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ABSTRACT

This paper describes the derivation of several item selection algorithms 

for use in fitting test items to target information functions. These 

algorithms circumvent iterative solutions by using the criteria of moving 

averages of the distance to a target information function and simultaneously 

considering an entire range of ability points used to condition the 

information functions. The algorithms were implemented in a microcomputer 

software package and tested by generating six forms of an ACT math test, each 

fit to an existing target test, including content-designated item subsets.

The results indicate that the algorithms provide reliable fit to the target in 

terms of item parameters, test information functions and expected score 

distributions. A discussion of the application is included.
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Introduction

Advances in computer technology have generated a growing interest in test 

construction applications which take advantage of that technology. One such 

area of interest has been the use of computers to create parallel tests.

In Item Response Theory (IRT), parallelism among tests, test forms or 

subtests can in part be determined by what are termed item and test 

information functions among other criteria. IRT uses this concept of 

information, conditional upon a latent ability, 0, to determine measurement 

precision. Contrasted with classical test theory, which derives a single 

estimate of measurement accuracy via reliability and the standard error of 

measurement, IRT uses the inverse of the square root of the information 

function about the 0s to denote measurement accuracy across an entire latent 

ability metric.

This information is defined at the item level by

V V  = p.(e )Q.(0 > (1>J k j k

where P.(0 ) is the probability of a correct response to item j at some J k i
ability level, 0, , Q.(0, ) = 1 - P.(9, ), and P. (0. ) is the first derivative 7 k j k j k j k
of P.(0, ) with respect to 0, . Furthermore, the item information, 1.(0. ), isJ k r k j k
additive which allows us to derive the information for an entire test or 

subtest as

J
T(0 ) = £1.(0). (2)

k j-i J k

It must be noted, however that T(0, ) is merely the test informationk

function conditional upon some single level of ability, 0 » Because
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the 9^ abilities are in reality distributed continuously on R or the real 

number line, +<»} , we must extend our concern beyond some k.^ ability

point to an entire test information curve. The shape of and area under such 

test information curves can then be used to determine a weak form of 

parallelism among tests (Lord, 1977, Samejima, 1977). That is, tests (forms 

or subtests having similar content and measuring the same latent trait) with 

identical test information curves may be considered essentially to be 

parallel. Therefore, if we can create different test forms with approximately 

the same test information curves (and similar content), then our forms should 

be reasonably parallel.

However, practical solutions to the problem of actually generating 

parallel tests via test information curves have demonstrated only limited 

success. Algorithms suggested by Theunissen (1985) and van der Linden and 

Boekkooi-Timminga (1989), which employ zero-one, linear programming to 

maximize test information, tend to require large amounts of computing time and 

remain limited for large scale applications. Although parameter restrictions 

and heuristics can be applied to the zero-one problem (e.g. Adema, 1988) a 

trade-off of computer time versus accuracy tends to result.

Other techniques based upon more heuristic approaches (sort and search 

rule-based algorithms) more dramatically reduce computational loads but run 

the risk of operating with limited accuracy. For example, Ackerman (1989) was 

able to demonstrate the implementation of a strictly heuristic technique which 

prioritized item information based upon distance from a target test 

information curve. Under Ackerman's approach, pooled items were presorted at 

various ability levels by descending information and those items which 

contributed the most information at priority points on the test information 

curve were assigned to test forms. Unfortunately, Ackerman's technique tended



Co always choose the most discriminating items and usually overestimated the 

target test information curves (i.e. produced more informative tests than 

targeted).

What appears necessary, therefore, is a set of techniques which effect a 

compromise between computational loads and purely heuristic approaches. This 

paper focuses upon that specific problem— to determine a set of general 

heuristics and algorithms which can be used to select J items from a pool of M 

items (J<M) which minimize the difference between a target information curve 

and the actual information curve formed by the J items, at some K points along 

an ability distribution.

Derivation of the Item Selection Algorithm

We begin by defining T^ as some amount of targeted test information, 

conditional upon 0 , (k = 1,..., K quadrature points). This target 

information is assumed to represent the standard form of a test whose 

properties we wish to match. We also define T ^  as the conditional 

information with respect to the j1"*1 selected item (*j = 1,..., J, k = 1,...,

K) such that

J
T, = T* = r I .(0, ) . (3)k jk j=1 j k

*
Note that by prior definition of the test information, equation (2), T ^  is

merely an incremental sum of the item information, 1^(0^). To further clarify

equation (3), it is only for conceptual convenience that we distinguish

between T., as the approximation of the item information functions being jk
incrementally summed and T^ as the finished approximation of the information 

function, conditional upon 0 (i.e. T = T. where j = J).
K. K  J  K.
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As implied earlier, the ability distribution of 0s used to condition the

test information curve is generally considered to span {-®, +®}; however, in

practice, K is usually kept to some small number of quadrature points (e.g.

