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ABSTRACT

Performance rating systems frequently make use of multiple raters in an effort 

to improve the reliability of ratings. It is common to use two, three, or 

four raters in evaluating the clinical performance of health-care trainees, in 

rating performance on oral and essay examinations, and in evaluating on-the- 

job performance. However, unless all candidates (i.e., students, employees, 

examinees) are rated by the same raters, some candidates will be at an unfair 

advantage or disadvantage due solely to the fact that they were rated by more 

lenient or more stringent raters. In order to obtain fair and accurate 

evaluations of candidate performance, such sources of systematic rating error 

must be taken into consideration. This paper describes four procedures to 

detect and correct for rater effects. A demonstration of each procedure is 

also provided, using a small set of rating data to illustrate the impact of 

the procedures. The results of the demonstration, which are consistent with 

the findings of other published research, indicate that each of the four 

procedures produces more accurate estimates of true levels of performance than 

the traditional approach of summing the observed ratings. The results 

encourage further research on the utility of methods to correct for rater 

effects in performance assessment.





DETECTING AND CORRECTING FOR RATER EFFECTS
IN PERFORMANCE ASSESSMENT

Obtaining accurate and reliable performance ratings is a challenge faced 

in most educational and employment settings. The reliability of ratings given 

in practical settings are typically quite low, ranging from about ,30 to .75 

(e.g., Cason & Cason, 1984; King, Schmidt, & Hunter, 1980; Muzzin & Hart,

1985; Rothstein, 1990). Even though there has been a constant dissatisfaction 

with performance ratings, they remain the most widely used method for 

evaluating work performance (Landy & Farr, 1980). Ratings of performance are 

frequently used as the sole basis for making extremely important personnel 

decisions --decisions related to salary increases, promotability (Landy & Farr, 

1980), and whether one is fit for practice in professions such as medicine or 

psychology (Crawford, 1984; Muzzin & Hart, 1985). It can certainly be argued 

that the reliability of performance ratings is generally inadequate for making 

decisions as important as these.

The most direct way to address the problem of low reliability is to 

obtain ratings from multiple raters (Crocker & Algina, 1986; Landy & Farr, 

1983; Stanley, 1961). According to psychometric theory, if the reliability of 

a single rating is .50, then the reliability of two, four, and six ratings 

will be approximately .67, .80, and .86, respectively. This result can be

obtained through classical measurement theory using the well-known Spearman- 

Brown formula (e.g., Lord & Novick, 1968) or through generalizability theory 

(e.g., Brennan, 1983; Shavelson, Webb, & Rowley, 1989). The practice of using 

multiple evaluators to improve reliability is analogous to constructing tests 

and surveys that consist of multiple questions.

Although the use of multiple raters generally improves reliability by 

reducing the relative magnitude of random error, it does not eliminate the



type of error that may arise when candidates within a group are evaluated by 

different raters. Unless the same raters evaluate all candidates, there is 

the possibility that some candidates will receive positively or negatively 

biased evaluations due to the fact that they were rated by a relatively 

lenient or harsh rater (Guilford, 1954; Wilson, 1988). The analogous 

circumstance in testing occurs when two or more forms of a test with unequal 

levels of difficulty (i.e., nonparallel test forms) are used to assess a group 

of individuals. If the two test forms are not adjusted through procedures 

such as statistical equating, the scores of examinees who take different forms 

cannot be regarded as comparable.

Performance ratings that arise in situations where candidates are 

evaluated by different sets of raters contain two types of measurement error: 

systematic and random. The random error component is what is typically 

referred to as rater unreliability. If all candidates in a group are evalu­

ated by the same raters, then the reliability coefficient can be estimated by 

the following equation:

p2 = --- ^ ---  (1)
v  2 2 / aj + q J  nr

where p2 is the generalizability (reliability) coefficient, of refers to

the variance component due to candidates, refers to the variance

component due to the error (i.e., residual variance), and np indicates the 

number of raters evaluating each candidate. These components of variance can 

be computed from the mean squares reported for a candidate by rater ANOVA 

(Brennan, 1983; Crocker & Algina, 1986; Shavelson, Webb, & Rowley, 1989).

The aforementioned method for obtaining a reliability coefficient applies 

to complete rating designs. If, however, an incomplete rating design is used, 

a design in which candidates are evaluated by different raters, then the 

reliability estimate must consider the error due to raters being
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differentially lenient or harsh in their ratings. This systematic error is 

typically referred to as leniency error. The reliability for such incomplete

designs is computed by:

P2 = , , --- (2)
Oi + (or + o.)/nr

where o\ is the variance component due to raters. If all raters are

equally lenient (i.e., the variance component due to raters is zero), then the

two forms of the reliability index will be equal. This will seldom be the 

case, however. The present paper is concerned with methods to identify the 

systematic error component in performance ratings, and statistically control

for such effects when they occur.

A very casual consideration of this rating problem might lead one to 

conclude that incomplete rating designs with multiple raters are uncommon. To 

the contrary, incomplete rating design are quite common. The situation in 

which ratings for a group are obtained from different sets of raters arises in 

numerous evaluation contexts, such as the following: organizations that make

use of peer ratings, subordinate ratings, or ratings from multiple 

supervisors; educational settings in which different groups of students 

evaluate instructors; the evaluation of faculty by review committees; settings 

in which trainees are evaluated by multiple mentors, peers, or more senior 

students; oral or practical examinations for licensure; interviews of job 

applicants; scoring of essay examinations; ratings of physical or 

psychological status obtained in clinical settings; the review of grant 

applications and proposals; and the accreditation of institutions. There are 

also other evaluative situations in which incomplete designs occur, even 

though it may not be recognized. For example, businesses that have a 

hierarchical management structure may have an evaluation plan whereby 

departmental assistant managers each rate one-half the staff in a department.



In such circumstances, the manager of the department will also likely be in a 

position to evaluate many or all of the staff, resulting in an incomplete 

rating design with multiple raters.

