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Abstract

Large sample standard errors of linear equating for the single-group design are derived 

without the normality assumption. Two general methods based on the delta method are 

described. One method uses the exact partial derivatives, and the other uses numerical 

derivatives. Simulation and real test data are used to evaluate the behavior of the estimated 

standard errors. Comparisons with standard errors derived with the normality assumption and 

bootstrap method are also conducted. The results indicate that the standard errors derived in this 

paper agree with those computed by the bootstrap method and are more accurate than the 

standard errors based on the normality assumption, especially in the situation in which the score 

distributions are skewed.
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In linear equating, scores on one test form are transformed linearly to scores on the scale 

of another form. The purpose of linear equating is to adjust for presumably small differences in 

test difficulty between the two forms of the same test. The single-group design is one of the 

basic data collection schemes. In this design, examinees are administered both forms of a test to 

be equated. An advantage of this design is that the equating errors are relatively small 

compared to th^t of some other designs. However, the order of administering the two forms 

may have an influence on the examinees’ performance. For example, if familiarity with the test 

increases performance, then the form administered last would appear easier than the form 

administered first, supposing the two forms are equally difficult. Such an effect is usually 

referred to as a practice effect. One way to minimize the practice effect is to administer the two 

forms, say, A and B, in a way such that a random half of the examinees take Form A first and 

another half of the examinees take Form B first. Thus, the order of administration of the two 

forms are counterbalanced. Lord (1950), Angoff (1984), and Petersen, Kolen and Hoover 

(1985) have presented descriptions of this design. Holland and Thayer (1990) addressed the 

issue of counterbalancing in detail.

Because equating is usually conducted using a sample of examinees drawn from a 

population, the results are subject to sampling error. The errors of equating can be quantified 

using standard errors. Standard errors of linear equating for the single-group design were 

derived by Lord (1950) under the assumption that the two test scores have a normal bivariate 

distribution in the population from which the sample is drawn. Because skewed score 

distributions are typical in many testing programs (Kolen, 1985), the normality assumption is 

seldom met. However, the standard error qf equating for the single-group design with less 

restrictive assumptions has not been derived. Braun and Holland (1982) derived standard errors 

for the random groups design, and Kolen (1985) derived standard errors for the common-item 

nonequivalent-groups design, without making the restrictive normality assumption. Their 

results suggested that standard errors of linear equating based on the normality assumption 

might produce misleading results when score distributions are skewed or more peaked than a
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normal distribution. The purpose of this paper is to derive large sample standard errors of linear 

equating for the single-group design without making the normality assumption. Two general 

methods based on the delta method (Kendall and Stuart, 1977) are described. In one method the 

exact derivatives are used and in the other the numerical derivatives are used. Simulation and 

real test data are used to evaluate the behavior of the estimated standard errors. A comparison 

with standard errors derived with the normality assumption is also conducted.

Large Sample Standard Errors

Kendall and Stuart (1977) described a general method for estimating standard errors of 

functions of random variables by means of a Taylor expansion. This method is usually referred 

to as the delta method. According to Lord (1950), the linear equating function for equating two 

test forms, X and Y, under the single-group design can be written as

/[xln(X), a 2(X), n(Y), a 2(Y)| = ̂  rx - n(X)l + n (Y ). (1)
a(X)

It is assumed here that the form taken first has no effect on the performance on the form taken 

last. Let 9 i , 02, 03, and 04 be alternative names for the four parameter (J.(X), o 2(X), JJ-(Y), 0 2(Y) 

in function /, and let their estimates be §i, §2> §3. and §4- Define f  as an estimate of / that uses 

the estimates of the parameters in Equation 1. According to the delta method described by 

Kendall and Stuart (1977) the sampling variance o f f  can be expressed as follows:

A 4 a /  . A 4 4  3 / dl  a  A
v a r |/(x )]=  Z (TT)2 var(0i) + X I  —  —  cov(0j,8j) + remainder. (2)

i=l 30i j# =1 30i 30j J

The term "remainder" in Equation 2 refers to higher order terms in the Taylor expansion that are 

small and thus can be ignored.

