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Abstract

Two ANOVA models for  item scores are compared. The f i r s t  i s  an items by 

subject random e f f e c t s  ANOVA. The second is  a mixed e f f e c t s  ANOVA with items 

f ixed  and subjects random. Comparisons regarding r e l i a b i l i t y ,

Cronbach’ s a c o e f f i c i e n t ,  psychometric inference, and inter-item covariance 

structure are made between the models. When considering the inter-item 

covariance structures fo r  the two ANOVA models, b r i e f  comparisons with fac tor  

analysis  models are also made. I t  is  concluded that inference from a sample 

o f  items to a population of items requires homogeneous inter- item covariances, 

that r e l i a b i l i t y  has d i f fe r en t  meanings under the two models, and that while 

c o e f f i c i en t  a is  a lower bound for  r e l i a b i l i t y  under the second model, i t  is 

not under the f i r s t .

Key Words: Coe f f ic ien t  Alpha, Covariance Structure, G en e ra l i z ab i l i t y ,

Linear Models, Psychometric Inference, R e l i a b i l i t y



Introduction

This paper compares two d i f fe r en t  ANOVA models for  items. The f i r s t  

model is  the two-way items by examinees random e f f e c t s  (Model I I )  ANOVA. The 

second model is  the two-way items by examinees mixed e f f e c t s  (Model I I I )

ANOVA. Very careful and complete s t a t i s t i c a l  derivat ions of these models are 

given by Schef fe '  (1956a, 1956b, and 1959). This paper draws heavily  

from S c h e f f e '1s work. The two ANOVA models are compared to each other in 

de ta i l  and b r i e f l y  to factor analysis models. Factor analysis models are 

extens ive ly  discussed by Harmon (1976) and Mulaik (1972). As considered here, 

the fac tor  analysis model is  s t a t i s t i c a l l y  more s imilar  to the mixed ANOVA 

model than to the random ANOVA model. Under the factor  analysis model, items 

are considered f ixed  and non-random, while subjects are randomly sampled from 

a population of subjects. See Mulaik and McDonald (1978), Williams (1978), 

and McDonald and Mulaik (1979) for  an a l te rnat ive  formulation o f  the factor 

analysis  model.

A l l  of the models under consideration are l inear  models. A model is  

defined as l inear  i f  an examinee’ s expected score on an Item is a l inear  

function o f  item character is t ics .  Item character is t ics  may be f ixed  

parameters as in the mixed ANOVA model or random variables as in the random 

ANOVA model. The factor  analysis model is  here considered to be l inear  in i t s  

item parameters which are usually ca l led fac tor  loadings even though these 

l inear  c o e f f i c i en ts  are applied to fac tor  scores, which are unobserved random 

variables associated with examinees. An example of a nonlinear model is  the 

l o g i s t i c  og ive item character iSt ic  curve model (Lord and Novick, 1968). From 

a theore t ica l  viewpoint, l inear  models usually do not accurately describe 

dichotomously scored items, and most items are so scored. However, for  

ca re fu l ly  constructed tes ts ,  l inear  models f o r  item scores are often
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s u f f i c i e n t l y  accurate to provide useful approximations. [See Feldt (1965),

Hsu and Feldt (1969), Hakstian and Whalen (1976), Seeger and Gabrielsson 

(1968), Gabrielsson and Seeger (1976), McDonald and Ahlawat (197*0* McDonald 

(1981, 1985), and Col l ins ,  C l i f f ,  McCormick, and Zatkin (1986). ]

The discussion o f  the models presented here w i l l  focus on three 

character ist ics  useful in psychometrics. The f i r s t  is  r e l i a b i l i t y .  Under the 

three models r e l i a b i l i t y  i s  defined as the squared corre la t ion  between an 

observed and a true score. A few relevant references regarding r e l i a b i l i t y  

are Gutman (19*15), Novick and Lewis (1967) Bentler (1972), Jackson and 

Agunwamba (1 977), and Bentler and Woodward (1980, 1983). Parametric 

expressions for  r e l i a b i l i t y  and Cronbach's (1951) c o e f f i c i e n t  alpha are given, 

and the sampling d is tr ibut ion  fo r  the sample alpha c o e f f i c i e n t  is  discussed. 

The second character is t ic  i s  the inter-item covariance matrix. For each 

model, the assumed or resu lt ing  covariance structure is  discussed and compared 

with factor  analysis models. F ina l ly ,  psychometric inference is  discussed. 

Psychometric inference is  considered as s t a t i s t i c a l  inference to a population 

of items from a sample o f  items randomly drawn from the population. The more 

general term g en era l i z ab i l i t y  is  not used since i t  connotes s t a t i s t i c a l  

inference fo r  a wide array o f  facets ,  not jus t  items. There is  a large body 

o f  l i t e ra tu re  on psychometric inference. A few references are Hotel l ing 

(1933), Tryon (1957), Lord and Novick (1968), Cronbach, Gleser, Nanda, and 

Rajaratnam (1972), Mulaik (1972), Kaiser and Michael (1975), Rozeboom (1978), 

McDonald (1978), and Brennan (1983). Both the approach and results  presented 

here, while most simi lar  to ,  d i f f e r  in part from those developed by Lord and 

Novick (1968) and Cronbach et a l . (1972).

Br ie f  descriptions of seven conclusions or ig ina l  to this  paper are:

1. Conditional variances for  interaction e f f e c t s  may be heterogeneous in 
the random ANOVA model.
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2. The random ANOVA model requires the inter-i tem covariance matrix to 
have homogeneous o f f -d iagonal  elements, while the mixed ANOVA model 
places no r es t r ic t ion s  on the inter-i tem covariance matrix except 
pos i t i v e  semi-definiteness. Hence, any fac tor  analysis model may be 
subsumed under the mixed ANOVA model but not the random ANOVA model.

3. Interact ion e f f e c t s  in the random ANOVA model are analogous to 
s p e c i f i c  factors  in a certa in  s ing le  common factor  factor  analysis 
model, while the examinee main e f f e c t  is  analogous to the s ingle  
common factor .

4. The squared corre la t ion  between observed scores and true scores i s  a 
useful d e f in i t ion  of r e l i a b i l i t y  under the random ANOVA model as well  
as under the mixed ANOVA model, but the de f in i t i on  o f  true score 
d i f f e r s  under the two models.

