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Abstract

In 1955 Levine introduced two l inear  equating procedures f o r  the common- 

item nonequivalent-populations design. His two procedures make the same 

assumptions about true scores; they d i f f e r  in terms of the nature of the 

equating function employed.

In th is  paper two parameterizations of a c la ss ica l  congeneric model are 

introduced to  model the var iables in the Levine procedures f o r  the external 

and internal  anchor cases. The models d i f f e r  in  the constraints imposed on 

certain e f f e c t i v e  t e s t  length parameters, as well  as assumptions made about 

one covariance term. This modeling leads to simple expressions fo r  true-score  

variances, r e l i a b i l i t i e s ,  and the so -ca l led  "Angoff  error variances."

Applying these two parameteri zat i ons of the c la ss ica l  congeneric model 

with the Levine assumptions leads to general equations ( f o r  both of the Levine 

procedures and both the external and internal anchor cases) that involve 

ra t ios  of the e f f e c t i v e  t e s t  length parameters. This presentation f a c i l i t a t e s

i nterpretat i  on.

The r o l e  o f  synthetic  population weights for  both Levine procedures is  

considered, along with an a l te rna t ive  in terpre ta t ion  of one o f  Lev ine ’ s 

procedures.





Congeneric Models and Levine’ s 
Linear Equating Procedures

Levine (1955) introduced two l inear  equating methods fo r  a design in 

which two non-equivalent populations take d i f f e r en t  forms of a t e s t  with a 

common set of equating items, or anchor. Levine r e fe r red  to his two methods 

as majoi—axis procedures. Angoff discussed these methods in his 1971 chapter 

on Scales, norms, and equivalent scores in the second ed i t ion  o f  Educational 

Measurement. Angoff ’ s chapter was reprinted in 1984 by the Educational 

Test ing Service. Other authors who have treated  one or both of these methods 

include Woodruff (1986, 1989), Kolen and Brennan (1987), Petersen, Kolen, and 

Hoover (1989), MacCann (1990), and Hanson (1990),

Lev ine 's  methods make assumptions about true scores and error  scores. 

Consequently, to apply these methods, i t  is  necessary to  model the 

re la t ionships among observed, true, and error  scores. In th is  paper, a 

part icu lar  version of a congeneric model is  employed in  which the error 

variances are assumed to  fo l low  c lass ica l  assumptions. Actually, two 

parameterizations of the model are employed--one that is associated with the 

common items const i tut ing  an external anchor, and the other fo r  an internal 

anchor in which the common items are part of the f u l l  length forms.

For both o f  Lev ine ’ s methods, th is modeling leads to general equations 

that invo lve  ra t ios  of certa in e f f e c t i v e  te s t  length parameters. These 

parameters aid in  presenting and in terpret ing  resu l ts .  I t  i s  also shown that 

Ango f f ’ s (1984, pp. 114-115) resu l ts  f o r  Lev ine ’ s methods can be obtained from 

the resu lts  presented here.

The paper ends with a discussion o f  an a l te rnat ive  conception o f  one of 

Lev ine ’ s methods, fo l lowed by a consideration of other issues of in terpreta­

t ion and possib le future research.



2

Terminology

Terminology employed with Lev ine 's  procedures has become somewhat 

confused or, at best, inconsistent  in recent years. In particular,  Levine 

o r i g in a l l y  distinguished between his procedures in terms of the ir  presumed 

appropriateness fo r  equal ly  r e l i a b l e  and unequally r e l i a b l e  tes ts .  However, 

Woodruff (1986), Kolen and Brennan (1987), and Hanson (1990) have a l l  noted 

that Lev ine 's  results  can be derived without making any assumptions about the 

r e l i a b i l i t i e s  of the tes ts  involved. Rather, the d is tinguishing d i f fe r ence  in 

the derivations o f  the procedures is  that the so -ca l led  "equa l ly  r e l i a b l e "  

method i s  an observed-score equating procedure, whereas the so -ca l led  

"unequally r e l i a b l e "  method uses observed scores in a l inear  re la t ionsh ip  

between true scores fo r  the two forms. Here, there fore ,  t o  avoid perpetuating 

the impression that Lev ine 's  procedures make r e l i a b i l i t y  assumptions, the 

procedures w i l l  be r e fe r red  to  as Lev ine 's  observed-score and true-score 

equating procedures. (Admittedly, the phrase "true-score  equating" is a bit 

inaccurate because, as noted above, i t  i s  actua lly  observed scores that are 

used in a true-score re la t ionsh ip ,  but th is  inconsistency seems s l igh t  

compared to  the potentia l misunderstand!ng inherent in  the phrases "equa l ly-  

r e l i a b l e "  and " unequa l ly - re l iab le . " )

Also, as noted by Woodruff (1989), a d is t inc t ion  can be drawn between the 

resu lts  f o r  Levine 's  procedures as expressed by Levine ( 1 955), and a 

particular  case o f  Lev ine 's  results that Angoff  (1984) provides. In terms of 

formulas, Lev ine 's  "genera l"  results  and Ango f f 's  version of Lev ine 's  results  

can be distinguished by the fac t  that Levine (1955) t y p i c a l l y  expresses true- 

score variance as observed-score variance times r e l i a b i l i t y ,  without 

spec i fy ing  a s p e c i f i c  r e l i a b i l i t y  c o e f f i c i e n t .  By contrast , Ango f f 's  versions 

of  Lev ine 's  results are based on s p e c i f i c  r e l i a b i l i t y  c o e f f i c i en ts  that are
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derived using "Ango f f ' s  error variances” (see Angoff ,  1953). In th is  paper, 

whenever there is  the potent ia l fo r  confusion with respect to  this 

d is t inc t ion ,  "Lev ine-Angof f11 w i l l  be used to  designate Ango f f 's  (1984) results 

f o r  Lev ine ’ s methods. Largely, this paper deals with a l te rna t ive  and somewhat 

more general derivations and presentations of the Levi ne-Angof f  resu lts— a 

presentation intended to aid in t e rp re ta t ion .

Seme Results for the C lassical Congeneric Model 

Let X and V designate observed scores f o r  two tes ts  or sets of items.