The standard error of equating SE[? (x)] is the square root of var[? (x)]. To compute
A

var[/ (x)]. we need to find the four first partial derivatives with respect to each of the four 

parameters, the four sampling variances and 12 covariances of the four parameters. These
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sampling variances and covariances are listed in Table 1. Because cov(§j$j) = cov(§j,§i), only 

six different covariances are listed. The calculation of the sampling variance of t  (x), without 

assuming a normal distribution, involves estimating higher order central moments and cross- 

product moments. Because the higher order moments are very sensitive to sampling variation, a 

large sample size might be required to ensure accurate estimates of standard errors. So if the 

sample size is not large enough the standard errors computed from Equation 2 might not be 

accurate.

Insert Table 1 about here

The first partial derivatives of / with respect to each of the four parameters in the 

equating function are derived as follows:

90! c(X )’

9/ oOO , <*00 ^----  = - — ----- [x - LX(X) 1 = - — ------ Z, (4)ae2 2a 3(X) 2a 2(X)

and

1 L = ------ 1-------[ x _ ^ (X )]=  — —  Z, (6)ae4 2a(X)a(Y) 2a(Y)

, „  x - n(X)where Z = ----------- .
a(X)

Substituting the four partial derivatives into Equation 2, a formula for computing the 

sampling variance of linear equating for the single-group design is obtained as follows:



4

varlf (x)] = Z2 { var[c2(X)] - — j—  cov[o2(X ),a2(Y)] + —^— var[o2(Y)] }
4o4(X) 2a2(X) 4a2(Y)

+ Z { ^ ^ c o v [ f i ( X ) ,a 2(X )]- —  cov[£(X),a2(Y )]- ^ ^ c o v [ j i (Y ) ,a 2(X)]
a 3(X) a(X) a 2(X)

+ — cov[£.(Y),a2(Y)]} + var[ft(X)] - 2<Ĵ  cov[£(X),jl(Y)] + var[iu(Y)], (7) 
c(Y) a 2(X) a(X)

where Z is the same as defined in Equations 4 and 6, the var’s and cov's are defined in Table 1 

under the label of "general”.

The partial derivatives can also be computed numerically. Lord (1950) used numerical 

derivatives in the computation of asymptotic sampling variance. Let £  denote the entire vector 

of values 0i, i=l to 4. Then the first partial derivatives of function / with respect to 0i can be 

approximated by

AL.  . . .  / (x if i+ S i)-  / (x is -& )  ,
5ei (xlfi )= ------------2hj------------ -- °<h (8)

where £j is the ith row of the diagonal matrix A, where

A =

’hi
h2

and 0 (h 2) is the error of approximation. Because Equation 8 is derived by expanding /(xl£) 

at two neighboring points (f) + £i) and (£ - £j) with a second order Taylor's series, the 

magnitude of the error is based on the magnitude of the third partial derivative. If the third 

partial derivative with respect to Oj is zero, then the first partial derivative with respect to 0i 

approximated by Equation 8 is the exact value. For example, approximate d / /  d63 as



5

[X - n(X)] + n(Y) + h3} - { ^  [X - n(X)l + H(Y) - h3) 
_9I_ = 51 _ O(X)________________________ CT(X)____________________
503 3u(Y) 2h3

2h3
2h3 = 1.0,

which is the exact derivative defined by Equation 5. Alternatively, if the function has a nonzero 

third partial derivative, then error will be involved in the approximation. The error of 

approximation is bounded by C h2i, where C is the maximum absolute value of the third partial 

derivative with respect to 0;. Equation 8 suggests that the numerical derivative approaches the 

exact derivative as hj approaches zero. But in actual computation, a too small hj cannot be 

used, because hi is used as a denominator. If the denominator is too small, the computer 

rounding error will become significant. As a result, the obtained numerical derivative may be 

incorrect. In present paper, hi is set to 9, /1000. This value was selected to yield desirable 

accuracy. More detailed discussion of numerical derivative with more than one variable can be 

found in many advanced calculus textbooks (e.g., Taylor and Mann, 1983).

In the present paper, the delta method is implemented using Equation 7, which uses the 

exact derivatives, as well as using Equation 2 with numerical derivatives approximated by 

Equation 8. Note that many of the expressions are presented with population parameters. In 

actual computation, the sample estimates for the parameters are substituted in the formulas.