The best solution to the problem of rater bias is to have the same panel 

of raters evaluate all candidates. However, numerous logistic and economic 

constraints usually render this solution infeasible. The purpose of this 

paper is to describe some practical, cost-effective procedures to correct for 

leniency/stringency effects in circumstances in which candidates are evaluated 

by two or more, but not the same, raters. Procedures based on item response 

theory (de Gruijter, 1984; Wright & Masters, 1982), multivariate analysis from 

incomplete data (Beale & Little, 1975; Houston, Raymond, Svec, in press;

Little & Rubin, 1987; Raymond, 1986), and least squares regression (Cason & 

Cason, 1985; de Gruijter, 1984; Wilson, 1988) have been proposed in the 

literature. The procedures described in this paper either estimate scores 

candidates would have received had they been evaluated by all raters, or 

adjust observed scores to correct for effects due to rater variability.

Four methods are described in this paper: ordinary least squares (OLS),

weighted least squares (WLS), the Rasch model, and data imputation via the E-M 

algorithm. Each procedure can be applied in circumstances in which multiple 

evaluators rate multiple candidates, but candidates are evaluated by some 

subset of raters. All methods require that each rater evaluate two or more 

candidates and that each candidate is evaluated by two or more evaluators. 

Although the student (n) by rater (p) data matrix may be severely incomplete, 

a certain degree of overlap must exist. That is, there should not be a subset 

of raters and candidates such that those candidates are evaluated only by that 

subset of raters, and the raters evaluate only that subset of students.
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Correction Methods

Ordinary least squares (OLS)

Alternative regression-based procedures to identify and correct for rater 

effects have been proposed by Cason and Cason (1985), de Gruijter (1984), and 

Wilson (1988). A regression method for analyzing incomplete rating data 

postulates that an observed rating for a candidate is a function of the 

candidate's true ability and a leniency or stringency effect associated with 

the rater providing that particular rating. The model also assumes an error 

component. Consider the following model:

y . j  -  “ i + P; + e ij <3>

where y.. is the score given to candidate i by rater j ,

Otj is the true score for candidate i,

is the bias (i.e., leniency) index for rater j, and 

is random error.

The model assumes that the error terms have an expected value of zero and that 

the variance of the errors across raters is equal.

Let â  be an estimator of ai, a candidate's true level of performance.

Let bj be an estimator of >3j, the magnitude of leniency of stringency error 

for rater j. We refer to this error as bias throughout the paper, consistent

with the notion that the error is systematic as opposed to random. If

candidate i is rated by all raters, then any estimator of ĉ- that sums or 

averages the observed ratings is free from rater bias effects (i.e., is an 

unbiased estimator). If, however, candidate i is not rated by all raters, 

then estimators of Ot- will contain a bias component, unless — Q for all j, 

which is an unlikely circumstance.

The matrix formulation for the OLS model follows. Let K be the total 

number of observed ratings assigned by j raters to i candidates.



where y is a (K x 1) vector of observed ratings,

X is a (K x (n+p-1)) design matrix,

a is an (n x 1) vector of true ratings for candidates,

P is a (p - 1) x 1 vector of rater bias indices, and

e is an (K x 1) vector of random errors.

The design matrix, X, consists of n + p - 1 columns; the column for the

last rater is dropped to avoid a linear dependency in the columns of X. 

Because X is of full column rank, the parameters can be estimated by any 

standard multiple regression algorithm. Table l.A presents an example of an 

incomplete rating matrix for a sample of three candidates and three raters, 

and Table l.B presents the corresponding design matrix. For all candidates 

and all raters except for the last rater, the numeral 1 is used to indicate

the candidate and rater with which each observed rating is associated;

otherwise a zero is used. The ratings associated with the last rater are 

implied by coding the other p - 1 raters with a minus one (-1). This coding

strategy produces the convenient and useful result that the (3■ are in
p

deviation form (i.e., ^  pj = 0 ). Parameter estimates are then obtained

through ordinary least squares regression, where = (I^)_1 X V  * As the 

vector in X corresponding to the last rater has been dropped, the parameter 

estimate for that rater will be missing from the OLS solution. The estimate
p -i

for that rater is obtained by - ^  bj , the negative of the sum of the 

parameter estimates for the other p-1 raters.

Weighted least squares (WLS)

The OLS procedure provides an unbiased estimate of the vector of true

ratings. If, however, the consistency of scoring varies across raters, then



the usual regression assumption of equal error variances across all candidates 

and raters is violated; consequently, the variances of the parameter estimates 

will be inflated (Draper & Smith, 1981, p. 110). The practical consequence of 

the inconsistency is that the parameter estimates of candidates who were 

evaluated by inconsistent raters will be less accurate than the estimates 

associated with consistent raters.

Wilson (1988) suggested a two-stage regression procedure consisting of 

ordinary least squares, as described above, followed by weighted least 

squares. The weights for the second stage, which give less influence to 

inconsistent raters in the determination of the parameter estimates, are 

derived as follows. For each candidate/rater pairing that results in a 

rating, a residual is computed to indicate the accuracy with which that 

rater's observed rating corresponds to the rating predicted by the model. For 

example, if the value of a- for candidate i is 3.50 and the value for rater bj 

is .80, the model predicts that a value of 4.30 would be assigned by that 

rater to that candidate. The predicted value of 4.30 is then compared to the 

observed rating, and the difference between the predicted and observed rating 

is computed and squared. If evaluator j provides 10 ratings, the mean squared 

residual (MSRj) based on those 10 ratings provides an index of evaluator 

consistency. The reciprocals of the mean squared residual (1/MSRj) for all 

raters can then be used to derive weights for use in a generalized least

square analysis to obtain revised estimates of the candidates' true scores.

The WLS parameter estimates are given by

where V is a K by K diagonal matrix of weights, with the elements of ¥ 

corresponding to the value of 1/MSRj for each rater. It may be noted that 

obtaining estimates via WLS is similar to weighted scoring in classical

<5)



measurement theory or in item response theory, whereby the influence of each 

test item in determining an examinee's total score is a function of each 

item's discrimination index (Stanley & Wang, 1970), or each item's slope 

(Lord, 1980).

