

Decision k + 1 is made (0j > 5k) when the k tests of H: 0j = 0k+l are accepted.

Results of Computer Simulations 

Computer simulations were conducted to determine if the multiple-category SPRT 

procedure produced classifications that were characteristic of a simple, one-decision-point SPRT. 

In other words, did the multiple-category SPRT produce classification error rates and average test 

lengths that were greatest at the decision points? Would the error rate appear to be controlled 

appropriately by the specified power, and if so, by what amount?

A calibrated 200-item pool was used to simulate multiple-category SPRT classifications 

via computer. Items were calibrated with the BILOG computer program (Mislevy & Bock, 

1984). Mean estimates of the a-, b-y and c-parameters for the item pool were 1.18, .48, and .16, 

respectively. Four computer simulations were performed. Simulation I (the simple SPRT) 

required a single decision point k = 1, {S = .05, or p (8 ) = .43) with 3 sizes of the indifference 

region: (-.20, .30), (-.45, .55), and (-.95, 1.05) with power (i.e., p h|h = p ^ )  = .90. Simulation 

I] consisted of 2  decision points of = -1.05 and S2 = 1.05, or p (8 ,) = .23 and p ( 8 2) = .7 5 , 

respectively, again with .90 power.
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Simulation III consisted of 3 decision points at -.95, 0.05, and 1.05, or p ib ^  = .24, p(52) 

= .43, and p (8 3) = .74, also with power = .90. Finally, simulation IV required 4 decision points 

at -1.05, -.55, .55, and 1.05, or p(8 *) = .23, .31, .58, and .75, i = 1,2,3,4, with .90 power. For 

each simulation, 3 different values of MTL, the maximum test length or maximum number of 

items to be administered before a forced classification was made, were used. These were 10, 20, 

and 50. For any single set of simulation conditions, a sequential test was administered 100 times 

to an examinee with known ability, 0j, where 0j varied systematically from -3.0 to +3.0 in 

increments of .25.

Two outcome measures were tabulated over each set of 100 replications. Classification 

Error Rate (CE Rate) was the number of times that a simulated examinee with a known ability, 

0j, was misclassified, either before MTL items were presented or after MTL items were 

administered and a forced classification was made. Average Test Length (ATL) was the average 

number of test items administered before an examinee was classified.

Simulation /. Figures 1, 2, and 3 show CE Rates for Simulation I (k -  1) for three sizes 

of the indifference region, respectively; (-.20, .30); (-.45, .55); and (-.95, 1.05), respectively, for 

the three values of MTL. Figures 4,5, and 6  show ATL for the same conditions, also 

respectively.

CE Rate peaked at or near the single decision point, 8  = 0.05, regardless of the value of 

MTL (See Figures 1, 2, and 3). Classification Error was slightly greater for the largest 

indifference region and was also greater for lower values of 0 (See Figure 3). For all three 

indifference regions, CE Rate decreased as MTL increased. The ATL function reached a peak 

at or near 8  = .05. As expected, values of ATL increased when MTL increased and when the
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width of the indifference region decreased. Slightly elevated ATL levels in the upper ability 

region of 0 were noted under all conditions. See Figures 4, 5, and 6 .

Simulation II. Figures 7 und 8  show Classification Error Rate and ATL for Simulation

II (k = 2) for the three values of MTL. The decision points were 5, = -1.05 and S2 = 1.05, or

/;(§,) = .23 and p{8 2) = .74. The errors once again tended to peak at or near the two decision

points and were minimized in the tails and in between the two decision points. There was a 

tendency for the error to be higher at the lower decision point, 5,. Values of the ATL also 

reached maximums at or near the decision points, although there were some exceptions for very 

low values of 0 .

Simulation III. For Simulation III (k -  3), Figures 9 and 10 show CE Rate and ATL, 

again for the three values of MTL. These figures are consistent with the k = 2 situation, in that 

CE Rate and ATL reached maximums at the three decision points. Once again, the error at the 

lowest decision point, 8 ,, tended to be slightly higher than at the remaining two decision points. 

Misclassification was greatest for the shortest test (i.e., when MTL = 10). The ATL peaked 

dramatically at the lowest decision point for ATL = 50, and, to a lesser extent, when MTL = 20. 

The average length of the test increased considerably with the added decision point (see Figure 

1 0  versus 8 ).

Simulation IV. Figures 11 and 12 show Classification Error Rate and ATL for this

simulation condition. The error plot shows the familiar patterns in which the greatest

misclassification occurred at the three decision points. The ATL was greatest at the two lowest 

decision points but peaked again at 8 3 and 8 4> as expected.
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Comparisons across simulations

In order to compare the two outcome measures better across simulations, expected values 

of CE and ATL were computed by assuming that 0 was distributed as N(0,1). Note that this 

assumption was not necessary in order to conduct the multiple-category SPRT simulations. The 

results appear in Table 1. This table shows that classification error rate and average test length 

usually increased with the number of decision points. The exception was the k -  2 case where 

MTL = 20 and 50.

Summary and Conclusions

The extension of the SPRT procedure to multiple decision points for classification appears 

to work as expected. Error rates appeared to be controlled, for the most part, for values of 0 

away from the decision points in a manner similar to the k = 1 case or simple SPRT. Recall that 

in the simple case, the SPRT procedure guarantees that classification errors, a* + p \  will be 

bounded by functions of a  and p. By specifying power a priori, the classification error rate is 

controlled for k = 1. Likewise, it would appear that specifying power also controls the 

classification errors in the multiple-category situation. However, it is obvious from these results 

that, as k increases, the number of items required to meet the specified classification error rates 

also increases. In a practical testing situation, these large numbers of items may not be practical 

to administer. Thus, the multiple-category SPRT extension may have limited benefits beyond 

use with a relatively small number of decision points.
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TABLE 1

Expected CE Rate and ATL

k MTL E(CE Rate) E(ATL)

1 1 0 .077 1.883
largest indifference 2 0 .074 1.879

region 50 .073 1.880

1 1 0 .044 3.319
medium indifference 2 0 .041 3.435

region 50 .040 3.464

1 1 0 .040 5.404
smallest indifference 2 0 .029 6.075

region 50 .027 6.676

1 0 .127 4.580
2 0 .119 4.758z
50 .126 5.012

1 0 .163 7.568
o 2 0 . 1 1 0 9.577
j

50 .103 10.767

1 0 .209 9.546
A 2 0 .146 15.0484

50 .127 22.546
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Figure Captions

Figure 1. Classification Error Rate for k ~ 1, Smallest Indifference Region: (-.20,.30) 

Figure 2. Classification Error Rate for k = 1, Medium Indifference Region: (-.45,.55) 

Figure 3. Classification Error Rate for k = 1, Largest Indifference Region: (-.95,1.05) 

Figure 4. ATL for k = 1, Smallest Indifference Region: (-.20,.30)

Figure 5. ATL for k = 1, Medium Indifference Region: (-.45,.55)

Figure 6. ATL for k = 1, Largest Indifference Region: (-.95,1.05)

Figure 7. Classification Error Rate for k = 2 

Figure 8. ATL for k = 2 

Figure 9. Classification Error Rate for k -  3 

Figure JO. ATL for k = 3.

Figure 11. Classification Error Rate for k = 4 

Figure 12. ATL for k = 4.
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