SE Based on the Normality Assumption

If the score distributions of Forms X and Y are assumed to be bivariate normal, then the 

sampling covariances cov[Jl(X),a2(X)], cov[p.(X),a2(Y)], cov[£l(Y),ct2(X)] and 

covfjl(Y),o2(Y)] have zero values (Kendall, and Stuart, 1977, p. 85). The variances and 

covariances based on the normality assumption are listed in Table 1 under the label of 

"Normal’1. Substitute these variances and covariance and the exact derivatives into Equation 2 

to obtain
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,* , „  a 2(Y) <y2(X) <j 2(Y) 2c4<X) C2(Y) 1 2(T4(Y)
var z (x)l = ----------------- + ---------- Zz ---------- h ---------+ ------------ z z ------------

<j2(X) n 4 c4(X) n n 4 a2(Y) n

_ 2 o(Y ) q(X,Y) 2 q(Y ) z  1 z 2 a 2(X.Y)

o(X) n 2 a 2(X) 2c(Y) n

- i  [2 a2(Y) + a 2(Y) Z2 - 2 (9)
n a(X) cr2(X)

_ , . , a(X,Y) L L .
Substituting pxy = —(X) (Y) mt°  a^ove exPression gives

var[f (x)] = [2 + Z2 - 2pxy - p2xy Z21 = (1 - pxy) [Z2 (1 + pxy) + 2 1 (10)

Equation 10 is the same as the standard error formula derived by Lord (1950) with the normality 

assumption. The standard error of equating is the square root of var[f (x)j. Equation 10 is valid 

only in the situation in which the distributions of X and Y are bivariate normal.

Com puter Simulation

A computer simulation was conducted to study the behavior of the standard errors of 

linear equating for the single-group design. Simulated scores were generated to reflect two 

kinds of testing situations. In the first situation, the score distribution is nearly symmetric and 

the simulation is referred to as the nearly symmetric simulation. In the second situation, the 

score distribution is negatively skewed and the simulation is referred to as the nonsymmetric 

simulation. The beta-binomial model (Lord & Novick, 1968, chap. 23) was selected to generate 

observed scores. For the nonsymmetric simulation, the beta true score distributions were 

assigned parameters 20.7 and 7 to simulate the score distributions similar to those of a real 

professional certification examination (see the example used in next section of this paper).

These parameters were selected through a trial-and-error procedure. For the nearly symmetric 

simulation the beta true score distributions were assigned parameters 15 and 14.5. Both tests 

were simulated to have 75 items. The simulation was conducted using the following steps:
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1) Randomly generate a beta variate using the parameters associated with the desired 

distribution. This beta variate,/?, represents an examinees proportion-correct true score. An 

algorithm described by Cheng (1978) was used to generate the beta variate.

2) Given the proportion-correct true score, p, in step 1, randomly generate two binomial 

variates with the number of trial parameter equal to 75. These two binomial variates represent 

observed scores on two 75-item Forms, X and Y, respectively. A function called BNLDEV 

described in Numerical Recipes (Press, Flannery. Teukolsky & Vetterlin, 1990, p. 218) was 

used to generate the binomial variates.

3) Repeat steps 1 and 2 n times, where n represents the sample size used in the 

simulation. Thus, a set of n pairs of observed scores for Forms X and Y were obtained.

4) Equate Forms X and Y using the data resulting from step 3. Compute the Y 

equivalent of X at the selected X levels, and compute the standard errors using the following 

three methods: (a) with the normality assumption; (b) the delta method with numerical 

derivatives; and (c) the delta method with exact derivatives.

This process was replicated 500 times. The Form Y equivalents and the three standard 

errors at the selected X levels were averaged over the 500 replications. The "true" standard 

errors of equating were computed. The "true" standard error of equating for a given score on 

Form X was defined here as the standard deviation of Form Y equivalents of that score over the 

500 replications. The simulation was conducted using sample size of 100 and 500 examinees.

The descriptive statistics for the simulated observed score distributions are listed in 

Table 2. These statistics are the averages computed over the 500 replications. The means for 

Form X are slightly higher than those for Form Y. In the nonsymmetric simulations, the score 

distributions are negatively skewed.