5. R e l i a b i l i t y  as defined in 4. has d i f f e r en t  meanings under the two 
models. In the mixed ANOVA model, interact ion ( s p e c i f i c )  variance is 
included in true score variance, while in the random ANOVA model i t  
i s  not.

6. The parametric value o f  Cronbach's alpha c o e f f i c i e n t  i s  a lower bound
to the parametric value of  r e l i a b i l i t y  (as defined in 4) under the
mixed ANOVA model but not under the random ANOVA model.

7. Given certa in  normality assumptions, a transformation of the sample
alpha c o e f f i c i e n t  has an F d is tr ibut ion  under the random ANOVA model.
For the mixed ANOVA model, the F d is tr ibut ion  only holds i f  in
addition to  certa in normality assumptions there are e i ther  no 
interactions or the inter- item covariance matrix has special 
r es t r ic ted  forms.

The pract ica l  implications of these conclusions for  the analysis of tes t  data 

w i l l  be discussed in the l a s t  sect ion of this  paper.

The Items by Examinees Random ANOVA Model

The model presented here i s  essen t ia l ly  the same model developed by 

Schef fe '  0  959, chap. 7) .  I t  assumes that a random sample of  n items chosen 

from a countably i n f in i t e  population o f  items i s  administered to  a random 

sample of  N examinees chosen from a countably i n f in i t e  population of 

examinees. The sampling o f  items and examinees i s  assumed to be completely 

independent. Let x^j represent subject j ’ s observed score on item i .  A 

preliminary form of the model is
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x i j =  t u  +  e i j  1 - 1 ............ n  J  =  1 ............. N - ( 1 >

The quanti t ies t j j  and e^j are, r espec t ive ly ,  the true score and the error

score of  examinee j  on item i.  D i f ferent  de f in i t ions  fo r  true and error

scores under the random ANOVA model w i l l  be admitted la t e r .  Within the

present context, true and error  scores are not absolutes; their  de f in i t ions

may vary depending on the inferences being made. The various true and error

scores considered in this paper are not necessari ly  an exhaustive set of

possible true and error scores under the models presented.

I f  examinee j  responds independently and repeatedly to  item i ,  these

rep l icat ions are indexed by the subscript k. For cognit ive  tes ts  such random

rep l ica t ions  are ra re ly  ava i lab le ,  though they occasional ly  may be obtained

for  a f f e c t i v e  scales.  The present development assumes that such rep l ica t ions

are not ava i lab le  from the data. In the theoret ica l  development of the model,

these rep l ica t ions  are allowed to be present. In part icu lar ,  the model

assumes that fo r  the sequences of independent random variables

e. , e . . _ ............e . . . ,  . . .  : ECe,-H1.) = 0  for  a l l  i ,  j ,  and k , and thati j1 i j 2  i jk i j k

V a r ( e . . . )  = E(e* ) = o2( e . , )  , i . e . ,  that the error  variances are i jk  i j k  i j

heterogeneous over the domains of  i and j .  For notational s imp l ic i ty ,  the 

subscript k w i l l  usually be suppressed, since fo r  the remainder of the paper 

i t  w i l l  usually take the value o f  one.

The above imply that Ej ( e i J  = 0 and that E^e^ J  = 0, where notation1 1J J 1 J

such as and Var^ means that the expectation and variance are taken over the

population whose members are indexed by the subscript i .  When no subscript is

present the expectation is  over random rep l ica t ions .  The above also imply

that the true and error  scores are uncorrelated, i . e . ,  Cov. ft .  .,e.
i i j  i j

= CoVj ( t i j , e . = 0 fo r  a l l  j ,j ' and i . i '  , r espect ive ly .  I t  i s  further 

assumed that a l l  errors are independent within and across a l l  populations.
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Sche f fe '  (1959, chap. 10) shows that the expressions for  expected mean 

squares, to be presented la t e r ,  are va l id  under the heterogeneity o f  error 

variances indicated above. He also shows that the F d is tr ibut ion  theory 

invoked la te r  i s  exact ly  va l id  only when the error  variances are homogeneous, 

but holds approximately when the error variances are mildly heterogeneous i f  

the design is  balanced. This paper assumes that the error  variances are only 

mildly heterogeneous and that each examinee responds to each item once and 

only once. Hence, the design i s  balanced and the F d is tr ibut ion  theory w i l l  

be assumed to hold when the appropriate normality assumptions, discussed 

la t e r ,  are invoked.

The fo l low ing  quanti t ies w i l l  be used in la te r  developments:

E .E jE (e j j )  = E . ( o 2(e ) )  = E ^ a ^ e . ) )  «  02(e )  .

The model i s  further spec i f ied  by wr it ing

t. . = y + a. + b . + c, . (2)
ij i J ij

where y = E E ( t  ) , a = E ( t  ) - y , b = E ( t  ) - y , and
 ̂ J  ̂ J 1J J -L I J

c ^  = t _  - Ei ( t i j )  - E jC t^ )  + y . The ove ra l l  mean i s  denoted by y , while 

a  ̂ and bj denote the main e f f e c ts  due to  item i and examinee j ,  

r espec t ive ly .  The interaction e f f e c t  due to item i and examinee j  i s  denoted 

by c^ j .  These de f in i t ions  im p l i c i t l y  assume that a l l  items are s im i lar ly
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scored and hence on the same scale .  Schef fe '  (1959) shows that the above

For what fo l lows,  i t  i s  important to note that the subscripts i and j  do

j .  Schef fe '  introduces additional notation to avoid these double meanings 

for  the subscripts, but the present paper sac r i f i c e s  S c h e f f e ' ’ s conceptual 

c l a r i t y  fo r  notational economy.

Schef fe '  (1959, pp 240-241) shows that certa in  marginal covariances among 

the model components are zero. His derivations are presented here in deta i l  

because of the ir  importance. Schef fe '  shows that

de f in i t ions  imply that the model components: a^, b j , and c^j have

unconditional and fo r  the c-- also conditional expectations of zero.
v

*
double duty; they are both subscript indices and random variables.

Furthermore, the a^, b j , and c^j are functions of the random variables i and

- E, [a  *E . (o ,  , )| i ], L «  . LJ » \ ̂  . .