For the congeneric model, X and V are decomposed as fo l lows:

X = T + E = (A T 6 ) + E and (1)
X X X X X

V = T + E = ( A T + < 5 ) + E .  (2)
V V V V V

A part icu lar  vers ion o f  the congeneric model arises when i t  is  further  

sp ec i f i ed  that

o2(E^) = Xxo2(E) and (3)

o2(E ) = X o2(E) . (4)
V V

This specia l vers ion w i l l  be ca l led  here the c lass ica l  congeneric model. I t

is  discussed by Feldt (1975), Feldt and Brennan (1989, pp. 111-112) and

Woodruff (1986), among others. The word " c la s s i c a l "  is  used here to  indicate

that the error variances are proportional t o  the " e f f e c t i v e "  test

lengths, X and X . In th is  sense, th is  model is  closer to  the trad i t iona lo » x v

c la s s ica l  tes t  theory model than would be the case i f  Equations 3 and'4 did 

not hold.

Discussed next are two parameterizations of th is  c lass ica l  congeneric

model. These parameterizations d i f f e r  with respect to constraints imposed on

the X’ s and assumptions about a(E , E ) .  The f i r s t  case i s  for  tests  X and Vx v

d i s j o in t  and w i l l  be applied la te r  to  external anchor equating; the second
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case is  fo r  V included in X and w i l l  be applied la t e r  to  internal anchor 

equating.

Tests X and V Dis jo int

Suppose that tests  X and V are d is jo in t  in the sense that they contain no

common items. To represent this case, we assume that errors have an

expectat ion o f  zero, a l l  covariances between true and error  scores are zero

and, since X and V are d is t inc t ,

a(Ex ,Ev ) = 0 . (5)

For i d e n t i f i a b i l i t y  purposes we impose the usual constraint

A + A = 1 . (6)x v

( I t  i s  a lso usual to impose the constraint 6 + 6  = 0 ,  but doing so is  not
X V

required fo r  the fo l low ing  der iva t ions . )

For th is  model, the variances and covariances are e a s i l y  determined: 

o2(X) = A2o2( T) + Axo2(E) , (7)

oz (V) = A2o2(T) + Ava2(E ) ,  and (8)

o (X, V) = A A o2( T) . (9)
X V

Further, l e t t i n g  A = X + V ( r e c a l l  that X and V consis t of non-overlapping

sets of  items) i t  is  easy to  show that

o2 ( A) = a2 ( T) + o2 ( E) .

To derive A in terms of variances and covariances, note that x ’

o2(X ) + o(X,V) = A2a2( T) + A o2(E) + A A a2(T)
X X X V

= * XC U X + Av ) o 2(T) + a2 ( E) ]

- Ax Co2(T) + a2( E)]

= Ax<j2(A) .
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I t  fo l lows that the e f f e c t i v e  t e s t  length for  X i s

Ax - [ o2(X) + o (X ,V ) ]/o2( A) (10)

= o (X ,X + V)/o2(A)

= a(X,A)/o2( A)

= ci (X | A) , (11)

where a(X|A) i s  the slope of  the l inear  regression of  X on A. S im ilar ly ,  the

e f f e c t i v e  t e s t  length for  V is

Ay = [ o2( V) + o (X ,V ) ]/o2( A) (12)

» o(V|A) . (13)

Note that, [ o2(X) + o (X ,V ) ]/o2( A) and [ o 2(V) + o (X ,V ) ]/o2( A) are both

( r e l a t i v e )  e f f e c t i v e  weights, as defined by Wang and Stanley (1970). Hence,

the e f f e c t i v e  t e s t  lengths Ax and are also in terpretable  as ( r e l a t i v e )

e f f e c t i v e  weights, as well as slopes o f  X (or V) on A = X + V.

For th is c lass ica l  congeneric model, using Equation 9 and noting

that o2(T ) = A2o2(T) , we obtainv v

° 2(Tv ) = ( W  o(X' V) * (li4)

Consequently, the r e l i a b i l i t y  o f  tes t  V is 

p (V .V ' )  - a2(Tv )/o2(V)

= (Ay/Ax) o(X,V)/a2( V) . (15)

Also, using Equation H  (and then Equations 10 and 12) the variance o f  the 

errors associated with t e s t  V is  found to be

o2(Ev ) - o2(V) - (Ay/A ) o(X, V) (16)

= a 2 ( X ) o 2 ( V )  -  [ g ( X , V ) ] 2  ̂ ( 1 ? )

o2 (X)  + o ( X , V)

For t e s t  X, equations fo r  true-score  variance, r e l i a b i l i t y ,  and error

variance can be obtained by interchanging X and V in Equations 1-4 — 17 resu l t ing

i n
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o2( T ) = (X /A ) o(X, V) , (18)x x v

p(X ,X ')  = (X /X ) o(X,V)/o2(X),  and (19)
x v

o2( E ) = a2 (X) - (X /X ) o(X, V) (20)x x v

= o2(X )o2(V) - [ q (X ,V ) ] 2 (21)

o2 ( V) + o(X,V)

Equations 17 and 21 are the usual expressions fo r  the so -ca l led  "Angoff  

error variances" f o r  t e s ts  V and X, respec t iv e ly ,  f o r  X and V d is jo in t  (see 

Angoff ,  1953; Petersen et a l . ,  1989, p. 254).