Insert Table 2 about here

The results of the simulation are summarized in Table 3 at the selected Form X score 

levels. The standard errors estimated by the three methods are the average values over the 500
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replications. The accuracy of the three standard errors can be evaluated by comparing the bias 

which is the difference between the "true" standard error and the average standard errors 

estimated by the three methods. The standard deviations of estimations are also listed in 

Table 3.

All the standard errors listed in Table 3 show a general pattern of the standard errors 

being smaller near the mean of the score distribution than at the extremes. Also, the standard 

errors become smaller as the sample size gets larger.

Insert Table 3 about here

The standard errors computed by the delta method with numerical and exact derivatives 

are almost identical at all selected score levels in both the nearly symmetric and nonsymmetric 

simulations. In the nearly symmetric simulations, the simulated score distributions are very 

close to the normal distribution. The standard errors based on the normality assumption are 

very close to those calculated without normality assumption (see Table 3). In the simulation 

with the smaller sample size (n=100), the standard errors based on the normality assumption are 

closer to the "true" values than those without the normality assumption. But in the simulations 

with a larger sample size (n=500), the standard errors computed by the delta method are closer 

to the "true" values than those based on the normality assumption at most of the selected score 

levels.

In the nonsymmetric simulations, the differences between the standard errors based on 

the normality assumption and those without normality assumption are larger than those in the 

nearly symmetric simulations (see Table 3). The standard errors computed by the delta method 

are very close to the "true" values, and the standard errors based on the normality assumption 

are more biased. The method based on the normality assumption tends to underestimate the 

standard errors at lower scores and to overestimate them at higher scores for the negatively 

skewed score distribution.
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The standard deviation of the estimated standard errors computed over the 500 

replications is a measure of variability in estimating standard errors. The simulation results in 

Table 3 indicated that the standard errors estimated by the formula based on the normality 

assumption are generally less variable over the 500 replications than those based on the less 

restrictive assumption. An explanation given by Kolen (1985) is that the normal standard errors 

requires estimation of only means and variances, whereas the estimation of nonnormal standard 

errors requires the estimation of these parameters as well as high-order central moments and 

cross-product moments. Because high-order central moments and cross-product moments are 

very sensitive to sampling variation, the estimation of nonnormal standard errors are more 

variable over the replications.

A Real Data Example 

Data from a 150-item multiple-choice professional licensure examination were used in 

this example. The 150-item test was divided by odd-even splits into tw'o half tests. These two 

half tests were designated as Form X and Form Y. Each form consisted of 75 items. Data 

obtained from 500 examinees were used in this example. The descriptive statistics for the 

sample are listed in Table 4. The mean scores for both forms indicate that approximately 73 

percent of the items were answered correctly on average. The score distributions of both forms 

are considerably skewed.

Insert Table 4 about here

Bootstrap standard errors were also computed from 1000 bootstrap replications using 

the procedure described by Kolen (1985). Efron (1982) presented a variety of examples in 

which standard errors computed from bootstrap method were more accurate for small sample 

situations than standard errors based on the delta method. In the present paper, the bootstrap 

standard errors are used for evaluating the accuracy of standard errors based on the normality 

assumption and standard errors without the normality assumption.
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Results from linear equating and standard errors of equating computed in four different 

ways at the selected score levels are given in Table 5. The standard errors computed using the 

delta method with numerical derivatives are almost identical to those using the delta method 

with exact derivatives at all the selected score levels (the maximum difference is 0.001). The 

standard errors calculated without the normality assumption are very close to the bootstrap 

standard errors. In fact, the standard errors computed using the two delta methods agree with 

those computed by bootstrap method to two decimal places. In general, the standard errors are 

the smallest near the mean, and become larger farther away from the mean. The standard errors 

based on the normality assumption are smaller at the lower scores and larger at the higher scores 

than those for the other methods.

Insert Table 5 about here

P iscussion and Conclusion

Three methods of estimating standard errors of linear equating for the single-group 

design were compared in this paper by using simulation and real test data. The results of the 

simulation suggest that when the score distributions are symmetric or nearly symmetric the 

standard errors computed based on the normality assumption and the delta method with 

numerical and exact derivatives are very similar to each other. When the score distributions are 

skewed, the results obtained from both the simulation and real data suggest that the standard 

errors derived without the normality assumption are less biased than those based on the 

normality assumption. In terms of variability in estimation, the standard errors based on the 

normality assumption are less variable than those derived without such an assumption.