1 i J i j

- E . (a . *c .  ) = 0 l i l ■ because c. = 0  for  a l l  i ,  i *

= E . (b .*c  .) - 0 
J J *J

because c . = 0 
•J

for  a l l  j ,

i * i'
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E.Cc .*c .) = 0 because c . = 0 fo r  a l l  j ,
j  -J -J *J

Ei [ E . ( CiJ |1) « E . . ( c 1J, U ) ] j . y

= E. (c .  *c, ) = 0 because c, = 0  fo r  a l l  i .i  i • i • i  •

In the above, the notation r e fe rs  to  the expectation over the b ivar ia te

d is t r ibut ion  obtained from sampling pairs of  items from the population o f

items where the members of each pair are d is t inc t .

Sche f fe '  (1959) does not discuss the fo l low ing  model component 

condit ional covariances:

°<a i 'Ojj lJ) ■ E ^ a ^ o ^ l J ) ,

o(b . ,c. . I i )  = E . (b , * c . . I i )  ,
J i J 1 J J iJ

a ( c . . , c . . . | l , i ' )  - E . ( o . . * o . . . | i , i ' ) ,  and

These conditional covariances are of  considerable concern because as w i l l  be 

seen l a t e r  the ir  values determine the inter-i tem covariance matrix.

Though a formal proof w i l l  not be given, i t  i s  asserted here that the 

above conditional covariances are also zero under S c h e f f e ' f s (1959) model. 

Four considerations lead to  th is  conclusion. F i rs t  i t  does not appear 

possible to generate model component data such that Sche f fe ' *s  marginal 

covariances are zero but the above conditional covariances are not.

and

0<C c )
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Second, S ch e f f e ' ' s  proof that the above marginal covariances are zero depends 

on the order in which the conditional covariances are taken. I f  the order i s  

switched the same resu l t  must be found. This implies that the above 

conditional covariances must have expected values of zero, and th is  can occur 

only i f  a l l  are zero or some are pos i t ive  and some negative such that their  

average i s  zero. Because, as w i l l  be shown, these conditional covariances 

determine the inter-item covariances, and tes ts  are usually constructed of 

items that a l l  in tercorre la te  p os i t i v e ly ,  i t  appears more reasonable in a 

tes t ing  context to assume that the conditional covariances are zero rather 

than some pos i t ive  and some negat ive. Third, Schef fe '  (1959, pp 242-2^3) 

considers the two-way random model interaction components as analogous to the 

error  terms in a two-way f ixed  e f f e c t s  model and these la t e r  have a l l  

conditional covariances as zero. Fourth, Cornf ie ld  and Tukey (1956) consider 

several covariances in the der ivation of expected mean squares f o r  fa c to r ia l  

designs, but in the two-way random model these covariances are a l l  zero. 

Schef fe '  (1959) defines the variance components of the model as:

o2(a) = E ( a p ,  o2(b) = E . (b2) ,  and o2(c )  = E .E . ( c ? . ) ,  In defin ing a2( c ) ,
J J  ̂ J  ̂J

Schef fe '  does not consider the interact ion conditional variances

o2( c . )  = E ( c ? . )  and o2( c )  = E . ( c ? . ) .  Though i and j are assumed to  be 
i J  ̂J j   ̂  ̂J

s t a t i s t i c a l l y  independent var iables,  c^j is  a function of  both these variables 

and fo r  th is  reason the conditional interaction variances need not be 

homogeneous. I f  i t  i s  assumed that the model components have a multivar ia te  

normal d is tr ibut ion as Schef fe '  sometimes does, then the model components are 

mutually s t a t i s t i c a l l y  independent and th is  forces the interact ion conditional 

variances to be homogeneous. Here they w i l l  be considered heterogenous unless 

otherwise spec i f ied .  S c h e f f e ' ’ s (1959, chap. 10) demonstration that his 

formulas for  expected mean squares are va lid  under heterogeneity o f  error
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variances implies the same under heterogeneity  of  in teract ion conditional 

var iances.

Of particular  in te res t  in the random model ANOVA are the mean squares for  

examinees and the mean squares fo r  items by examinees which are denoted MŜ  

and MSC, respec t iv e ly .  Schef fe '  (1959) derives the fo l low ing  expressions for  

the expected value o f  these mean squares: E ^M S ^ )  = no2(b) + a2(c )  + a2(e )

and E^(MS ) = o2(c ) + o2( e ) ,  where E ^  denotes that these expectations are 

the means o f  an i n f in i t e  number of  b ivar ia te  random samples consisting o f  n 

items and N subjects.

These mean squares are o f  in terest  because Hoyt (19*11) has shown that the
A

sample value o f  Cronbach's (1951) c o e f f i c i en t  a, denoted a herein, is  given by

a = [(MS, - MS ) /MS.] = 1 - (MS /MS, ) . The parametric counterpart of b c b c b

a depends upon the s t a t i s t i c a l  model used to describe the data. For the 

random ANOVA model th is parameter i s  denoted a ( the subscript RA denoting 

that th is  d e f in i t i on  i s  sp ec i f i c  to the random model ANOVA. The 

parameter aRA is  defined by

terms of E^CMS^ and EnN̂ M̂ c^ whose de f in i t ions  in turn depend upon the RA

subscript. Feldt (1965) has shown that under the additional assumptions of 

independent normal d is tr ibut ions fo r  the {a^},  { b j } ,  { c ^ j } ,  and { e ^ j } ,

(1 ~ * s d istr ibuted as F[N-1, (n -1 ) (N -1 ) ] .  Under these

assumptions, the conditional variances for  both the interactions and errors

aRA
a2(b) + a2(c)/n + a2(e)/n

a2 (b)
(3)

The ra t iona le  f o r  this  d e f in i t i on  is  that a converges in probab i l i ty  to aD.
RA

under the RA model. This i s  discussed further below. Since aDA is  defined inRA

model, the de f in i t i on  of aRA is  t ied to  the RA model and hence the RA
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are considered homogeneous, but s l i gh t  heterogeneity should produce at most

only mild departures from the F d is t r ibu t ion . Using the expression fo r  the

mean of  an F d is tr ibut ion i t  fo l lows that E M(ot) = [ (N  - 1)/N - 3 ) ] a 0» “nN nfl

[2/(N - 3 ) ] .  This shows that a is  an asymptotically (as N *► 00) unbiased

estimator of m . Even without the normality assumptions, a is  s t i l l  a 
HA

consistent estimator for  aDA since i t  is  a method of  moments estimator
HA

for (S e r f l in g ,  1933), and equivalent ly  converges in probabi l i ty  to  ot^ •