K < = 31) on the interval {-3.0, +3.0}) minimally adequate for sampling the

cumulative information function (CIF, or cumulative density of the information

function conditional on 0) at equal partitions.

Next, we need to consider the distances between the target function, T^,

and the information function under construction, T. . That distance is given
J ̂

by

d = T - T . k 1 k jk
d = 0 for T, < T.,

k * k Jk * ( 4)
d, = T. - T.. for T > T.. 1 k k jk k jk

which denotes the absolute difference (distance) between the target function,

T^, and the approximation of the test information function,

We can now adjust d^ to a partitioned distance corresponding, ideally, to 
•k

smooth growth in T. , given 9 , as
J K  K

5k = j - j + l = (5)

This partitioning of the information function at some point, k, assumes 

that 6^ is the optimal information with which to evaluate the next J - j + 1 

items. In short, 6^ becomes a moving average of the information selection 

criteria and is adjusted at each iteration in the selection process.

There appear to be two sound reasons for using 6^. First, the averaging  

process explicit in computing 6^ would appear to prevent extreme (and 

arbitrary) growth in any one area of the curve. That is, items with maximal 

or minimal information properties at any k*1*1 ability point will be less likely
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to be chosen than items with less extreme information. Thus, averaging should

produce smooth growth in T. as opposed to sporadic growth which requires
J k

continual and sometimes dramatic correction. Second, the dynamic nature of
* . L

computing 6^ at each j selection iteration allows for constant "fine tuning"

along the 9^ (k = 1...K) points. In other words, error in estimating the

target function is accounted for directly by the algorithm as part of the next 

set of distances from the target to be evaluated.

Once 5^ i-s derived, we use it to create a set of relative

weights, a) , which will then be used to actually prioritize the information at

K ability points being evaluated. The relative weights are determined by 

normalizing the 6^ 's across the k quadrature points, as given by

di = — ^---- (6)
k K V '

Z 6,
k=l k

K
where I u> = 1.0. (In practice, 1 - w will serve as the actual weight for 

k=l k 
reasons explained below.)

We now proceed to use 6^ and to evaluate the M - j + 1 items in the

item pool. Let £ , denote the absolute error difference between the mk
t" h  t“ b\information of each m item in the pool, evaluated at the k ability point,

and 5, . That is, k

where 5 might be called the error in fit of the M - j + 1 items in the mk
unused item pool to 5, . It should be noted that in some sense <S . is an r k mk
arbitrary measure of the relative estimation error during the process of



selecting items. Accordingly, rank ordering the absolute differences

between I and S. or squaring that difference might each be suggested as mk k
plausible alternatives for arriving at E , . However, only E . in its form asmk mk
the absolute difference retains the scale properties of the information

functions under evaluation. In short, any derivation of £ except by usingmk
the absolute difference would introduce additional, arbitrary and probably 

unwanted weighting of the item information along the K ability points.
U

Finally, to determine the selection of the j item, given M - j + 1

items, we need to create a composite selection value for each of the pooled

items as a sum of each weighted relative error (i.e. a sum of the product

of 1 - id , and E , ), across the K ability points. Note that the use k mk
of 1 - 0)̂  in place of merely guarantees that the weighting and the relative

error in fit, 5 > remain in the same direction. By summing the weightedmk
relative errors, we arrive at an adjusted item selection composite (of the fit

* * • to smooth growth in T. ) for the M - j + 1 items remaining in the pool. That
J k

adjusted item fit selection composite, S , is given bym

S = E (1 - ti) )? (8)m . * k mkk=l

During each iteration of the selection cycle, the item with the smallest 

value of Sm (i.e. least overall error, weighted by information importance) is 

chosen from the M - j + 1 pool, j is incremented and the process continues 

until j = J or until a specified degree of accuracy in approximating (k =

1...K) is attained. Finding the item with the minimum value of (per 

iteration) therefore serves as the primary heuristic to be used during the 

selection process.
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Dealing with Item Subsets and Subtests

One assumption implicit in the algorithm described in the prior section 

is that the target curve is comprised of fairly homogeneous items. That is, 

in building T., (see equation [3]), the item information functions are 

essentially compared to a criterion of an average information function for 

each of J items (conditional upon the quadrature points, 9 , k = 1...K). In 

certain circumstances, this assumption may not be tenable. Where a target 

curve is established as a composite of subsets of items from an existing test 

or from item specifications (e.g. subtests categorized by content area and/or 

some other criteria), the categorical subsets may have different information 

distributional properties, i.e. moments of the information curves, than the 

overall target information function.