The bootstrap method can yield accurate estimates of standard errors. However, the 

bootstrap method is very time consuming, because the number of resamplings must be large for 

the bootstrap standard errors to be accurate. The delta methods might be preferable because 

they yield accurate results with considerably less computation.
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The standard errors computed by the delta method with numerical and exact partial 

derivatives were almost identical. The advantage of using the exact partial derivatives is that an 

equation can be provided for calculating the standard errors. But the delta method with 

numerical derivatives is often much simpler to compute and to program on a computer than the 

method with exact derivatives. This advantage is not that pronounced in computing the standard 

errors of linear equating under single-group design, because the linear function for this design is 

simple and involves only four simple first-order partial derivative. But for some more 

complicated equating designs, like the common-ltem nonequivalent-group design (Kolen,

1985), using numerical derivatives has the capacity to make the computation dramatically less 

complicated than using the exact derivatives.

Another advantage of using numerical derivatives is that it is easier to develop a general 

computer algorithm for computing the standard errors of equating with different methods (Lord, 

1975). A major task in deriving standard errors of equating with the delta method is to derive 

the partial derivatives with respect to each parameter involved in the equating function. For a 

different equating method a different set of partial derivatives need to be derived. If numerical 

derivatives are used there is no need to derive analytical formulas for all the partial derivatives. 

Thus, a general computation algorithm can estimate standard errors for different equating 

methods by just changing the equating function accordingly. The delta method with numerical 

derivatives might also prove useful for estimating standard errors under complicated designs 

such as chains of equatings.
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Table 1. Sampling Variances and Covariances of Bivariate Moments

Statistic(s) Sampling Variances and Covariances
General Normal

var[ja(X)] a 2(X)/n C2(X)/n

var[o2(X)] {EIx-nCX)]4 - ^ ) } / ! ! ic^cxyn

var[£(Y)] a 2(Y)/n o 2(Y)/n

var[a2(Y)] {E[y-|X(Y)]4 - ^ (Y JJ/n 2o4(Y)/n

cov[£(X)£(Y)] cr(X,Y)/n a(X,Y)/n

cov£(X),ct2(X)] E[X-n(X)]3/n 0

cov[£(X),a2(Y)] E[x-H(X)][y-(i(Y)]2/n 0

cov[a2(X ),a2(Y)] (E[x-h(X)]2 [y-n(Y)]2 - a 2(X )c2(Y)}/n 2 a 2(X,Y)/ri

cov[o2(X)ii(Y)] {E[x-|j.(X)]2 [y-H(Y)])/n 0

cov[£(Y),a2(Y)) E[y -H(Y)]3/n 0

Note: The terms in the body of the table were adapted from Kolen (1985), and are typically 
based on large sample theory. E refers to expected value, n is the sample size.
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Table 2 Descriptive Statistics of Simulated Scores

For m mean s . d .  s k e w n e s s  k u r t o s i s

N e a r l y  S y m m e t r i c ,  n=100

X 3 9 . 4 6  7 . 9 5  - 0 . 0 4  - 0 . 2 3
Y 3 8 . 8 4  7 . 9 3  - 0 . 0 3  - 0 . 2 4

N e a r l y  S y m m e t r i c ,  n=500

X 3 9 . 4 1  8 . 0 0  - 0 . 0 4  - 0 . 2 1
Y 3 8 . 8 2  8 . 0 0  - 0 . 0 4  - 0 . 2 0

N o n s y m m e t r i c ,  n=100

X 5 7 . 3 0  6 . 7 1  - 0 . 4 2  0 . 0 4
Y 5 6 . 7 1  6 . 7 1  - 0 . 4 1  0 . 0 2

N o n s y m m e t r i c ,  n=500

X 5 7 . 3 0  6 . 7 8  - 0 . 4 4  0 . 0 7
Y 5 6 . 7 2  6 . 8 0  - 0 . 4 3  0 . 0 7
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Table 3. Results for Two Simulations at Two Sample Sizes

S t a n d a r d  E r r o r s  S t a n d a r d  D e v i a t i o n
o f  E s t i m a t e s

’ t r u e '  Norm.  Num. E x a c t  Norm.  Num. E x a c tf  (x)