The random ANOVA (RA) model has been presented in some de ta i l .  Tt is  now

of in teres t  to compare that model to the factor analysis (FA) model. This

comparison may be made by examining the conditional covariance matrix for  the

n sampled items, the conditioning being on the n items selected from the

in f in i t e  population o f  items. Let the observed scores on the n items be

represented by the column vector x . The conditional covariance matrix is

Z i = E . [ ( x .  - E . ( x . ) ) ' ( x .  - E . ( x . ) ) J  . The diagonal elements of th is matrix ~x j n j  —j  j ' j  j  —J

are Var ( x ^ )  = o2(b) + o2(c^) + o2( e . )  . Because i t  i s  assumed here that

under the RA model covj (c • j  , c ^  ̂ ) = 0 for  any pair of items randomly

selected from the population o f  items, i t  fo l lows triat th is  covariance w i l l

be zero for  a l l  pairs of items in the randomly selected sample of n items,

and consequently that the o f f -d iagonal elements of th is matrix are

Cov.(x. . , x . , . )  = o2(b) . The rather simple form of th is  conditional 
J iJ i J

covariance matrix may be represented as £x jn = o2(b)J + A [a2(c^)  + a2( e ^ ) ]  

where J represents a matrix o f  a l l  ones and A is  a diagonal matrix with the 

indicated elements. I t  fo l lows that the conditional covariance matrix for  the 

true scores on the n items is

? t |n = o2(b)J + A (o2( c i ) )
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Hocking (1985) presents covariance structures fo r  a wide var ie ty  o f  random and 

mixed ANOVA models. He assumes homogeneity among the error  and conditional 

interact ion variances. Given his assumptions, his  results  agree with those 

presented here.

The RA conditional covariance structure i s  ident ica l  to the covariance 

structure of a one common fac tor  FA model with homogeneous fac tor  loadings and 

n sp e c i f i c  factors  d is t inc t  from the errors .  This i s  Spearman's (190M) model 

but with the additional r e s t r i c t i o n  that the items a l l  corre la te  equally with 

the general fac tor .  More s p e c i f i c a l l y ,  the subject main e f f e c t  variance in 

the RA model is  analogous to the common factor  variance in the FA model while 

the conditional interact ion variances in the RA model are analogous to 

sp ec i f i c  variances in the FA model. Another way to character ize this 

conditional covariance structure i s  as an essen t ia l ly  tau equivalent model 

(Lord and Novick, 1968) but with the addition o f  n sp e c i f i c  factors  with 

possibly  heterogeneous variances.

I f  the sp e c i f i c  fac tors  have homogeneous variances, then the conditional

covariance structure fo r  the true scores is  equivalent to the equicorrela t ion

model (Morrison, 1976). Under the equicorre la t ion model, the f i r s t  and

la rges t  eigenvalue of L  i , denoted ji,, is  equal to no2(b) + a2(c )  . The""" T/1 n

second d is t inc t  eigenvalue o f  ? t |n has m u l t ip l i c i t y  n-1 and i s  given 

by o2(c )  . I t  i s  denoted X2 .

The simple form of the conditional covariance matrix in the RA model 

resu l ts  from the uncorrelatedness of  the model components. Though th is  

covariance structure i s  a rather r es t r i c t ed  specia l case o f  the many more 

ve rsa t i l e  covariance structures permitted by FA models, the RA model permits 

e x p l i c i t  s t a t i s t i c a l  inference to a population o f  items. The price fo r  th is  

gain in " g en e ra l i z a b i l i t y ” is  the assumption of a simple covariance structure
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among the items.

The in fe ren t ia l  d i f ferences between considering items random and

considering items f ixed  may be i l lus tra ted  by how r e l i a b i l i t y  may be defined

under these conditions. For subject j ,  l e t  the item domain true score be

defined as t , = E . ( x . , )  = u + b. . This implies that the item domain error 
J i i j  J

score fo r  subject j i s e . * x . - T .  = a + c , + e . . Note that fo r  random 
J J J j  j  J

rep l icat ions E (e . )  = a .  + c . .  , and that fo r  examinees E . ( e . )  = a. .
j  ■ s3 J J

Furthermore, considering just  a one-item test ,  Cov (e. .,e.  . , )  »
i  ̂J  ̂J

o2(a )  fo r  a l l  j  * j' . These conditions v io la t e  the usual assumptions of

c lass ica l  tes t  theory (Lord and Novick, 1968, chap. 3 ) ,  because here the

errors do not have means of zero and the errors are in te r -co r re la ted .

However, C ov j  ^T j  *e j  ̂ = 0 and-this crucia l result  implies that i f  interest

focuses on the r e l i a b i l i t y  o f  a sp ec i f i c  t e s t  composed o f  n randomly se lected

items with respect to  the item domain true scores, then a useful d e f in i t i on  of

r e l i a b i l i t y  i s  R e l ( x t . , t .) = [Cor (x^ . , t . ) ] 2 . R e l i a b i l i t y  so defined
j  J J * 3 J

measures the accuracy with which re la tionships between observed t e s t  scores 

are ind ica t ive  of re la tionships between item domain true scores.

Since CoVj (xtj , T j )  = o2(b )  ,

V a r j ( x #j )  ® o2(b) + (1/n2)£?o2(c,.) + (1/n2)J?o2(e^ )

and V a r . ( T . )  = o 2(b) , i t  fo l lows that 
J «J

R e K x ^ T j )  ------------------------------

a2(b) + (1/n2) ^ a 2( c i ) + (1/n2)£V ( e . )

= Var^ . ( i j )/VaT j (x . j ) ,

(5)
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which i s  the usual r a t i o  of true score variance to  observed score variance. I f

the error variances and the conditional interaction variances are homogeneous

then = Re l (x  . . t .) , otherwise an, i s  only an approximation to  th is  
RA •J J RA

r e l i a b i l i t y ,  a lb e i t  not a bad one.