Rasch Model

The Rasch model, also referred to as the one-parameter latent trait model 

for dichotomously scored items, states that the probability of a person 

providing a correct answer to a test item is a function of the person's 

ability and the difficulty of the test item (Wright & Stone, 1979). The Rasch 

model, like the two- and three-parameter latent trait models (Lord, 1980), 

specifies that the relationship between an individual's ability and their 

probability of answering an item correctly takes the form of a logistic 

function. Whereas the two-parameter model allows the slopes for each item to 

vary, and the three-parameter model allows the slope and asymptote to vary, 

the Rasch model assumes that the slopes are equal and the lower asymptotes are 

zero.

Extensions of the Rasch model to rating data are developed in Wright and 

Masters (1982), de Gruijter (1984), and Linacre (1989). The following 

presentation is based on that of Wright and Masters (1982). The Rasch 

approach for rating data models the probability that a person is assigned a 

rating category m+1 rather than a rating in category m. In addition to 

ability (person) and difficulty (rater) parameters, this application of the 

Rasch model contains another set of parameters, called threshold parameters, 

that correspond to differences in difficulty between adjacent categories of 

the rating scale. For a rating scale with M distinct categories there are a



total of M-l threshold parameters. These parameters are assumed to be the

same for all raters. The Rasch model may be written as follows.

exp [a- - (B. + r )1
Piim “ i------- r-----to— “— 77 to n > j “ l  to  Pi m“l to (6)1 + exp [a. - {ft; + TJ) J

where denotes the probability of examinee i being assigned by rater j a
rating in category m+1 versus category m;

a. is the ability level of examinee i;

/?. is the bias index for rater j ;

T is the difficulty associated with category m+1 versus category
m, referred to as a threshold parameter by Wright and Masters 
(1982).

From expression (6), Wright and Masters (1982) derive a general expression for

the probability that examinee i is assigned by rater j a rating in category m.

The letters a, b, and t are used to denote estimates of Ct, /3, and T, 

respectively.1 Once estimates of Of-, , and Tm are obtained, it is possible

to predict for any rater/candidate pair, the rating that any rater j would 

assign to any candidate i. An important characteristic of the Rasch model is 

that it assumes a curvilinear relationship (logistic function) between 

observed ratings and actual performance. The logistic transformation helps 

minimize floor and ceiling effects in the observed ratings by stretching the 

tails of the score distribution.

Parameter estimates for the model are obtained through an iterative 

unconditional maximum likelihood algorithm. Iterations progressively adjust 

parameter estimates in order to maximize the likelihood function simultan­

eously over persons and raters. Initial estimates of a, b, and t obtained via 

the model are compared to the actual ratings (or a logistic transformation of 

the ratings) and the difference, or error, between the actual and modelled

^The parameter estimates for the Rasch model are on a logit scale, 
whereas estimates provided by OLS and WLS are on the same scale as the 
observed ratings. For convenience, similar notation has been used for all 
models.



ratings are computed. Subsequent iterations attempt to minimize this error by 

adjusting the estimates.

A variation of the Rasch rating scale model as described in expression 

(6) has been extended to multifaceted rating designs (e.g., designs in which 

topics, raters, and other factors may vary). The multifacted model is 

described in Linacre (1989) and Lunz, Wright, and Linacre (1990). The present 

paper is limited to two factor designs (raters, candidates). For such 

designs, the algorithm for multifacted designs provides results similar to the 

Wright and Masters (1982) rating scale model.

Imputed Ratings

Whereas the literature on correcting for rater effects is recent and 

fragmented, the literature on multivariate analysis from incomplete data is 

more consistent and spans several years (e.g., Beale & Little, 1975; Buck, 

1960; Gleason & Staelin, 1975; Little & Rubin, 1987; Raymond, 1986; Raymond & 

Roberts, 1987). Methods for handling incomplete multivariate data make use of 

information available about each case to estimate or impute the missing data. 

Imputed ratings can be obtained in a variety of ways. A simple, pragmatic, 

and generally effective approach is based on multiple regression. With this 

approach, variables (raters) are regressed onto some or all of the other 

variables. Regression equations are then used to impute the missing data from 

the data that are present. The regression procedure can be iterated to obtain 

revised estimates, under the assumption that the imputed values obtained from 

successive revisions will be more accurate than the initial imputed values. 

Iterative versions of the regression approach appear very helpful when the 

amount of missing data approaches or exceeds about 10% (Beale & Little, 1975; 

Raymond, 1986; Raymond & Roberts, 1987).

A more theoretical version of the ad hoc regression approach is based on 

the E-M algorithm (Dempster, Laird, & Rubin, 1977). This iterative algorithm,
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which is based on maximum likelihood estimation procedures, assumes the data 

are multivariate normal. Whereas the regression method imputes missing 

observations, the E-M algorithm obtains sufficient statistics using maximum 

likelihood estimation. Estimates of the means, variances, and covariances 

obtained from the incomplete data matrix are used to impute the missing data. 

Results obtained from the E-M algorithm are very similar to those obtained 

from iterated regression. The major difference is that the E-M algorithm 

computes a small (usually) correction to the variances and covariances.

Several studies indicate that regression-based methods or the E-M algorithm 

are more effective than listwise deletion, pairwise deletion, or the mean 

substitution method for analyzing incomplete multivariate data.

Raymond (1986) suggested that methods for imputing missing data might be 

suitable for addressing the problem of incomplete rating data. The best 

estimate of any candidate's true score will be the sum or mean of the observed 

ratings and the imputed ratings. Similarly, an index of bias for each rater 

is obtained by computing the mean rating of observed and imputed ratings 

across candidates and then subtracting from each rater's mean the mean across 

all candidates and raters. However, the method of imputing may or may not 

prove suitable for levels of missing data encountered in incomplete rating 

designs, especially for small sample sizes. These procedures appear to merit 

fur the r s tudy.