Test V Included in Test X

The previous sect ion  considered the case o f  tests  X and V containing no 

common items. In equating terminology th is  is  the case associated with V 

being an external anchor. Suppose now that t e s t  V is  an internal anchor-- 

i . e . ,  a l l  of the items in t e s t  V are included in t e s t  X. In th is  case, the 

c lass ica l  congeneric model Equations 1-4 s t i l l  apply, and we assume that 

errors have an expectation of zero and a l l  covariances between true and error

scores are zero. However, we replace the constraint in Equation 6 with

X - 1 . (22)x

(For completeness i t  i s  typ ica l  to spec i fy  the constraint <5̂ = 0, but doing so 

i s  not necessary fo r  der iv ing the results  that f o l l o w . )  Sett ing  Xx = 1 merely 

sp ec i f i e s  that, when V is  included in  X, the fu l l - l en g th  t e s t ,  X, has an 

e f f e c t i v e  length of 1. Consequently, f o r  th is  model we l e t  Tx = T and Ex = E, 

and Equation 1 can be wr it ten

X = T + E = T + E . x x

Equation 5, o(Ex>Ey ) = 0, is  not va l id  for  th is  case, however. Rather, since

V is  included in X, only the covariance between V and the non-common part of X 

is  zero. Therefore,

o(Ex ,Ey ) = o(E,Ey) = o(Ev ,Ey ) = o2(Ey ) = Xy0 2(E) . (23)
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For th is  internal  anchor c la ss ica l  congeneric model, the variances and 

covariances are e a s i l y  found to be

o2(X) = o2(T) + o2( E) , (24)

o2(V) = A 2o2( T) + Xy o2(E ) ,  and (25)

a(X,V) = Ay o2( T) + Xyo2(E) (26)

= Ayo2(X) . (27)

Fran Equation 27, i t  i s  c lear  that

Xy = o(X,V)/o2(X) = a(V|X) . (28)

Again we f ind  that the e f f e c t i v e  t e s t  length parameter ^  i s  a slope.

Reca l l ing  that a2C ) = X2a2(T) , and'solv ing Equations 25 and 26 

simultaneously, we obtain 

X
° ! <TJ  - r r r  C«(x.v) - a2(v)] . (29)

V I A
V

Consequently, the r e l i a b i l i t y  o f  t e s t  V is:

P (V .V ' )  - r - V  ° ( x ’ v) - . (30)
1 v a2 ( V)

Also, using Equation 29 (and then Equation 28)

o2( V) - X o(X,V)
. * (E v ) - --------— ---------  (3D

V

q2(X )q2( V) - [ g (X ,V ) ]  

a2(X) - a(X, V)
(32)

Since a2(T ) = X2o2(T) = A2a2(T ) , i t  fo l lows from Equation 29 that
V V V X

o(X, V) - a2( V)
0 ( V  = "V ~(f - X ) • ■ C33)

V V

and the r e l i a b i l i t y  of t e s t  X is
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Since o2(E ) = X o2(E) = X o2(E ) and X = o (X , V)/a2 (X ),  i t  fo l lows from
V V V X V

Equations 31 and 32, r espec t iv e ly ,  that

a 2 ( V )  -  X o ( X , V )__________v
X (1 - \  )

V V

a2(X) { o2(X )o2( V) - [ q ( X , V ) ] 2}

° 2(Ex> - - x ( T -  x ) (35>
V V

(36)
a(X, V) [ a2(X ) - o(X, V ) ]

Equations 32 and 36 are the usual expressions for  the Angoff  error 

variances f o r  V and X, r e spec t iv e ly ,  f o r  the case o f  V included in X (see 

Angoff ,  1953; Petersen et a l . ,  1989, p. 254).

Comments

Many of  the results  presented thus far  have been provided im p l i c i t l y  or 

e x p l i c i t l y  by others ( e . g . ,  Angoff ,  1953; Feldt, 1975; and Woodruff, 1986). 

However, the particular form of some o f  the derivat ions presented here is  

somewhat novel and compact.

Also, s t r i c t l y  speaking, not a l l  of the results  that have been presented 

are required to der ive  the Levine-Angoff results  considered subsequently. In 

part icu lar ,  the r e l i a b i l i t i e s  and Angoff error variances are not required per 

s e , but they are useful in  r e la t in g  expressions of resu lts  to be presented 

with correspondi ng expressions provided by Angoff  (1984), Kolen and Brennan 

(1 987), and Petersen et a l . (1989), among others.

Levine Observed-Score Method 

The Levine observed-score method (elsewhere ca l led the "equa l ly  r e l i a b l e "  

method) fo r  the common-item nonequivalent-populations design was o r i g in a l l y  

developed by Levine (1955). Angoff (1984, p. 115) and Petersen et a l . (1989, 

p. 254) also present descr iptions of the method. Using a congeneric model, 

Woodruff (1986) derived a specia l  case of the Levine-Angoff resu l ts .  

Subsequently, Kolen and Brennan (1987) derived a more general vers ion of  the 

Levine-Angoff resu lts  using a framework that e x p l i c i t l y  incorporates the



9

synthet ic  group concept o r i g in a l l y  introduced by Braun and Holland (1982).

The der ivat ion  outl ined below integrates the Kolen and Brennan (1987) 

presentation and the c lass ica l  congeneric model results  presented previously.

Assume that a new te s t  form X is  administered to population 1 and an old 

tes t  form Y is  administered to  population 2. (The ad ject ives  "new" and "o ld"  

to describe forms X and Y, respec t ive ly ,  are used here fo r  convenience only. 

There is  nothing in  the derivat ions that distinguishes between the "newness" 

or "oldness" of a form.) Also, assume that both populations take a common set  

of items, V, which may be d is t inc t  frcm X and Y or included in both X and Y. 

This is  a descr ip tion of the common-item non-equivalent populations design.

For th is  design, the two populations can be combined into  a s ing le  

population fo r  defin ing the equating re la t ionship .  To address th is  issue 

Braun and Holland (1982) introduced the concept of a synthetic  population. 

S t a t i s t i c s  for  populations 1 and 2 are proport ionally  weighted by w, and w2, 

respec t iv e ly ,  ( i . e . ,  Wj + w2 = 1 with wlf w2 £ 0) to  obtain s t a t i s t i c s  for  

the synthet ic  population.

For the Levine observed-score method, the l inear  equation for  equating 

scores on X to  the sca le  o f  Y is

c on
MX) = -2—  [X - u (X ) ]  + u (Y)  , (37)

0 U )  S Ss

where s_ indicates the synthetic  population. For examinees in the synthetic  

population, the transformed observed scores on X [ i . e . ,  ! ( X ) ]  have the same 

mean and standard deviat ion as the observed scores on Y.