N e a r l y  S y m m e t r i c  S i m u l a t i o n

9 . 3 5 2 . 1 7 3 2 . 0 9 7

n = 100 

2 . 0 4 8 2 . 0 4 9 0 . 2 0 6 9 0 . 2 7 7 8 0 . 2 7 7 9
1 9 . 3 6 1 . 5 1 9 1.  442 1 . 4 2 7 1.  427 0 . 1 4 2 2 0 . 1 9 4 5 0 . 1 9 4 6
2 9 . 3 7 0 . 9 3 3 0 . 8 5 8 0 . 8 6 9 0 . 870 0 . 0 8 1 3 0 . 1 1 2 7 0 . 1 1 2 7
3 9 . 3 8 0 . 6 4 1 0 . 602 0 . 597 0 . 597 0 . 0 4 8 1 0 . 0 4 9 4 0 . 0 4 9 4
4 9 . 3 9 0 . 9 6 3 0 . 9 8 0 0 . 9 1 2 0 . 912 0 . 0 9 5 4 0 . 1 1 6 6 0 . 1 1 6 7
59 . 40 1 . 5 5 6 1 . 5 9 0 1 . 4 7 9 1 . 4 8 0 0 . 1 5 6 3 0 . 1 9 4 3 0 . 1 9 4 3
6 9 . 4 1 2 . 2 1 2 2 . 2 5 2 2 . 104 2 . 1 0 5 0 . 2 2 1 0 0 . 2 7 6 1 0 . 2 7 6 3
7 9 . 4 1 2 . 8 8 8 2.  930 2 . 7 4 6 2 . 748 0 . 2 8 7 4 0 . 3 6 0 5 0.  3607

9 . 3 8 0 . 912 0.  935

n = 500 

0 .  923 0 . 923 0 . 0 4 1 4 0 . 0 5 2 9 0 . 0 5 2 9
1 9 . 3 8 0 . 6 3 3 0.  643 0 . 643 0 . 643 0 . 0 2 8 5 0 . 0 3 6 5 0 . 0 3 6 5
29 . 39 0 . 3 8 6 0 . 383 0 . 392 0.  392 0 . 0 1 6 4 0 . 0 2 0 7 0 . 0 2 0 7
3 9 . 4 0 0 . 278 0 . 2 7 1 0 . 2 6 9 0 . 2 6 9 0 . 0 0 9 4 0 . 0 0 9 2 0 . 0 0 9 2
4 9 . 4 1 0 . 4 2 9 0 . 4 3 9 0 . 411 0 . 411 0 . 0 1 8 9 0 . 0 2 4 1 0 . 0241
59 . 42 0 . 6 8 6 0 . 7 1 1 0 . 666 0.  666 0.  0311 0 . 0 4 0 3 0 . 0 4 0 3
6 9 . 4 3 0 . 967 1 . 0 0 6 0 .  947 0 . 948 0 . 0440 0 . 0 5 6 9 0 . 0 5 6 9
7 9 . 4 4 1 . 2 5 7 1 . 3 0 8 1 . 2 3 6 1 . 2 3 7 0 . 0 5 7 2 0 . 0 7 3 8 0 . 0 7 3 9

N o n s y m m e t r i c  S i m u l a t i o n  
n = 100

9 . 2 5 3 . 5 6 2 3 . 3 1 5 3 .  423 3 . 4 2 4 0 . 3 4 7 2 0 . 5 5 2 7 0 . 5 5 3 0
1 9 . 2 8 2 . 8 5 1 2.  624 2 . 738 2 . 7 3 9 0 . 2 7 5 7 0 . 4 4 3 4 0 . 4 4 3 6
29 . 32 2 . 1 4 7 1.  941 2 . 0 6 0 2 . 0 6 1 0 . 2 0 4 8 0 . 3 3 4 0 0 . 3 3 4 2
3 9 . 3 5 1 . 4 5 9 1 . 2 7 8 1 . 3 9 7 1 . 3 9 8 0 . 1 3 5 2 0 . 2 2 4 5 0 . 2 2 4 6
49 . 38 0 . 8 2 9 0.  694 0 . 7 8 9 0 . 790 0 . 0 6 8 7 0 . 1 1 3 0 0 . 1 1 3 1
5 9 . 4 2 0 . 5 3 4 0.  558 0 . 504 0 . 504 0 . 0 5 2 2 0 . 0 4 3 6 0 . 0 4 3 6
6 9 . 4 5 0 . 9 6 0 1 . 0 6 1 0 . 921 0 . 921 0 . 1 0 8 4 0 . 1 2 0 9 0 . 1 2 0 9
7 9 . 4 9 1 . 6 1 1 1.  710 1 .  551 1 . 5 5 2 0 . 1 7 4 7 0 . 2 2 2 5 0 . 2 2 2 6