In general applications, the method of imputing assumes that the pattern 

of missing data in the candidate (n) by rater (p) data matrix is quasi - random. 

That is, although strict randomization is not required, the pattern of missing 

data must be ignorable (Little & Rubin, 1987). The probability that an 

observation is missing should not depend on candidate or rater characteristics 

that might influence the ratings. For example, if low ability candidates are 

more frequently assigned to one group of raters than to another group, then
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the mechanism by which the data are missing cannot be ignored. In the current 

application, in which emphasis is on imputing missing observations and not on 

making inferences about the underlying parameters, the normality assumption is 

not required.

Illustration of Correction Methods

Overview

The purpose of this paper is not only to specify the models and methods 

to correct for rater effects, but also to demonstrate the performance of the 

four methods (OLS, WLS, the Rasch model, and the E-M algorithm). To do so, we 

constructed a small sample of complete rating data with realistic properties, 

and randomly deleted two-thirds of the values. The incomplete rating data 

were then subjected to the four methods, and the candidate and rater scores 

produced by each method were then compared to the values obtained from the 

complete data. The remainder of this section of the paper explains the 

procedures for generating the simulated rating data and presents an overview 

of the analyses used to compare the four methods. The empirical demonstration 

is limited to one set of data and is not intended to document the 

effectiveness of the four methods; the data simply serve as a vehicle for 

illustrating the procedures. However, findings based on the present data are 

consistent with the results of extensive simulations (Houston, Raymond, &

Svec, in press).

Data Generation

Data were simulated to provide the types of ratings that might be 

obtained from performance evaluations conducted in settings such as military 

training schools, physician residency programs, and other work settings in 

business, industry or government. Prior research and anecdotal reports
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suggest that performance ratings may often have the following characteristics:- 

1) a 5- or 7-point Likert scale; 2) rater variances that range from about 0.5 

to 1.5 on those scales; and 3) rater reliability ranging from about .30 to 

.80, with an average of about .50 (e.g., Berk, 1986; Cason & Cason, 1984;

King, Schmidt, & Hunter, 1980; Rothstein, 1990; Streiner, 1985; Wakefield, 

1985). Given the preceding guidelines, data were simulated for N-25 

individuals evaluated by p-6 raters. We readily acknowledge the small sample 

size. Although the size of the data matrix might correspond to a cohort of 

students enrolled in an internship or training program, it was intentionally 

limited in size to facilitate a demonstration of the alternative methods.

Data were simulated in four steps. First, multivariate normal data were 

generated. The level of correlation among variables was induced so that the 

average rater reliability would be about .55, with three of the raters being 

considerably more reliable than the other three. Second, the data were 

converted to a 1 to 5 scale with a mean of about 3.25 and a standard deviation 

of approximately 1 for each rater. Third, varying degrees of bias were 

introduced by adding a constant (-1.00, -.50, -.25, +.25, +.50, +1.00) to the 

ratings of each rater. Fourth, data were rounded to the nearest integer and, 

where necessary, truncated to fit within the limits of the 1 to 5 Likert-type 

rating scale. The complete rating data appears in Table 2. The fifth and 

final step consisted of randomly deleting four of the six observations for 

each candidate, thereby producing a 67% incomplete rating design. The 

coefficient of generalizability for the complete ratings was .52, and the 15 

interrater correlations among the six raters ranged from .31 to .74.

Analyses

The four procedures (0LS, WLS, Impute, and Rasch) were applied to the 

incomplete rating matrix (as indicated by the asterisks (*) in Table 2). Each 

method provides an adjusted rating, a., taken to be an estimate of each



candidates' true level of performance, and a rater bias index, bj. In 

addition, the: usual approach of simply obtaining the mean of observed ratings 

was also applied to the incomplete rating data. This method is referred to as 

uncorrected. The values of a- and bj based on incomplete data were compared 

to their corresponding estimates based on the complete data.

The methods are also capable of producing indices of candidate response 

consistency and rater consistency. For the least-squares procedures, the 

index is MSR as described earlier. The Rasch model produces two fit indices 

referred to as infit and outfit statistics. The E-M algorithm, which was used 

to impute ratings, produces an adjusted variance-covariance matrix and 

correlation matrix. These matrices can also be used to make inferences about 

the degree of consistency among raters. The various indices of candidate and 

rater fit were recorded and are also discussed.

Results of Applying Correction Methods

Candidate Information

Table 3 presents the ratings based on complete data, uncorrected 

incomplete data, and the incomplete data subsequent to being subjected to one 

of the four correction procedures. All procedures except for the Rasch model 

provide estimates that are on the same scale as the original ratings. Rasch 

model estimates, which are on a logit scale, range from about -5.0 to +6.3.

All methods produced ratings that are noticeably different from the 

uncorrected ratings based on incomplete data. The ratings from incomplete 

data for candidates #4, #21, and #24 are of particular interest since they 

were severely misrated based on the uncorrected incomplete data. Although 

imputing seemed to deal most effectively with these aberrant cases, it 

performed poorly with other candidates (e.g., #25). All the other methods 

(OLS, WLS, Rasch) did attempt to bring the aberrant ratings (#4, #21, #24)
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back into line, but were not completely successful. The Rasch estimates for 

candidates #4 and #21 are quite extreme and inaccurate. The inaccuracy is 

most likely due to the logistic transformation, which stretches the tails of 

the distribution.

To provide a succinct description of the values of a^, descriptive 

statistics were computed for each method, including complete data. The data 

are presented at the bottom of Table 3. All methods (except for the Rasch 

model due to its use of a logit scale) provided overall means nearly identical 

to the complete data means. The standard deviations based on the correction 

methods appear to demonstrate some differences, though. In particular, the 

variability for imputed ratings is quite restricted. This occurs because of 

the tendency for imputed ratings to be regressed toward the overall mean. If 

the equations used to produce the imputed values are not very accurate (i.e., 

if the R-square is substantially less than 1.00), then the imputed values will 

be substantially regressed. It is obvious that if observed ratings are 

uncorrelated, then the imputed values will be equal to the observed mean.