Assumptions

Lett ing Tx , Ty, and Ty be true scores for  X, Y, and V, r espec t ive ly ,  

Levine made the fo l low ing  three assumptions in der iv ing  his results  (see Kolen 

& Brennan, 1987, pp. 266-267):
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( a )  Tx and Ty c o r re la t e  p e r f e c t ly  for  both populations, and the same 

condition holds f o r  Ty and Ty ;

(b) the l inear  function o f  Tx on Ty is  the same fo r  both populations,

and the same condition holds f o r  T and Ty ; and

(c )  measurement error variance fo r  X is  the same for  both populations, 

and the same condition holds f o r  Y and V.

General Results

Lett ing  subscripts designate populations, Kolen and Brennan (1987, see 

espec ia l ly  pp. 267, 268, and 272) show that under the Levine assumptions the

four parameters in Equation 37 can be represented as:

(Angoff ,  1987, and Brennan & Kolen, 1987, discuss and debate various issues 

with respect to choosing the weights wx and w2.)

When the c lass ica l  congeneric model is  applied to  obtain Yx and Y2, the 

results  discussed next are obtained for  the external and internal anchor 

cases.

u (X) - M i (X) - WjYjCy^V) - u2(V ) ]  ,O

U3 (Y) = U2(Y) + W j Y j y ^ V )  - M*(V)] , (39)

(38)

where the Y-terms are rat ios  of true-score  standard deviations.  In

parti  cu lar ,

Yi = o l (T x )/a1(T y ) and 

Y2 = o2(Ty )/o2(T v ) .

(42)

(43)
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External Anchor

Substituting Equations 14 and 18 into  Equation 42 we obtain

Y ! =  /  ( A  /A  ) /  ( A /A )  Xj Vj v, x t

= A /A (44)
Xj v i

where the subscript 1 i s  used to  spec i fy  that the data are fo r  examinees in 

population 1. In  terns of variances and covariances, the e f f e c t i v e  tes t  

length parameters in  Equation 44 are given by Equations 10 and 12. Therefore, 

Y r = Ca?(X) + ox(X ,V ) ] / [ o* ( V) + 0 l (X( V)]  . (45)

Furthermore, the e f f e c t i v e  t e s t  length parameters in Equation 44 are also 

given by the slopes in Equations 11 and 13- Therefore,

Y, - a , (X|A)/a, ( V|A) , (46)

where A = X + V.

Corresponding equations for  the old t e s t  form Y and population 2 can be 

obtained by subst i tut ing  Y f o r  X, 2 fo r  1 , and B = Y + V f o r  A * X + V, in 

Equations 44-46 resu l t ing  in

Y2 - A ^ / A ^  (47)

= [ c?2 (Y) + o2(Y, V)]/[cj22(V) +■ o 2 ( Y, V) ] (48)

= a2(Y|B)/o2(V|B) . (49)

Equations 44 and 47 s ta te  that, for  the Levine observed-score method with 

an external anchor, Yj and Y2 ( i . e . ,  the r a t i o  of the true-score  standard 

deviat ions in  Equations 42 and 43) are ra t ios  of e f f e c t i v e  t e s t  lengths in 

populations 1 and 2, respec t ive ly .

Equations 45 and 48 are the most frequent ly  reported expressions for  

the Y-terms (see, fo r  example, Angoff ,  1984, p. 115 and Kolen & Brennan, 1 987, 

p. 272), but to  th is  author these expressions lack the i n t e rp re tab i l i t y  o f  the



1 2

e f f e c t i v e  t e s t  length ra t ios  in  Equations and 47, and to  some extent they 

lack the in t e r p r e ta b i l i t y  of the slope ra t io s  in Equations 46 and 49. 

Internal Anchor

Substituting Equations 29 and 33 into  Equation 42, we obtain

X (1 - X ) 
Vi  V u

1 - X

(50)

This, too, i s  a r a t i o  of e f f e c t i v e  t e s t  lengths because, fo r  the internal

anchor case, the e f f e c t i v e  t e s t  length of X in population 1 is  X =1  (see
x i

Equation 22), which i s  the numerator of Equation 50. Using Equation 28, an 

a l te rna t ive  expression f o r  Yj is

Yj = 1/a,(V|X) , (51)

which is  the expression provided by Angoff (1984, p. 115) and Kolen and 

Brennan (1987, p. 272). For the old form Y and population 2,

Y, -1/X

= 1 /a2( V|Y) .

(52)

(53)

Comment

The der ivat ion  that has been outl ined here o f  Lev ine 's  observed-score 

method integrates the Kolen and Brennan presentation of th is  method with the 

c lass ica l  congeneric model results  presented previously, with emphasis placed 

upon the in terp re ta t ion  of the Y-terms as ra t ios  of e f f e c t i v e  t e s t  lengths. 

Certain aspects of the approach, resu l ts ,  and interpreta t ions presented here 

are also provided by Angoff  (1984, p. 114-115), Kolen and Brennan (1987), and 

Woodruff (1986). For example, Ango f f 's  (1984) results  are equivalent to  those 

presented here when w, = n ^ ^  + n2) and w2 = n2/ (n t + n2), where
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n! and n2 are sample s izes  fo r  populations 1 and 2, r espec t iv e ly .  Woodruff’ s 

(1 986) results  are equivalent to  those presented here when w, = 1.

Levine True-Score Method 

Levine ( ’1 955) also developed another method f o r  the common-item non­

equivalent populations design. This second method i s  ca l led  Lev ine ’ s 

true-score" method here. (Elsewhere, i t  is  ca l led  Lev ine 's  "unequally 

r e l i a b l e "  method.) Angoff (1984, p. 115) and Petersen et a l . (1989, p. 254) 

present descriptions of the method. The assumptions about true scores for  

th is  method are the same as those fo r  the observed-score method. What 

dist inguishes the methods is  that the l inear  equation f o r  the true-score  

method i s  expressed in  terms of certa in  true-score  quanti t ies ,  rather than the 

observed-score quant it ies  in Equation 37.

S p e c i f i c a l l y ,  fo r  the true-score  method, the basic l inear  equation is

° s ( V
8 ( V  = n r i [ V V V ] + ws ( y  ■s X J

where Tx designates the true score associated with a particular examinee's 

observed score. For examinees in the synthetic  population, the transformed 

true scores on X [ i . e . ,  g (Tx ) ]  have the same mean and standard devia tion as 

the true scores on Y.