An a l te rnat ive  de f in i t i on  o f  r e l i a b i l i t y  under the RA model which i s  more

appropriate when concern is  not with the r e l i a b i l i t y  of a particular  randomly

constructed te s t  but rather with the population o f  such tests  i s

E^[Rel( * . j  »Tj ) ]  * Here, En denotes that the expectation is  over the

population o f  randomly constructed tests  consisting o f  n items. This

d e f in i t i on  o f  r e l i a b i l i t y  is  appropriate when the same tes t  w i l l  be

administered to  every examinee, but concern i s  with the r e l i a b i l i t y  o f  any

randomly constructed te s t  rather than a part icu lar  tes t  that i s  randomly

se lected.  The s ituat ion  in which d i f f e r e n t  examinees take d i f f e r en t  randomly

constructed te s t  forms is  not often encountered in pract ice and is  not

addressed in th is  paper (but see Lord and Novick, 1968, p. 208). I f  the error

variances and the conditional interact ion variances are homogeneous, then

E [Re l (x  . ,t . ) ]  = aDA . This fo l lows since Rel(x , , x . )  = aQ. fo r  each and n • J j  HA • j J H A

every randomly constructed t e s t  consisting o f  n items. I f  homogeneity does

not hold, an exact expression fo r  E (R e l ( x # . , t . ) )  requires additional model
n J J

spec i f i ca t ions  which w i l l  not be attempted in th is  paper. However, i t  may be

shown by using the de l ta  method of Kendall and Stuart (1977, Vol. I )  that aD.RA

is  a f i r s t  order approximation for  En[ R e l ( x ^ , i j ) ]  under heterogeneity.

I f  the data are accurately described by the RA model, but the usual 

d e f in i t i on  o f  r e l i a b i l i t y  (Lord and Novick, 1968, chap. 3) is  adopted, then
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Rel(x . , t  ) = [Cor (x , , t  ) ] 2 = Var ( t  , )/Var (x . )  (6)
J " J J J \j x j J

o 2(b) + ( t / n 2 ) [ % 2 (c )
1 i

a2( b) + (1 /n2) ] ^ 2 (c.) + (1 / n 2 Jl'ja2 (e . )

Usually, R e K x ^ . t ^ j )  > aRft . However, i f  there is  no item by examinee

interact ion and the error  variances are homogeneous then Rel(x . ,t .) = aD. .
*0 *j ha

A comparison o f  (6) to  (5) shows that the interact ion ( s p e c i f i c )

variances are included in the numerator of Rel(x  . , t  .) but excluded from the
* J * J

numerator of R e l ( x #j , T j )  . This d i f ference is  due to  the d i f ference in

de f in i t ions  between t . and i .  . I f  the true score i s  sp ec i f i c  to  the tes t ,
•J J

i . e . ,  t , , then the interact ion ( s p e c i f i c )  variances are included in the true 

score variance. When the true score i s  defined over the population o f  items, 

i . e . ,  , then the interaction ( s p e c i f i c )  variances do not contribute to t*ne

true score variance.

Two b r ie f  observations regarding the RA model are o f  in terest .  I f  no 

interactions are present the RA model may be viewed as a l inear  analog of the 

one parameter Rasch model (Lord and Novick, 1968, p H02) with e x p l i c i t  item 

and examinee sampling. Second, the symmetry o f  the RA model al lows 

consideration o f  not only the inter-i tem covariance matrix but also the 

s im i lar ly  constrained inter-examinee covariance matrix.

This section o f  the paper has presented a deta iled  development o f  the RA 

model and a b r ie f  comparison of the RA model to the FA model. The development 

demonstrates that under the RA model general izat ion in a s t a t i s t i c a l  manner 

over a population of items requires a simple and spec ia l ized  covariance 

structure among the items. In the next sect ion,  the mixed ANOVA (MA) model is 

considered.
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The Items by Examinees Mixed ANOVA Model 

Hocking (1973) compares three d i f f e r en t  versions of the two-way mixed 

ANOVA (MA) model that have been presented in the s t a t i s t i c a l  l i t e ra tu r e ,  and 

resolves the d i f fe rences  between the ir  associated expressions fo r  expected 

mean squares. This paper adopts the most general one of these three which is 

due to Sche f fe '  (1959). In the mixed ANOVA model, the N examinees are 

randomly sampled from an in f i n i t e  population o f  examinees, but the n items are 

considered f ixed  and non-random. Even though the items may be randomly chosen 

from a population o f  items, th is  fa c t  i s  ignored; the MA model simply i s  not

concerned with s t a t i s t i c a l  inferences to a population of items. A l l

s t a t i s t i c a l  inferences are conditional on the n items se lected,  since the

population of items is  not defined in the MA model. ■

The model may be written as

x . . »  t . .  + e . .  i = l , . .  ., n j = l , . . . , N
i j  i j  i j

where t . . = y + a . + b . + c . . . The model assumes that the error  scores have
i j  i j  i j

zero means fo r  a l l  i and j  and th is  implies that the true and error  scores are

uncorrelated. The non-random parameters y and ou represent the ove ra l l  mean

and the main e f f e c t  of item i ,  r espec t ive ly .  The random var iable  bj

represents the main e f f e c t  due to examinee j, while the random variable  c^j

represents the e f f e c t  due to  the in teract ion  o f  examinee j  with item i .  These

model components are defined as u = E . [ ( 1 /n)Tnt . .] = E . ( t  .) ,
J i  i j  J J

a. = E . ( t . .) - y , b. = t . - y . a n d c . .  = t . .  - t . - E . ( t . . )  + u . 
i J ij J ‘j ij ij *J J ij

The above de f in i t ions  imply that the model components w i l l  sa t i s fy  the

fo l low ing  conditions: Tna = ync = E (b ) = E (c  ) = 0 .
i i '■l ij j j J ij

I t  i s  also im p l i c i t l y  assumed that the items are s im i la r ly  scored and hence on
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the same scale.  Allowing for  heterogeneous error variances y ie lds  the

fo l lowing:  o2( e . )  = E . ( e ? . )  and a2(e )  = (1/n)£na2( e .) .
- l  J 1J * - 1 1

I f  the error variances are homogeneous, then a2( e i > = a2(e )  for  a l l  i .

Let t j  represent the n dimensional column vector of  examinee j ’ s true

scores on the n items. The true score covariance matrix is

I = { o . , , }  * E . [ ( t .  - E . ( t . ) ) ' ( t .  - E . ( t . ) ) ]  . The only r e s t r i c t i o n  placed 
J O  J J J J O

on £ is  that i t  be pos i t ive  semi-def in ite .  The covariance among the items may 

be o f  a very general form, including any multiple common factor  model. This 

is  quite d i f f e r en t  from the RA model where a simple sp ec i f i c  conditional 

covariance structure is  assumed. Removing the randomness of  the items permits 

a much more general covariance structure among the items, but el iminates any 

s t a t i s t i c a l  inferences concerning the population o f  items.