Correlations among the estimated true ratings obtained from the various 

methods are provided in Table 4. Of most interest are the correlations 

between each of the procedures based on incomplete data with the complete 

data. All methods that provide adjusted ratings show a stronger relationship 

with the complete data than the do the unadjusted ratings. For this 

particular data set, using WLS offered no increase in accuracy compared to 

OLS. There are other interesting features of the correlation matrix in 

Table 4, the most noteworthy being the correlation of .986 between OLS and 

Rasch estimates.2

2In recognition of the fact that it is not strictly appropriate to 
compare the Rasch ratings to ratings based on a linear model, two precautions 
were taken. First, Rasch estimates based on complete data were used as a 
basis for comparing the results of the Rasch model applied to incomplete data. 
Second, the adjusted ratings produced by the other methods were subjected to a
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Deviation scores were computed by finding the absolute value of the 

difference between ratings based on complete data and ratings based on the 

various methods for adjusting the incomplete data. The data were standardized 

prior to making this comparison to assure that deviation scores were on the 

same scale (again, refer to footnote 2). The data in Table 5 more or less 

confirm the correlations. The average error produced by not correcting for 

rater effects is about .56 S.D. units; whereas the magnitude of the error for 

the various correction procedures is, on the average, about .40 S.D. units.

The increase in error encountered by not using corrected ratings, relative to 

using corrected ratings, is about 40%. The standard deviations and the ranges 

listed in Table 5 are also of interest in evaluating the various methods, as 

is the last column, which indicates the number of very aberrant ratings 

produced by each method. Noticeably larger errors are associated with the 

uncorrected ratings.

The Rasch and least squares methods produce indices indicating the degree 

to which the postulated model fits the data. These indices have also been 

referred to as fit statistics, and can be used for evaluating the degree to 

which candidates are appropriately measured. The Rasch model produces two 

statistics referred to as infit and outfit. The OLS method is capable of 

providing MSRfl, the mean squared residual for each candidate obtained over the 

raters evaluating that candidate. In general, there was a positive 

relationship among these indices. For .example, the correlation between MSRfl 

and Rasch infit was .76 for the incomplete data. Furthermore, the correlation 

between MSRa for complete data and Rasch infit based on complete data was .95,

logit transformation prior to comparison to the Rasch model. The bottom line 
is that it made very little difference. In fact, for the present data, the 
Rasch model (incomplete) appeared to fair a little worse by using Rasch- 
complete as a basis for comparison. In the interest of clarity and brevity, 
only results obtained from using the original, untransformed, complete data as 
the basis for comparison are presented here.
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suggesting that the two types of indices characterize very similar aspects of 

the rating data. It is also worth noting that the OLS and Rasch fit 

statistics based on the incomplete data were generally similar to the 

corresponding fit statistics based on the complete data.

Rater Information

The indices of rater bias, bj, appear in Table 6. The indices for all 

procedures have a mean of zero. Note that the signs for the Rasch model rater 

indices are reversed. All IRT-based models compute a difficulty index for the 

measurement instruments for which the more difficult, or stringent instruments 

have high values and the more lenient instruments have low values. Another 

notable characteristic of the data in Table 6 is the range for the Rasch 

values of bj, which extend from -3.40 to 2.41. This is not unusual given the 

range of Rasch-based candidate scores (-5.05 to 6.29). However, there appears 

to be greater instability with the Rasch estimates of bj. For example, the 

Rasch estimate of bj for rater 6 based on complete data was only -2.4. The 

impute method estimated the rater biases very accurately, which is, of course, 

one of the primary goals that the method was initially designed to achieve.^ 

The uncorrected estimates of rater bias were also reasonably accurate, 

attesting to the random assignment of raters to candidates. Of the other 

three methods (OLS, WLS, and Rasch), the OLS and WLS estimates were similar 

and were more accurate than the Rasch estimates. Although the magnitudes of 

the rater bias indices vary considerably, the rank ordering of raters 

according to their indices is identical for all procedures. Given the 

magnitude of the differences in rater bias, it is not surprising that all 

methods resulted in the same ranking.
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Rater consistency (or rater fit) statistics can be obtained through the 

Rasch model, least squares procedures, and E-M algorithm. The Rasch model 

computes infit and outfit statistics for each rater, while the OLS procedure 

enables the computation of MSRj to be obtained over all candidates rated by 

each rater. An index of rater reliability can also be obtained from the 

impute procedure, since it produces estimates of the complete data interrater 

correlation matrix. Once the interrater correlations are obtained, it is 

possible to compute two indices of rater consistency: 1) the average

interrater correlation for each rater; or 2) each rater's correlation with the 

sum of the observed and imputed ratings.

For the complete data, the indices of rater consistency for each of the 

methods (OLS, Rasch, Impute) were extremely similar (r >.90). For the 

incomplete data, some differences occurred. Again, the MSRj statistic 

resulting from OLS and the Rasch infit statistics were very similar in terms 

of identifying inconsistent raters. Both were generally capable of 

differentiating inconsistent raters from consistent ones, although rater 5, 

who was really a good rater in the complete data, was identified as an 

inconsistent rater by both methods based on the incomplete data. However, the 

incorrect flagging of rater 5 was consistent with the observed incomplete data 

for that rater 5, which consisted of eight ratings. A consistency index based 

on eight ratings should be expected to be unreliable due to sampling error.

The correlation matrix resulting from the E-M algorithm bore very little 

semblance to the complete data correlation matrix. The small sample size and 

sparsity of the data result in very unstable estimates of interrater 

correlations.

At least for the present set of data, all correction methods appeared to 

offer some improvement over the common practice of summing or averaging the 

observed ratings (i.e., doing nothing at all). The E-M algorithm produced
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imputed ratings that made the data matrix appear as if all candidates were 

rated by all raters. In most instances, the imputed ratings were reasonably 

accurate, although in general they were regressed toward the mean. The Rasch 

model and the correction procedures based on least squares analysis (OLS and 

WLS) also seemed to do an effective job of approximating the ratings a group 

of candidates would receive had they all been evaluated by the same raters. 