C lear ly ,  however, examinees' true scores are never known. Therefore, the 

l inear  equation that is  used in pract ice  is

g (x )  C x ‘ us ( V ] " ws ( V  <51°

o (T )
- 3 -y-  [X - y (X ) ] + u (Y) , (55)o ( T ) tV ' WJ KsS X



since true-score  means equal observed-score means fo r  the models considered 

here. Equation 54 or 55 is  the Levine true-score equating function. The 

l o g i c  o f  using g(X) rather than g(T ) i s  neither more nor less  compell ing 

than, f o r  example, using observed scores in IRT true-score  equating procedures 

(see Lord, 1980, p. 202). Note, in part icu lar ,  that the transformed observed 

scores on X [ i . e . ,  g (X ) ]  t y p i c a l l y  do not have the same standard devia tion as 

the true scores on Y or the observed scores on Y.

General Results

Using the Kolen and Brennan (1987) approach, i t  can be shown that under 

Levine 's  assumptions:

• W  = ys CX) = y i (X )  " w2Yi [ li » Cv) ■ Ha(V)]  , (56)

u ( T ) - u (Y) = p2(Y) + w ^ C ^ C V )  - y 2(V ) ]  , (57)s y s

o* ( V  =■ ^?0g(Tv) • and (58)

o * (Ty) = Y|o|(Tv> . (59)

where o2(T ) = w,o?(V) + w2o|(V) + u1w2[)i1(V) -  y 2 ( V ) ] J .
S V

Equations 56 and 57 are the same as the corresponding Equations 38 and 39, 

r espec t iv e ly ,  f o r  the observed-score method. Equation 58 f o r  the true-score 

variance o f  X in the synthet ic  population i s  derived in the Appendix, and 

Equation 59 can be derived in a s imilar  manner.

Since the assumptions fo r  both the observed-score and true-score methods 

are the same, in general the Y-terms in Equations 56-59 are the ra t ios  of the 

true-score standard deviations in Equations H2 and 43- Furthermore, the 

Y-terms are the same as those derived previously using the c lass ica l  

congeneric models for  the external and internal anchor cases. Thus, 

the V s  in Equations 56-59 are a lso in terpretable  as ra t ios  of e f f e c t i v e  tes t

1 engths.

1 u
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The simple form of Equations 58 and 59 leads to the slope o f  the l inear  

equation fo r  g (X) in Equation 55 being

as (T y )/ffs (T x) = Yz/Tl (60)

which i s  (X /X )/(X /A ) for  the external anchor case, and A /X fo r  the y 2 v 2 x x Vl v 2

internal anchor case. As shown below, the intercept  fo r  g(X) can also be 

expressed r e l a t i v e l y  simply in terms of d i r e c t l y  estimable parameters. Using 

Equations 56 and 57 with v = u^V )  - n2(V ) ,  the intercept  i s  

ys OO - Cas (Ty )/os (T x) ] p g (X)

= UatCY) + ~ ( T 2/Yl ) [ u 1(X) - WjYiV]

“ M Y )  - ( y 2/y 1) u1( x ) + Y2(W! + w2)v .

Since Wj + w2 = 1, i t  fo l lows that the intercept  equals

[ y a (Y) - ( Y 2/Y1) vi1(X ) ]  + Y2[ u , ( v) - V12( V ) ] . (61)

Note that the slope and intercept do not depend on the weights, wx and w2.

Replacing Equations 60 and 61 in Equation 55 we obtain 

g(X) = (Y 2/Yx) [X  - u i (X) ] + M Y )  + T2C M V )  - M V ) ]  . (62)

Hence, g(X) f o r  Lev ine 's  true-score method i s  invar iant with respect to 

weighting of populations 1 and 2 in forming the synthetic  population, or we 

might say that the concept of a synthetic  population i s  not necessary to 

conceptualize th is  method’ s results .  Even so, i t  is  sometimes useful to  

d isplay Lev ine ’ s true-score  method in the form of Equations 55~59 to  compare 

i t  with Lev ine 's  observed-scor e method in the form of Equations 37-41.

The usual presentation of  results for  the Levine true-score  method is  

rather d i f f e r en t  from that presented here. Therefore, provided below are the

"usual" Levine-Angoff results  presented by Angoff  (1984, p. 115), along with

proofs of the ir  equivalence to  the results  presented here (which assume, of 

course, the c lass ica l  congeneric models discussed in th is  paper).
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External Anchor

Angoff (1984, p. 115) states that, when V is  an external anchor, the 

slope of g (X )  is

os (T y) o, (Y|V) p , (V ,V ' )

os ( T x ) "  dj  (X | V) p 2 ( V , V ' )  ’ ( 63)

Using Equation 15 fo r  p j (V tV ' )  and the para l le l  equation fo r  the r e l i a b i l i t y

o f  V on population 2,

, o 2 (Y|V)  (A /A ) o , ( X , V ) / o ? ( V )
o (. 1 ; v ! x t
s__ y

a (T ) oc, (X | V) (A /A ) o z ( Y , V)/o| ( V) ‘ s x v z y z

Since aj(X|V) «  O j (X ,V )/af (V )  and a2(Y[V) = a2(Y,V)/a|(V) , i t  fo l lows that

0s(T y ) W

a (T ) X /X s X x, V!

F ina l ly ,  from Equations 4*1 and 47, we obtain the slope given by Equation 60.

Angoff (1984, p. 115) a lso s tates that the intercept of g(X) with V being 

an external anchor is

a (T ) aa(Y|v)

p’ a )  " T T n  U l (x )  * p i ( v ,V~  ~ U2(v ) ]  • (61°
S X

Since a2(Y|V) = o2(Y ,V )/o2(V) and, by the para l le l  of Equation 15 for

population 2, p2(V ,V ' )  = (X /X ) a2(Y ,V )/a2( V) , i t  fo l lows that
2̂ y2

ct2(Y|V)/p2(V ,V ' )  = X /X » Y2 by Equation 47. Therefore, since
y 2 v 2

as (Ty )/as (Tx) = » the intercept  given by Equation 64 can be wr i t ten as

H2(Y) - (^/Y iJvrCX)  + YaCpj ( V) - y 2 ( V) ] , 

which i s  iden t ica l  to the resu l t  in  Equation 62.