From the de f in i t ions  of  the random model components, the variances and 

covariances for  these components may be expressed as functions of  the 

{ o u , }  . Schef fe '  (1959) shows that

C o V j ( c _  , c i , j )  = E j ( c ^ * c ^ , j ) = - a i  + a , and (8)

Cov (b ,c ) = E , (b . *c .  ) = a. - a . (9)
J J 1J J J 1J 1*

Schef fe '  (1959) defines the variance components as

o2 (b) =
VarJ ( V

and ( 10 )

o2 ( c ) = [ 1 / ( n - 1 ) ] E j v a r  (c ) = [ 1 / ( n - 1 ) ] ^ (  a. . -  o ##) (1 1 )
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Using these de f in i t ions ,  he shows that MSb and MSC, as previously defined

under the RA model, have the fo l low ing  expected values under the MA model:

E.,(MS. ) = no2(b) + oz (e )  and Em(MS ) = a2( c )  + o2( e )  , where Ew denotes the 
N b N c w

expectation over an in f i n i t e  number of  random samples of N examinees.

I t  i s  in terest ing  to note that the random components are corre la ted in

the MA model and that these corre lat ions are determined by E . In the RA

model the random components are uncorrelated, but the covariances among the

items are required to be homogeneous. What happens to the component

corre lat ions in the MA model when the in ter- item covariances are assumed to  be

homogeneous w i l l  be investigated short ly .

F i r s t ,  however, r e l i a b i l i t y  and i t s  re lationship  to  c o e f f i c i e n t  alpha

w i l l  be discussed. The sample alpha c o e f f i c i en t  under the MA model is

ident ica l  to the sample alpha fo r  the RA model, and i s  given

as a = (MS^ - MSc )/MSb. I t s  parametric counterpart under the MA model w i l l  be

denoted by a... and i s  defined as MA

[Eki(MSJ - Em(MS ) ]  2,k v 2, wN b N c o ( b ) ~ q (c )/n (\o\
aMA E„(MSJ Zf. . A 2 / w 'N b a2(b) + a2(e)/n

The ra t iona le  f o r  this d e f in i t i on  is  that a converges in probabi l i ty

to oi^ under the MA model. This i s  further discussed below. I f  (1) the

random model components including the errors are normally d is tr ibuted ,  (2) the 

error variances are homogeneous (though mild heterogeneity should be 

acceptable),  and (3) o2(c ) = 0, then using results  given by Schef fe '  (1959) i t

may be shown that [ (1 - ~ i s  d istr ibuted as

F[N-1, (n -1 ) (N -1 ) ] ,  which i s  the same d is tr ibut ion  as under the RA model. 

S im i lar ly ,  th is  F d is tr ibut ion  implies that E ^ a )  ■ [ (N-1) / (N~3) l a ^  -
A

[ 2 / (N—3 ) ]  , and hence that a i s  an asymptotically unbiased and consistent



estimate o f  a... . K r is to f  (1963) has previously derived these resu lts .  I f  MA

o2(c )  * 0, then the F d is tr ibut ion s t i l l  holds i f  I  has the highly symmetric

structure discussed by Schef fe '  (1959, p 26*0 or i f  £ has the type H form

described by Huynh and Feldt (1970); but as w i l l  be seen la te r  i s  then a

s t r i c t  lower bound to r e l i a b i l i t y .  However, even i f  the foregoing assumptions

are not f u l f i l l e d ,  a is  s t i l l  a consistent estimator of a.„ since i t  is  aMA

method o f  moments estimate for  (S e r f l in g ,  1983). and equiva lent ly

converges in probab i l i ty  to . F ina l ly ,  i t  should be noted that

i f  o2(c ) = 0, then a l l  the c^j = 0 and the MA model is  ident ica l  to the

essen t ia l ly  tau equivalent model discussed by Lord and Novick (1968).

Under the MA model, the mean true score of examinee j  is

t . = (1/n)T?E(x. where, as discussed under the RA model, E denotes 
•j i l j k

expectation over the errors associated with random rep l ica t ions .

Let Xj denote the n dimensional column vector of the j - t h  examinee’ s observed 

scores on the n items. Let Z denote the covariance matrix for  the observed“ X

scores. I t  fo l lows that = I  + A (o2(e^ ) )  where A (o2(e . . ) )  i s  a diagonal 

matrix with the error variances as i t s  elements. Following Lord and Novick 

(1968, chap. 3),  r e l i a b i l i t y  under the MA model is  defined as

Rel(x ,t  ) - [ C o r j ( x . j , t  ) ] * ’ = o2(b )/ [ o 2(b )  + o2(e )/n]  (13)

= Var ( t  . )/Var. (x , )
J *J J 0

The above fo l lows from the expressions for  the variance components given in

(10) and (11).  Comparison of the las t  expression in the f i r s t  l i n e  of  (13)

with the expression for  a*.,, given in (12) demonstrates
MA

that = R e K x ^ j t ^ )  i f  and only i f  o2( c )  = 0 , i . e . ,  the items are

Linear Models
21



Linear Models
22

essen t ia l ly  tau equivalent . Otherwise, aM. < Rel(x  . ,t  ) .  This agrees withMA *j

the results  of Guttman (19^5), Novick and Lewis (19b7) , Bentler (1972), and 

Jackson and Agunwamba (1977).

Under the assumption of  equivalent covariance structures fo r  the RA and 

MA models, comparisons between the two models regarding variance components, 

r e l i a b i l i t y ,  and c o e f f i c i en t  alpha w i l l  now be undertaken. The RA true score 

conditional covariance structure given in (4 )  may be reexpressed as

I | = qJ + A(u2) (1 *0-t|n - i

where o2(b) = q and o2(c..) «  u2 . The fo l low ing  true score covariance

structure witL be assumed for  the MA model:

Z = qJ + A(u*) . (15)

For the above covariance structure, Table 1 displays the variance

Insert  Table 1 about here

components fo r  the RA and MA models. This paper has fol lowed the convention 

of  labe l ing  the variance components the same in both models, but Table 1 shows 

that the variance components have d i f f e r en t  meanings under the two models. 

While a2(c )  depends only on the spec i f i c  variances, though in d i f fe r en t  ways 

in the two models, o2(b) includes common and s p e c i f i c  variances under the MA 

model but only common variance under the RA model. For more complicated 

covariance structures than (15) under the MA model, such simple re lationships 

between the variance components and the covariance mat r i x  are not apparent.