Furthermore, the Rasch-based and OLS methods provide very similar results in 

terms of the rank-ordering of both candidates and raters. The candidate and 

rater fit statistics obtained through least-squares and the Rasch model were 

also similar. The notable differences between the Rasch and least square 

models occurred at the extremes of the score scale. The similarity between 

the methods can be increased by subjecting the rating data to certain 

transformations (e.g., logit). Weighted least squares did not improve the OLS 

estimates in most instances. The lack of notable improvement is likely a 

consequence of small sample sizes, reasonable levels of rater consistency, or 

both.

Results of Other Studies

The four methods for correcting for rater effects have been applied to 

other small sets of simulated data, (e.g. N-15, p-5; N=30, p-6; N~25, p=5) . 

Data reported in Wilson (1988) have also been analyzed (N=-10, p-8). The 

results have been consistent in that all correction methods, including 

imputing missing values, provide more accurate results than not correcting 

(i.e., simply summing or averaging over the observed ratings). Furthermore, 

Rasch and OLS provide very similar rank-order results, with neither showing a 

consistent advantage. WLS appears to have advantages when the weights are 

obtained over more ratings and when there is considerable variability in MSRj 

due to one or two of the raters being considerably more aberrant than the 

other raters. For example, in the rating data reported in Wilson (1988), two
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Oof the eight raters had rather extreme values of MSRj relative to the other 

raters. The use of WLS by Wilson (1988) resulted in substantial improvements 

in estimates of true scores, as well as reductions in the standard errors 

associated with the estimates.

Houston, Raymond, and Svec (in press) conducted an experiment using 

numerous replicated sets of simulated rating data. The correction methods 

were investigated under varying conditions of sample size (N=50, 100), levels 

of incomplete data (50%, 75%), and levels of bias (low, high). The interrater 

correlation was .46 and the number of replicated simulations per conditions 

was 30. This research found that OLS, WLS, and the method of imputing, 

consistently resulted in less error (10% to 50% less error) than using 

uncorrected ratings (the Rasch model was not studied in that experiment). In 

addition, the method of imputing was always equal to, or more accurate than, 

the least squares procedures. OLS and WLS performed similarly.

In applied studies conducted within the context of certification 

examinations, it has been shown that rater effects are significant (Raymond, 

Webb, & Houston, in press; Lunz 6c Stahl, 1990) and that an individual rater's 

leniency index is reasonably stable over the period of a year (Raymond, Webb,, 

and Houston, in press). It has also been shown that the use of OLS adjusted 

ratings can affect the pass-fail decisions of approximately 6% of the 

candidates taking an oral examination (Raymond, Webb & Houston, in press). 

Within the context of essay ratings, Braun (1988) has demonstrated that the 

use of an OLS model to adjust observed ratings can result in substantial 

improvements in rater reliability. Under circumstances of pronounced rater 

effects, using an OLS model could actually result in greater gains in 

reliability than could be obtained by doubling the number of raters.
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Preliminary Evaluation of Methods

The use of the E-M algorithm to impute missing ratings appears to be a 

feasible approach to correcting for rater effects. Although it has been 

proven to be very effective for managing incomplete multivariate data when 10% 

to 20% of the data are missing and the samples are moderate to large (Beale & 

Little, 1975; Raymond, 1986; Raymond & Roberts, 1987), its use with incomplete 

rating designs is a practice that clearly warrants some scrutiny. Incomplete 

designs in applied settings can often range from 75% to 90% incomplete. The 

suitability of the E-M algorithm for such designs is an empirical issue that 

needs to be addressed in future research. As noted earlier, it has been found 

to be effective when the rating designs are up to 75% incomplete (Houston, 

Raymond, & Svec, in press). However, it would not be appropriate to 

generalize this finding to the many other rating designs that exist in 

practice. One limitation of the E-M algorithm is that the rater consistency 

indices (i.e., estimates of complete data rater correlations) are likely to be 

very unstable with small samples. Another limitation, the fact that imputed 

estimates are regressed toward the mean, may present a particularly thorny 

problem in the context of criterion-referenced performance examinations. That 

is, the pass-fail status of some candidates may change because their imputed 

ratings were pulled toward the mean of all ratings. This potential 

complication will also need to be addressed by future research.

The Rasch model appears to have some notable advantages. It has a sound 

theoretical basis, it has occupied a position in the psychometric literature 

for many years now, and Rasch-based software for analyzing rating data is 

readily available. For example, two-factor rating designs can be analyzed 

with Microscale or FACETS (Linacre, 1989), while multifactorial rating designs 

can be handled by FACETS. In addition, Rasch-based software produces 

considerable useful information concerning the characteristics of the rating
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data (e.g., standard errors and fit statistics). One possible disadvantage of 

the Rasch model is that it assumes a curvilinear relationship (logistic 

function) between observed ratings and actual performance. The logistic 

transformation presumably minimizes floor and ceiling effects. Although it 

may be useful or required for rating scales with a limited number of scale 

values (e.g., less than seven points), the transformation may not be 

advantageous for rating scales with a large number of scale points. For 

example, in the context of oral ratings based on a 12-point Likert scale, a 

logistic transformation offered no improvement in the fit of rating data to an 

OLS model (Raymond, Webb, & Houston, in press).

The least-squares approaches (OLS and WLS) also have obvious desirable 

features. Least-squares regression is not a psychometric model with a 

theoretical basis and numerous assumptions, but is, instead, a general 

statistical model with few assumptions. The least-square models, like the 

Rasch-based FACETS program, can also accompany multifactorial designs. Both 

OLS and WLS provide adjusted ratings and bias indices that are on the same 

scale as the original data. Therefore, the linkage between the original data 

and corrected data is relatively direct and obvious (although less obvious for 

WLS). Another notable benefit of the least-squares procedures is that, like 

the Rasch-based algorithms, it is possible and easy to obtain a wealth of 

information concerning the characteristics of the rating data. In addition to 

obtaining the standard errors of parameter estimates and the consistency 

indices based on the residuals, one can also generate the variety of 

diagnostic statistics and plots discussed in the literature on regression 

diagnostics (e.g., Belsley, Kuh, & Welsch, 1980).