Internal Anchor

For an internal  anchor, Angoff (1984, p. 115) s tates that the slope of 

g(X) is

o (T  )/o (T ) = ctj ( V|X)/ct2( V|Y) . (65)s y s x
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For the development considered here, by Equations 58 and 59, 50 and 52, and 51

and 53» respec t iv e ly ,  the slope is

os (T y ) Y2 Xv , a,(V|X)

= ^  = ot,(V|Y) ’

which equals Equation 65.

Angoff (1954, p. 115) a lso states that the intercept of g(X) f o r  an

internal anchor is

0 (T ) 1

y2(Y) - p (~x )  ^ (X) + tt2( v |Y) [ y i (V )  " y z (V ) ]  ‘ (66)
S X

Using Equations 58, 59, and 53, we can rewr i te  Equation 66 as

y2(Y) - ( Y2/ Y + Y2[ Ul (V) -  m2(V ) ]  .

which i s  ident ica l  to the resu l t  in Equation 62.

First-Order Equity

For the Levine true-score method, a function r e la t in g  true scores is

applied to observed scores. As noted previously, the l o g i c  of doing so is

somewhat less  than compelling, and i t  is  not c lear  how the converted scores on

X, [ i . e . ,  g (X ) ]  are comparable to  scores on Y. Hanson (1990), however, has

shown that Lev ine ’ s true-score  equating function (Equation 54) fo r  the common-

item nonequivalent-populations design resu l ts  in  f i r s t - o rd e r  equity of the

equated te s t  scores under a particular parameterization o f  the c lass ica l

congeneric model.

Before descr ibing Hanson’ s modeling in more d e ta i l ,  we i l l u s t r a t e

Hanson's approach f o r  the much simpler case of the s ing le  group design and the

Levine true-score equating function

g(X) = [<j(T ) / o( T ) ] [ X  - p(T ) ]  + p(T ) . (67)y x x y

(With the s in g le  group design, no synthetic  population is  involved.

Therefore, there are no subscripts on the parameters in Equation 67.)
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Lett ing  be a function that re la tes true scores on X to  true scores on

Y, f i r s t - o r d e r ,  or weak, equity i s  defined as

£ [g (X )|<KT ) = t ] «  £  ( Y | T = t ) f o r  a l l  t . (68)x y

Under th is  de f in i t i on ,  the transformed score g(X) i s  defined to  be equivalent 

to  Y i f  the expected value of the conditional d is t r ibut ion  of g (X )  given 

MT ) = t equals the expected value o f  the condit ional  d is t r ibu t ion  o f  Y 

given Ty = t » Divgi (1981), Morris (1982), and Yen (1983) consider f i r s t -  

order equity, which i s  a weaker case o f  the concept of equity f i r s t  proposed 

by Lord (1980).

Consider the s in g l e  group design with no common items, and assume that no 

context e f f e c ts  ex is t  r e l a t i v e  to  the fa c t  that examinees take both forms.

For th is  design the congeneric model for  t e s t  forms X and Y can be sp ec i f i e d  

as

X = T  + E  = ( X T + 6 ) + E  and (69)
X X X x x

Y = T + E » U  T + 6 ) + E . (70)
y y y y y

I t  fo l lows that

T = (X /X ) ( T  - 6 ) + 6 = iKT ) .y y x x  x y r x

Consequently,

g(X) = [ 5 y - CXy/Ax) 6x] + (Xy /Xx )X (71)

s a t i s f i e s  the condit ion o f  f i r s t - o rd e r  equity in Equation 68, because the 

expected value of g (X)  in Equation 71, given i ,  equals the expected value o f  Y 

given t , for  a l l  t .

To show that g(X) in Equation 67 s a t i s f i e s  f i r s t - o rd e r  equity, i t  i s  

s u f f i c i e n t  to  show that i t  equals Equation 71. From Equations 69 and 70, 

p (Tx) = Axu(T) ♦ Sx , W(Ty ) = Ayli (T )  ♦ 6y , 

o(T ) = X o(T) , and o(T ) = X o(T)  .
x x  y y
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Replacing these equations in  Equation 67 gives

g (X ) = X - A m(T) - 6 x x + A y ( T) + 5
y y

X y C T )  + 5  -  A p ( T )  -  ^  <5
y y y * x x

6 - T 2- 5y A x
X

which i s  iden t ica l  t o  Equation 71.

The same type of  l o g i c  has been applied by Hanson (1990) in the much more 

complicated context o f  the common-items nonequi valent-populations design. 

S p e c i f i c a l l y ,  except fo r  s l i gh t  notational d i f fe rences ,  Hanson (1990) uses the 

fo l low ing  congeneric model f o r  the t e s t  forms and common items:

H2 = T2 + E,Jh, * (72)

vT‘ + V + V (73)

kT‘ + V and (7*0

VT > + V + E
v ,

t (75)

where 1 and 2 designate populations, T̂  ( i  = 1,2) i s  the true-score random 

var iab le  corresponding to the observable score H^, Y = H + V, and X = K + V. 

Further, the error  variances are assumed to  s a t i s f y  the assumptions of the 

c lass ica l  congeneric model, and the constraints imposed are Â  = 1 and 

6^ = 0 . Given th is  modeling, Hanson (1990) shows that Lev ine 's  true-score 

equating procedure s a t i s f i e s  f i r s t - o rd e r  equity, fo r  both internal and 

external  sets of common items.

Note that Hanson's modeling o f  congeneric forms in Equations 72-75 

d i f f e r s  considerably from that discussed in previous sections of this  paper. 

In part icu lar ,  Equations 72-75 d i r e c t l y  r e la t e  V to both X and Y in a s ing le
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model. In other words, Equations 72-75 const i tute  one model with one

term fo r  V, whereas in  previous sections the common-iterns nonequivalent-

populations design was framed in terms of separate congeneric models f o r  the

two forms, which involves two e f f e c t i v e  t e s t  length parameters fo r  V.