The d i f fe rences  in variance components between the two models have 

ramif icat ions fo r  r e l i a b i l i t y  and c o e f f i c i en t  alpha under the two models.
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Table 2 displays alpha and r e l i a b i l i t i e s  fo r  the two models under the

Insert Table 2 about here

indicated covariance structure. C oe f f i c ien t  alpha d i f f e r s  s t a t i s t i c a l l y  under

the two models in that expectations are used in the denominator of aRA while

summations are used in the denominator of  aw. Nonetheless, c o e f f i c i e n t  alphaMA.

has a simi lar  psychometric meaning under the two models since under both

models the numerator and denominator depend, with s l igh t  var iat ions,  on the

same elements o f  the covariance matrix. Rel(x . , t  . ) i s  ident ica l  under the
* J *J

two models, but d i f f e r s  from R e l (x^ . ,T . )  under the RA model as has already
J J

been noted.

Under the RA model, the random model components are uncorrelated as was 

previously discussed. For the MA model under the covariance structure in 

(15),

C °V j (b j fc i j )  »  [q + (u2/n)]  - [q + (1/n2)£^u2]

= [u2 - (1/n)£nu?]/n andi **1 l

C oV j (c .^ ,c i ^ )  = q - (q + u2/n) - (q + u?,/n) + [q + (1/n2)£"u2] 

= [ ( 1 / n )£ j j 2 - u2 - u2,]/n .

I f  a l l  the u2 are equal, then Cov, (b, , c { , )  = 0 and Cov (c ,c , ) = -u2/n 
i J J ij J i J  i j

where u2 i s  the common value fo r  a l l  the u2. The covariance -u2/n is  due 

the fac t  that under the MA model Y^c . . = 0 for  a l l  i .  As was notedL1 J
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previously for  the RA model, the uncorrelatedness.of the random model

components resu l ts  in the simple covariance structure given in (4 )  and (14).

What has jus t  been shown is  that when a s l i g h t l y  simpler covariance structure

is assumed fo r  the MA model, the random model components essent ia l ly  become

uncorrelated. Hence, the corre la t ions among the random components and the 

inter- item covariances are re la ted  in a s imilar  fashion under both models. To 

obtain psychometric inference under a more complicated inter-i tem covariance 

structure than (14) requires an RA type model which permits the model 

components to be corre la ted.  Such corre la t ions would make expressions fo r  the 

mean squares much more d i f f i c u l t  to obtain.

F ina l ly ,  when the u? are homogeneous and hence the equicorre la t ion 

covariance structure presented by Morrison (1976) (that i s  equivalent to 

Sche f fe ' * s  (1959) highly symmetric covariance structure)  holds, then 

no2(b) = Aj where \ 1 is  the f i r s t  and la rges t  eigenvalue o f  I  in the MA 

model. The one remaining d is t in c t  eigenvalue o f  Z, X2» has m u l t ip l i c i t y  n-1 

and i s  equal to o2( c ) .

Summary and Discussion o f  Implications for  Pract ice 

I t  has been shown that c o e f f i c i en t  alpha i s  approximately equal to but 

not necessari ly  a lower bound to r e l i a b i l i t y  under the RA model, and that i t  

i s  a lower bound to  r e l i a b i l i t y  under the MA and FA models (the resu l t  fo r  the 

FA model having been shown previously by others ) .  These conclusions concern 

the parameter values for  these quanti t ies and not necessari ly  the ir  sample 

estimates. Under the RA model where s t a t i s t i c a l  inference to a population of 

items from a sample o f  items i s  permitted, i t  was found that the inter-i tem 

covariances must be homogeneous, and that th is homogeneity i s  due to  the model 

components being uncorrelated. This r e s t r i c t i o n  i s  not required under the MA 

model, but i t  does not permit psychometric inference. These conclusions are,
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o f  course, sp ec i f i c  to the models under-consideration, and other models may 

y ie ld  d i f fe r en t  resu lts .

I t  i s  usually the case in education and psychology that inference from a 

sample of items to a population of items is  a desired goal in the analysis of 

test  data. However, th is  may not always be true. A s i tuat ion in educational 

measurement where psychometric inference may not be required is  when a te s t  is  

d i v i s ib l e  into well  defined content heterogeneous subtests, and the subtest 

scores are the measurements being analyzed. In th is  s i tuat ion,  an appropriate 

model for  the data could be a subtest by examinee two-way MA model. In 

psychology, i f  an a f f e c t i v e  scale  such as a personal ity  inventory consists of 

well  defined psychologically  d is t inc t  subscales, then a subscales by subjects 

two-way MA model could also be an appropriate model f o r  the data.

I f  psychometric inference i s  desired and i f  the RA model presented within 

is  going to be used to analyze the data, then i t  is  appropriate to invest igate  

whether or not the data s a t i s f y  the covariance structure assumed under the RA 

model. This covariance structure is  a l inear  covariance structure, and Browne 

(1972) has derived a procedure based on the pr inc ip le  o f  generalized leas t  

squares (GLS) estimation that may be used to  s t a t i s t i c a l l y  test  the f i t  of the 

data to  the RA model covariance structure. Browne's (1972) method i s  non­

i t e r a t i v e  and hence r e l a t i v e l y  simple computationally. Joreskog (1978) 

discusses s t a t i s t i c a l  tests  fo r  covariance structures based on GLS and maximum 

l ike l ihood  (ML) estimation methods. The computer program LISREL VI 

(Joreskog and Sorbom, 1986) implements those methods as well as others, and 

is  access ib le  through the SPSSX (SPSSX Inc, 1986) computer program. Bentler 

(1983) and Browne (1984) have developed GLS test  procedures with weaker 

d is tr ibut iona l  assumptions but more computational complexity. Bentler (1985) 

has also written a computer program, EQS, which implements his procedure and
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is  ava i lab le  as part of the BMDP S ta t i s t i c a l  Software computer package. I t  i s  

designed for  easy use. I f  the RA model f i t s  the data, then a i s  an 

appropriate estimator fo r  the r e l i a b i l i t y  index, Rel(x . , t . ) ,  which assesses
J s)

how wel l  re la tionships between observed scores represent re lationships between 

item domain true scores.