In short, the least-squares methods are more flexible than either the 

Rasch model or the method of imputing ratings; they can more readily be 

adapted to varieties of data and rating designs that may be encountered in
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practice. Although Lunz, Wright, and Linacre (1990) indicate that an ANOVA 

(i.e., least-squares) approach to correcting for rater leniency/stringency 

error is not possible for incomplete designs and categorical rating data, the 

models presented in this paper suggest otherwise. Any one of a number of 

curvilinear transformations can be applied should the data warrant such a 

transformation. Similarly, WLS can be invoked should the assumption of equal 

variance of errors be violated, and/or if weighted scoring appears to be 

desirable. Least-squares analysis, particularly OLS, may also be more 

suitable for small samples. Under such conditions, curvilinear 

transformations, including the transformation used by the Rasch model, have 

the capability of converting small, possibly random, differences between 

candidates or raters into large differences.

Although there is no prepackaged software designed specifically for 

applying least squares analysis to rating data, it is relatively simple to 

perform OLS or WLS using a variety of software packages. The authors have 

used SPSS-PC (MANOVA) and SYSTAT (MGLH) to perform analyses on a microcomputer 

for small data sets, and SAS (PROC REG, PROC GLM, and PROC MATRIX) on an IBM 

mainframe for large data sets (N-120, p-40). The packages vary considerably 

in terms of the ease with which the regression diagnostics can be obtained.

Recommendations for Future Research

The methods to correct for rater effects show promise; however, much more 

research is needed. One line of research would involve the investigations of 

alternative models to correct for rater effects, or extensions of the present 

models. As noted earlier, multifactor models have been introduced (Braun, 

1988) as have curvilinear models (Cason & Cason, 1984; 1985) and multifactor 

curvilinear models (Linacre, 1989). The method of imputing, which appears to
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be useful for two-factor data, might also be extended to raultifactor (or 

multiway) data.

A second line of research would involve conducting simulation studies 

that consider a variety of correction procedures under a wide range of 

conditions (type of rating data, sample size, number of raters, level of rater 

reliability, level of rater bias, percent and pattern of missing data). For 

example, one study might examine the methods under the various conditions 

encountered in performance rating, whereas other studies might address the 

conditions under which essay or oral examinations are typically graded.

Overall model fit of the simulated rating data will influence the results of 

such studies. Two very critical factors in such studies will be the level of 

rater bias and the degree of interrater correlation. Rater bias can be 

monitored by evaluating the magnitude of the rater effect resulting from a two 

factor (candidate by rater) ANOVA. The sums of squares, mean squares, and

variance components associated with each effect (candidates, raters, error) 

can be useful. As the al , the variance component due to raters, approaches 

zero, the need to correct for rater effects diminishes. As , the

variance component associated with error approaches zero, then the capability 

to correct for rater bias increases. Therefore, the effectiveness of the 

correction procedures will be a joint function of o* and a\ . Clearly, as

0, becomes large relative to other sources of variance, no correction 

procedure will be effective. In such instances, neither the corrected ratings 

nor the uncorrected observed ratings will be suitable for decision-making 

purposes.

Simulations will also be useful for identifying the rating designs that 

will optimize the effectiveness of different correction models. However, it 

will still be necessary to perform research to answer questions regarding
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applications in specific settings using actual rating data. Thus, a third 

line of research would involve applied investigations designed to uncover 

special problems that may be encountered in operational use. Only after 

extensive study should the correction methods be applied operationally.

Since the various correction methods provide an opportunity to evaluate 

and monitor rating behavior over time, a fourth line of research would need to 

assess the reliability, validity, and utility of various indices for 

describing rater performance. All of these methods offer a way to assess 

ethnic bias, gender bias, or other types of bias in ratings. For example, the 

least-squares methods provide values of bj and MSRj that can be obtained and 

compared for selected subgroups. Phenomena such as rater bias are difficult 

to evaluate with the procedures typically used for assessing rating behavior.

The use of any method to correct for rater effects may also have 

important implications for the manner in which raters are trained. If future 

research shows that such methods can be effectively applied to rating data, 

then perhaps training programs should be redesigned to complement and take 

advantage of the correction procedures. Most rater training programs address 

the common rating errors of leniency/stringency, halo, and central tendency. 

Since the correction methods have the capability to correct for 

leniency/stringency errors under conditions of low levels of error variance, 

it may be unnecessary, and perhaps counterproductive, to continue to lecture 

raters about errors of leniency/stringency. Instead, rater training might 

allocate more time to teaching raters to discriminate among different levels 

of performance. Both common sense and the prior data suggest that leniency or 

stringency is a relatively stable personal characteristic that is not changed 

by training (Bernardin & Pence, 1980; Lunz & Stahl, 1990; Raymond, Webb, & 

Houston, in press). Training that attempts to overcome this characteristic 

may be destined for failure. Within the context of the correction procedures,
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it is the inconsistent raters, not the lenient or stringent raters, who 

present the most serious problem. •

Assessment situations that make use of subjective ratings of performance 

are common and pervasive. Important decisions about an individual's career 

hang in a rather dubious balance comprised of data that is often of very 

limited reliability. However, assessment techniques such as work samples, 

practical examinations, essays, and oral examinations have many potential 

strengths, including the possibility of improved validity and increased public 

acceptance. Both the general public and influential policy makers are calling 

for a decrease in multiple-choice testing and an increase in alternative 

assessment methods that rely on subjective ratings of performance (National 

Commission on Testing and Public Policy, 1990). If society and the 

measurement community plan to increase their use of assessment methods that 

rely on performance ratings, then problems related to rater reliability need 

to be addressed in order for these methods to make a valuable contribution to 

the types of decisions for which assessment data are used. The methods 

discussed in this paper may serve as a foundation to improve the quality of 

performance rating data.
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Example of Incomplete Rating Design and the 
Corresponding OLS Design Matrix