Summary and Discussion

In this paper, two d i f f e r en t  parameterizations of a c lass ica l  congeneric

model have been introduced to  model e x p l i c i t l y  the variables in the Levine

observed-score and true-score l inear  equating procedures, f o r  the external  and

internal anchor cases. The models d i f f e r  in  the constraints imposed on the

e f f e c t i v e  te s t  length parameters, and X^, as well  as assumptions made

about one covariance term, o(E , E ) .  With an external anchor the modelx v

employs the constraint X + X =1  and assumes o(E ,E ) = 0 ,  whereas with an
K J X V  X V

internal anchor X is  set to  1, and i t  i s  assumed that o(E ,E ) = X o2(E).
X X V V

Using these two parameteri zat i  ons, r e l a t i v e l y  simple expressions are eas i ly

obtained f o r  true-score  variances, r e l i a b i l i t i e s ,  and error variances.

Further, the error  variances are equal to the so -ca l led  "Angoff  error 

var iances."

Applying these two parameteri zations of the c lass ica l  congeneric model 

with the Levine assumptions leads to general equations ( f o r  both o f  Lev ine ’ s 

procedures and both the external and internal anchor cases) that involve  

ra t ios  of e f f e c t i v e  t e s t  length parameters. This aids in terpre ta t ion .

The derived resu lts  are summarized in Table 1, where £ (X) and g(X)  are 

the l inear  functions fo r  the observed-score and true-score methods, 

respec t ive ly .  There are s im i la r i t i e s  between the expression of some of  the 

results in  Table 1 and other expressions of results fo r  the Levine procedures 

(notably, Angoff , 1984, p. 115, and Kolen & Brennan, 1987, p. 272). For
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example, as i n Kolen and Brennan (1987), results  are expressed in terms of 

synthetic  population weights, means and variances that are d i r e c t l y  

observable, and certa i  n Y-t erms. (Kolen & Brennan, however, provide results  

f o r  the observed-score case, on ly . )  Also, for  Wj = n,/(n] + n2) 

and w2 = na/(n, + n2) the results  in Table 1 are a lg ebra ica l ly  equivalent to  

those presented by Angoff (1984).

There are, however, several  d i f ferences between the expression of  results

summarized in Table 1 and other expressions. F i r s t ,  the Y-terms are a l l

expressed as rat ios  of  e f f e c t i v e  t e s t  length parameters for  the two

parameterizations of the c lass ica l  congeneric model used in this  paper. This

fac t  enhances the in t e rp r e ta b i l i t y  of  the Y-terms. For example, with an

exclusive anchor, i t  i s  evident that Yx increases as the e f f e c t i v e  t e s t

length o f  X increases r e la t i v e  to  V in population 1. Second, the Y-terms are

the same for  both the observed-score and true-score methods. Third, the

e f f e c t i v e  te s t  length parameters are a l l  slopes in a particular l inear

regression. In general \ r = a . (F|* )  where i = 1 or 2, F is  X, Y, or V, and *t . i
i

is  a to ta l  score invo lv ing  F. Fourth, the l inear  function for  the true-score  

method, g (X ) ,  can be obtained using expressions for  synthetic  group means and 

variances that invo lve  synthetic  population weights, but g(X)  i t s e l f  is blind 

to  such weights. This i s  a notable d i f fe rence  between the observed-score and 

true-score  methods--a d i f fe r ence  that has not been reported previously.

The assumptions about true scores and error  variances fo r  both o f  the 

Levine methods are the same. What distinguishes the methods is  the nature of 

the l inear  functions. For the observed-score method, the l inear  function 

re la tes  converted observed scores on X to  scores on Y. For the true-score 

method, however, the basic l inear  function re la tes  true scores, but i t  i s  

applied to  observed scores. Consequently, f o r  the true-score method, i t  is
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not clear how the converted scores on X are in any sense comparable to  scores 

on Y. Recently, however, Hanson (1990) has shown that Lev ine 's  true-score  

method s a t i s f i e s  the condit ion o f  f i r s t - o r d e r  equity  under a part icu lar

parameterization of the c lass ica l  congeneric model. Of course, th is  does not

necessari ly  mean that Lev ine ’ s true-score  method i s  pre ferab le  to  Lev ine 's  

observed-score method, but Hanson's proof casts new l i g h t  on Lev ine 's  true- 

score method.

Although the two Levine methods are not properly distinguished in terms

of being derived under assumptions about equal ly  r e l i a b l e  and unequally

r e l i a b l e  t e s ts ,  there i s  a re la t ionsh ip  between the two methods that involves

r e l i a b i l i t i e s .  In part icular ,  i f  there ex is ts  a part icu lar  synthetic

population in  which X and Y are equally r e l i a b l e  [ i . e . ,  p (X ,X ' )  = p ( Y ,Y ' )s s

fo r  a part icu lar  wx (and w2 = 1 - w , ) ] ,  then

o ( T ) o (Y) p (Y , Y ' )  o (Y )s y s s _ _ _ _  s
o (T ) o (X) p (X ,X ' )  o (X) '

S X s  s  s

£(X) = g (X) for  th is  synthetic  population, and fo r  both methods the converted 

scores on X fo r  the synthet ic  population w i l l  have the same mean and variance 

as the scores on Y. Note that th is equivalence does not necessar i ly  hold for  

every synthetic  population, however.

Sometimes the fo l low ing  question i s  asked: "When tes ts  are equally

r e l i a b l e ,  why doesn't Lev ine 's  unequally r e l i a b l e  procedure g ive  the same 

results  as Lev ine 's  equally r e l i a b l e  procedure?" This seemingly sens ib le  

question, however, is  somewhat misleading and ambiguous. I t  i s  misleading 

because, as shown in th is  report,  the generalized version o f  the Levine-Angoff 

results  summarized in Table 1 can be derived without any assumptions about 

r e l i a b i l i t y .  The so -ca l led  "equa l ly  r e l i a b l e "  procedure i s  simply the 

observed-score method denoted &(X), and the so-ca l led  "unequally r e l i a b l e "
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procedure i s  simply the true-score method denoted g (X).  The question is  

ambiguous because i t  f a i l s  t o  recognize the r o l e  of the synthetic  population 

in obtaining I (X) .  For example, suppose pr (X fX' )  = pz ( Y , Y ' ) f which implies 

that X and Y are equally  r e l i a b l e  fo r  the populations that actual ly  took X and 

Y. I t  does not f o l low ,  however, that p (X,X#) «  p ( Y fY ' )  f o r  the particular 

synthetic  population actually  used. Thus, i t  i s  quite possible  fo r  forms to 

be equal ly  r e l i a b l e  in seme sense without having £(X) = g (X ) .