I f  the items are dichotomously scored, then d i f f i c u l t i e s  may ar ise  in 

applying the above procedures to  the usual sample covariance matrix or the 

3ample matrix o f  phi c o e f f i c i en ts .  Mislevy (1986) discusses these problems 

and reviews a l te rnat ive  methods fo r  tes t ing  covariance structures designed to 

deal with dichotomously scored items. However, the results  of Co l l ins  et a l .  

(1986) suggests that i t  may be appropriate to f i r s t  analyze the usual matrix 

o f  sample moment covariances or c o r re la t ions . I f  d i f f i c u l t i e s  ar ise ,  then 

recourse may be had from the more th eo re t i c a l l y  and computationally complex 

methods discussed by Mislevy (1986).

I f  the RA model cannot be applied because the data substant ia l ly  v i o l a t e  

the requirement of homogeneous inter- item covariances, or inference to a 

population o f  items i s  not desired, then the MA model may be used. As was 

shown, a is  a lower bound to  r e l i a b i l i t y  under the MA model and consequently 

under any FA model (the l a t t e r  having been shown previously by many others ) .  

However, under the MA model, better  lower bounds than a ex is t .  The best is  

the greatest  lower bound to  r e l i a b i l i t y ,  derived independently by Jackson and 

Agunwamba (1977) and Bentler and Woodward (1980). Bentler and Woodward (1983) 

present the most e f f i c i e n t  numerical algorithm fo r  computing a sample estimate 

of  the greatest  lower bound to r e l i a b i l i t y .  In general terms, the computation 

requires the solut ion o f  a nonlinear optimization problem with inequal ity  

constraints and is  rather complex. For the invest igator  who desires a simpler 

estimate, even i f  i t  i s  less  optimal, Jackson and Agunwamba (1977) suggest



that Guttman's c o e f f i c i en t  may be advantageous " in  the typ ica l  s i tuat ion 

where the inter-i tem corre lat ions are pos i t i v e ,  modest in s ize ,  and rather 

s im i la r . "  The computer package SPSSX (SPSSX Inc. ,  1986) has a r e l i a b i l i t y  

component which computes a sample estimate for  \^ as well  as several other 

r e l i a b i l i t y  estimates.

I f  the te s t  has many items, then some invest igators  may f ind i t  d i f f i c u l t  

or expensive to compute sample estimates for  X6 or the greatest  lower bound. 

These invest igators  may view c o e f f i c i en t  a as an appealing r e l i a b i l i t y  index 

for  long tests  because o f  i t s  computational s imp l ic i ty .  Such invest igators 

may f ind  solace in the results  o f  Green, L i s s i t z ,  and Mulaik (1977) which 

suggest that a increases as the number of  items increases even when the tes t  

has multiple  common factors  and a i s  only a s t r i c t  lower bound to  the 

parameter value o f  r e l i a b i l i t y .  Green et a l .  (1977) argue that th is  result  

makes a a poor index of tes t  unidimensionality. Fortunately, those qua l i t ies  

which make a a poor index for  unidimensionality increase i t s  worth as a 

r e l i a b i l i t y  index, and th is  i s  espec ia l ly  true for  long tes ts .  Nonetheless, 

the greatest lower bound to  r e l i a b i l i t y  has optimal propert ies which indicate 

that i t  i s  worth computing whenever f eas ib le .

F ina l ly ,  because c o e f f i c i en t  alpha may be a useful estimate of 

r e l i a b i l i t y  under both the RA and MA models, i t  i s  worthwhile to  review the F 

d is tr ibut ion  theory for  a under both models. In addit ion to  the appropriate 

normality assumptions fo r  each model, the F d is tr ibut ion  theory requires 

homogeneity of error variances under both ANOVA models and homogeneity of 

interact ion conditional variances under the RA model, but mild heterogeneity 

of  these variances should not great ly  a f f e c t  the d is tr ibut ion  theory. Under 

the RA model, a may equal or approximately equal r e l i a b i l i t y  when the F 

dis tr ibut ion  fo r  a holds, but a i s  not a lower bound fo r  r e l i a b i l i t y .  Under
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the MA model, the F d is tr ibut ion  theory for  a holds and a equals r e l i a b i l i t y  

when there are no in teract ions.  I f  interactions are present, then the F 

d is t r ibut ion  theory for  a requires the specia l covariance structures o f  

S che f fe '  (1959, p 264) or Huynh and Feldt (1970) and a i s  then a s t r i c t  lower 

bound to r e l i a b i l i t y .  I f  a conservative estimate o f  a or the parameter value 

of  r e l i a b i l i t y  under e ither model is  desired, then Woodward and Bentler (1978) 

show how the F d is tr ibut ion  theory f o r  a may be used to obtain a probab i l is t ic  

lower bound to a.
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Table 1

A Comparison Between Variance Components for  
Models Under the Indicated Covariance Structure

RA Model

?t |n ’■ =1J + * ( “ •)

o 2 ( b) - q

Var . ( c . .) = o 2( c . ) = u2 
J i-J l i

MA Model

£ = qJ + M u 2)

o 2 ( b) = q + 0 / n 2)£nu : i. i

Var . (c. .) = [ (n-2)u2 
J iJ i

the RA and MA 
Tor Both Models

o2(c) » E i[o2{ci)] = E.(u?) o2(c) =■ [ 1 / (n-1) ]) TVar . (c ) = [1/n]£jU*
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Table 2

A Comparison Between Alpha C oe f f i c ien ts  and R e l i a b i l i t i e s  f o r  the RA 
and MA Models Under the Indicated Covariance Structure for

Both Models

RA Model MA Model

- 1 |n = ^  + ^ ( u i )
I  = q j  + A(u?)

aRA“
aMA

q + (1/n)E. (u2) + (1/n)Ei [ a 2 (e . ) ] q ♦ (1/ n 2)2:J(u2 ) * (1 / n 2)J j [ o 2( e i )]

Rel(x ,t ) = ----------------------- ---------------------------------

q + (1/n2)£ " (u p  + (1/n2) ^ [ o z ( e i ) ]

q + (1/n2)][” (u2)

---------------- ----------------------------

q + (1/n2)£^(u2) + (1/n2) ^ [ o 2( e 1) ]

q + (1 /n2 )£j?(u2)

R e l (x . j  »t^ . ) --------------------------------- —----------------------

q + (1/ n 2) l " ( u 2 ) * (1/ n 2) [ " [ o 2 (e )]
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