Table l.A

__________ Rater

Table 1

Candidate A_______B_______ C_______ D

1 2 4
2 2 5
3 3 4
4 4 6
5 6 6
6 5 4

Table l.B

Observed __________ Candidates_________  Raters
>core C1 C2 C3 C4 C5 C6 r a Rb Rc

2 1 0 0 0 0 0 1 0 0
4 1 0 0 0 0 0 0 0 1
2 0 1 0 0 0 0 0 1 0
5 0 1 0 0 0 0 0 0 1
3 0 0 1 0 0 0 1 0 0
4 0 0 1 0 0 0 -1 -1 -1
4 0 0 0 1 0 0 0 1 0
6 0 0 0 1 0 0 -1 -1 -1
6 0 0 0 0 1 0 1 0 0
6 0 0 0 0 1 0 -1 -1 -1
5 0 0 0 0 0 1 1 0 0
4 0 0 0 0 0 1 0 1 0
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Table 2 

Complete Rating Data

Rater

Candidate 1 2 3 4 5 6

1 1 1* 2 2 2 3*
2 1 1 2* 2 3 3*
3 2 2* 1 3* 3 3
4 2 3 1* 3 2* 3
5 3 2 2* 2 2* 3
6 2* 3 1 3 3 4*
7 3* 2 - 2* 3 3 4
8 3 2 2 3* 4* 3
9 3* 2* 2 3 4 4

10 3 3 2* 3* 4 4
11 3 3* 2 3* 4 5
12 4* 3 3 3* • 3 4
13 4 2 2 3 4* 5*
14 3* 4* 2 3 4 4
15 3 3 1 4* 5 4*
16 4 3 2* 3 4* 5
17 4 3* 2 4* 3 5
18 4 2* 3 4 4* 5
19 3* 2 3 5 5* 5
20 4* 3 2* 5 4 5
21 4 3 2 5* 5 5*
22 2 5* 3 5 4* 5
23 3 3 4 5 5* 5*
24 3* 5 4* 4 5 5
25 5 4* 4 5 5 5*

*The asterisk (*) denotes ratings that remained after 
deleting 67% of the data.
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Overall Rating Provided by Each Method*

Table 3

______________ Incomplete Data_______________
Complete

Candidate Data Uncorrected Impute____OLS WLS_____Rasch

1 1.83 2.00 2.50 1.81 2.02 -4.12
2 2.00 2.50 2.46 2.45 2.40 -2.37
3 2.33 2.50 2.90 2.65 2.67 -0.15
4 2.33 1.50 2.52 1.59 1.60 -5.06
5 2.33 2.00 2.07 2.09 2.13 -2.70
6 2.67 3.00 3.03 2.76 3.06 -0.87
7 2.83 2.50 3.16 3.00 2.91 0.86
8 2.83 3.50 3.20 3.20 3.04 0.83
9 3.00 2.50 2.96 2.86 2.78 0.45

10 3.17 2.50 3.01 2.79 2.75 0.16
11 3.33 3.00 3.29 3.15 3.03 1.09
12 3.33 3.50 3.56 3.60 3.20 2.09
13 3.33 4.50 3.68 3.85 4.07 2.40
14 3.33 3.50 3.75 3.86 3.99 2.75
15 3.33 4.00 3.08 3.55 3.51 1.50
16 3.50 3.00 3.57 3.09 3.07 0.72
17 3.50 3.50 3,48 3.65 3.67 2.29
18 3.67 3.00 3.11 2.96 2.95 0.28
19 3.83 4.00 3.81 3.90 4.00 2.88
20 3.83 3.00 3.62 3.50 3.31 2.10
21 4.00 5.00 3.66 4.55 4.51 6.29
22 4.00 4.50 3.84 4.45 4.54 4.88
23 4.17 5.00 3.94 4.35 4.35 4.98
24 4.33 3.50 3.87 4.00 4.12 3.28
25 4.67 4.50 3.76 4.31 4.33 4.49

Mean 3.260 3.280 3.272 3.278 3.279 1.161
S.D. 0.736 0.947 0.510 0.805 0.811 2.761

*Note: The complete data ratings for each candidate are based on the mean of
p-6 observed ratings. The incomplete ratings were obtained from p-2 
ratings (data were 67% incomplete).
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Correlations of Complete, Uncorrected, 
and Corrected Ratings (N-25)

Table A

Incomplete Data

Method Comp Uncor Impute OLS WLS

Complete 1.000
Uncorrected .777 1.000
Imputed .875 .812 1.000
OLS .881 .939 .914 1.000
WLS .858 .943 .901 .984 1.000
Rasch .879 .906 .896 .986 .959
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Descriptive Statistics for Standardized Absolute 
Difference Scores (N=25)*

Table 5

Method Mean SD Min Max
Percent of 

Diffs. >.75 SD

Uncorrected .562 .341 .02 1.23 6
Imputed .397 .292 .06 1.10 4
OLS .413 .247 .00 .95 2
WLS .456 .258 .09 .96 4
Rasch .388 .291 .02 .99 4

*Obtained by computing the absolute difference between standardized 
ratings for each method and the standardized ratings on complete 
data.

Table 6

Estimates of Rater Bias Provided By Each Method

_________________ Incomplete Data________________
Complete

Rater Data Uncorrected Impute_____OLS_______ WLS______ Rasch

1 -0.22 -0.16 -0.26 -0.31 -0.30 1.08
2 -0.50 -0.39 -0.44 -0.41 -0.44 1.43
3 -1.02 -1.16 -1.02 -0.69 -0.66 2.41
4 0.26 0.22 0.28 0.11 0.21 0.04
5 0.50 0.50 0.52 0.50 0.47 -1.57
6 0.98 0.97 0.92 0.80 0.72 -3.40
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