Lev ine 's  (1 955) methods make assumptions about true scores.

Consequently, to apply these methods, one must employ sane model that re la tes  

observed and true scores.  Levine employed c lass ica l  tes t  theory assumptions, 

and expressed many of his r esu l ts  in terms of r e l i a b i l i t y  c o e f f i c i e n ts .  

However, he gave only l im ited  consideration to  how such c o e f f i c i en ts  might be 

estimated. Ango f f 's  (1984) results  are based on estimating these coe f f i c ien ts  

using observed variances and Ango f f 's  (1953) error variances. In th is  paper, 

two s p e c i f i c  c lass ica l  congeneric models are used to der ive  resu lts  fo r  

Lev ine 's  methods. These results  can be viewed as more general versions of 

Ango f f 's  resu l ts ,  although they are derived and expressed d i f f e r e n t l y .

Since Lev ine 's  methods require some model for  the re la t ionsh ip  between 

observed and true scores, models other than the c lass ica l  congeneric model 

could lead to  d i f f e r en t  results .  In part icu lar ,  the m ult i - fac tor  congeneric 

model discussed by Feldt  and Brennan (1 989, p. 111), or one or more models in 

g e n e ra l i z a b i l i t y  theory, might be employed with Lev ine 's  methods. The 

principal  point is  that improved estimates of true-score variances, error 

variances, or r e l i a b i l i t i e s  could lead to  improved resu l ts .  Also, 

improvements might resu l t  from re lax ing  one or more of Lev ine 's  assumptions.
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Appendix

Proof that o2(T ) = Y?a2(T ) 
3 x 1 3 v

In  general,  i t  i s  easy to  show that

= Wl0' (Tx ) + w2 ° i (T x) + wiw^ M : (T x ) - u2(Tx) ] 2 . (A1)

For the c la ss ica l  congeneric model ^ ( T  ) » y , CX) and y2(Tx) = y 2(X) . Also, 

under Lev ine 's  assumptions Kolen and Brennan (1987, Equation 32) show that 

y2(X) = y , (X )  - [ o 1( T f )/o1(Tv ) ! [ y 1(V) - y 2(V ) ]  .

I t  fo l lows  that

° s (Tx) = W‘ °> ( V  + W2° ^ Tx) + wiw2 ^ai tTx )/o » < Tv  ̂ ( V) - y 2 ( V) ] 2

o ? c y
W i O ? ( T v ) + W;

a?(T )

. f ( T x )
0 z (Tx ) + WjWiCy^V) - y 2 ( V) ] ( A2)

Under the Levine assumptions, the slope o f  the l inear  function of  Tx on Tv is

the same in populations 1 and 2. This means that 

a i (T x )/a1(T y) = o2( Tx )/o2( Ty ) .

Applying Equation A3 to  the second term in braces in Equation A2 gives

(A3)

o2 ( T ) = s x

°i<T )
wi 0 i ( Ty ) + w2o|( Ty) + w1w2[ y 1(V) - y 2( V ) ] 2

The term in  braces is  o2(T ) ,  and by Equation 42 o?(T )/o? (T ) = Y ?  . Thus
S V 1 X 1 V 1

o 2 ( T  ) =  Y 2 o 2 ( T  ) ,
S X 1 S V

as was to be proved.
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Table 1

Equations for Levine*s Observed-Score [Z (X) ]  
and True-Score [ g (X ) ]  Methods

b  X )  =  [a (Y )  / 0  ( X ) ]  [ X  -  y  s s s (X)]  + u s  (Y)

g ( X )  =  L o s ( T y ) / o g ( T x ) ]  [ X  - u s ( x ) ] + ys (Y)

=  ( Y 2 / Y , ) [ x  -  U 1 ( x ) ]  + M2(Y)  + y 2 [ u !  ( v )  -  M V ) ]

y s ( X )  =  U l ( X )  -  w 2Y , [ ^ ( V ) - li2(V ) ]

ys (Y) «  u2(Y) + - v . Y ^ u ^ V ) - U2(V ) ]

O g ( x )  = M X )  -  w 2y J [ o i ( v ) “  a| (V ) ] + w t w 2Y i  C u i  ( V) - M V ) ] 2

o*(Y ) = a i m  + Wj Y i [ o i  ( V) y - a | ( V ) ] + W i W j Y z C u i ( V )  - m2 ( V ) ] 2

a2 ( T  ) -  Y i  a2 ( T  ) s X s V

o 2 ( T ) = Y i a 2 ( T  ) . s y s v

w h e r e  a 2 ( T  ) = W j O ? ( T  ) + w 2 s v  V
M y  + Wi W2 [ y ,  ( V)  -  M V ) ] 2

External Anchor (A = X + V, B = Y + V) (C lass ica l  congeneric model)

X a ! (X | A) o?(X) + o^X .V )
x i

Y l  =  A = a , ( V [ ~ A 7  =  o F r v r ^ ' o T O c T v y  
v 1

A a 2 ( Y | B )  O j ( Y ) + o 2 ( Y , V)

=  A =  o 7 T v 1~b T  = a f ( v r “ a r T Y T v T
v  2

Internal Anchor (C lass ica l  congeneric model)

Y t = 1/A = 1/ a ! ( V|X) = o f (X )/ o , (X fV)
v 1

Y 2 = 1 / A  = 1 / a 2 ( V | Y ) =  0 2 ( Y ) / a 2 ( Y , V )
v  2

Note. For Tucker’ s method use Yj = a ^ x j v )  and y2 = a 2 ( Y | V) * n 

£(X) fo r  both the internal and external anchor cases.
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