n = 500

9 . 2 4 1 . 6 9 1 1.  473 1 .  556 1 . 5 5 7 0 . 0 6 6 7 0 . 1 1 5 3 0 . 1 1 5 4
1 9 . 2 8 1 . 3 5 6 1 . 1 6 7 1 . 2 4 5 1 . 2 4 6 0 . 0 5 3 0 0 . 0 9 2 8 0 . 0 9 2 8
29 . 32 1 . 0 2 4 0.  863 0 . 9 3 7 0 . 938 0 . 0 3 9 3 0 . 0 7 0 2 0 . 0 7 0 2
39 . 3 6 0 . 6 9 9 0.  569 0 . 6 3 6 0 . 636 0 . 0 2 5 9 0 . 0 4 7 5 0 . 0 4 7 5
4 9 . 3 9 0 . 394 0 . 310 0 . 359 0 . 359 0 . 0 1 3 0 0 . 0 2 4 0 0 . 0 2 4 0
5 9 . 4 3 0 . 2 2 7 0 . 2 5 0 0 . 2 2 6 0 . 2 2 6 0 . 0 0 9 9 0 . 0 0 9 1 0 . 0 0 9 1
6 9 . 4 7 0 . 4 2 0 0 . 4 7 2 0 . 414 0 . 4 1 5 0 . 0 2 0 3 0 . 0 2 3 5 0 . 0 2 3 5
7 9 . 5 1 0 . 7 2 8 0 . 7 6 0 0 . 700 0 . 701 0 . 0329 0 . 0 4 4 0 0 . 0 4 4 0
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Table 4 Descriptive Statistics for
a Professional Certification Examination

Form mean S. D. skewness kurtosis

X 5 5 . 6 9 4 5 . 7 1 9 - 0 . 6 5 7 0.  493
Y 5 5 . 5 9 4 5.  687 - 0  . 527 - 0 . 0 4 4

Table 5 Standard Errors of Linear Equatings for 
a Professional Certification Examination

X f  (X) B o o t .  Norm.  Numer . E x a c t  .

10 1 0 . 1 5 8 1 . 5 7 8  1 . 5 4 0  1 . 5 6 9 1.  570
15 1 5 . 1 3 1 1 . 4 1 5 1.  374 1 . 4 0 6 1.  407
20 20 . 104 1 . 2 5 1 1 . 2 0 9 1 . 2 4 4 1 . 2 4 5
25 2 5 . 0 7 6 1 . 0 8 9 1 . 0 4 4 1 . 0 8 2 1.  083
30 30 . 0 4 9 0 . 927 0 . 8 8 1 0 . 9 2 1 0 . 921
35 3 5 . 0 2 2 0 . 7 6 6 0 . 7 2 0 0 . 7 6 1 0 . 7 6 2
40 39 . 994 0 . 608 0 . 5 6 2 0 . 604 0 . 605
45 44 . 9 6 7 0 . 4 5 5 0 . 4 1 1 0 . 4 5 2 0 . 4 5 3
50 4 9 . 9 4 0 0 . 3 1 5 0 . 280 0 . 3 1 3 0 . 3 1 3
55 5 4 . 9 1 3 0 . 214 0 . 2 0 9 0 . 2 1 4 0 . 2 1 4
60 5 9 . 8 8 5 0 . 2 1 7 0 . 2 5 5 0 . 2 1 8 0 . 218
65 6 4 . 8 5 8 0 . 3 2 0 0 . 377 0 . 3 2 1 0 . 3 2 1
70 6 9 . 8 3 1 0 . 4 6 1 0 . 5 2 5 0 . 4 6 1 0 . 4 6 1
75 7 4 . 8 0 3 0 . 615 0 . 682 0 . 6 1 4 0 . 614
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