In these situations, multiple targets can be used in a two-stage fitting 

procedure. Essentially, the method involves fitting each categorical or 

criterial subtarget in the first stage and then grouping the selected item 

subsets in a second stage to fit an overall targeted test information 

function.

In the first stage of this procedure, we presume to fit a subtarget, T^, 

conditional upon 0^, comprised of items for r=l...R subsets of items such

that

R
T, = I T . , k = I...K (9)k . rk• r=l

Thus, the subtarget represents an allowable partitioning of the information 

function in the overall target, given 0 . In judging the fit of items to

the subtarget, T^r, the item selection score, given by equation (8), is now 

denoted as Sfm corresponding to the [restricted] subset of items in the



10

pool. We then independently fit a subset of items, t0 ea°h Trk

subtarget (k = 1...K, r = 1...R), where

J(r)
TJ(r)k I ,  ^ ( r / V ’ k = 1- K (10)

J(r) 1

After all R subsets of items have been fitted to each subtarget,

Trk» we proceed to the second stage of fitting. In this stage, we use the 

subsets of the selected items as the basic units of comparison. The

selection algorithm proceeds as described in equation (8) but now compares the 

composite fit of the R subsets of selected items, or > t0 the

overall target T^. This item subset score is given by

J(r)
S T, , = L (1 - W, ) i y I x ( e ,  ) - 6, I (11). . = E (l - W ) I I  i (e. ) - sr) k ' . L , j(r) k I

J(r) 1

where

Tk - \  TJ(r)k
6 y -  (12)k R - r + 1

with restrictions identical to those given in equations (4) and (5), and where 

is defined and used as shown in equations (6) and (8). Therefore, the 

subset of items which minimizes the weighted sum of information to the

average growth in the conditional curve being fitted is selected for r = 1...R 

cycles.

Multiple Parallel Test Forms

Multiple parallel test forms can be constructed in the same manner as a

single test form. The major difference lies in the need to consider T., (j =jkq
1...J, k = 1...K, q = 1...Q), where Q is the number of test forms being fit to
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the target, T^. Furthermore, by rotating the order of the form being fit (q)
.  t" hat each j item selection iteration and controlling for duplication of item 

selection across forms, the assignment of items (based upon their information 

fit to ) c^n be essentially equalized across test forms.

Methods

Implementat ion

All algorithms and heuristics discussed in the prior section were 

formally implemented in an IBM-compatible microcomputer-based package called 

ITEMSEL. This integrated software consists of 10 menu-driven program modules 

written in Microsoft QuickBasic 4.0 (1987) by the first author. ITEMSEL 

features EGA/VGA graphics for on-screen presentation of the selection process 

and provides a wide variety of item data base modules and file handling 

utilities which facilitate the item selection process. The software package 

also fully supports the construction of multiple test forms, the use of 

multiple subtargets for dealing with content subtests or subsets of items and 

even allows user submitted item substitutions.

The basic process of using ITEMSEL involves user inputs of an item pool 

file, a target information file, related control inputs such as the size of J 

or (the number of items to be selected) and content filter values/text.

Selected items are retained in additional files where optimization of the 

fitting process can occur or from which optional combining of item subtests 

can be accomplished.

The programs assume a 3-parameter IRT or logistic model for purposes of 

computing all information quantities. Under that model, the probability of a 

correct response to item j, conditional on ability, 8^, is given by

-Da.(0 - b .) ^
P.(0, ) = c. ♦ (1 - c.)fl + e J J } (13)
J k J J
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where Cj is the lower asymptote parameter, aj is the discrimination parameter 

and bj is the item difficulty. D is a constant equal to approximately 1.702 

and used for scaling 0 under the logistic model.

Data Specifications

An item pool consisting of 600 mathematics items from ACT testing 

programs was selected to investigate the use of the Sm and Srm algorithms as 

implemented by the ITEMSEL program. 520 of the items were from 13 previously 

administered ACT Assessment Program (AAP) Mathematics tests. An additional 80 

items were drawn from the Collegiate Mathematics Placement Program (CMPP).

Item parameters for all 600 items were derived from a three-parameter logistic 

calibration performed using LOGIST IV (Wingersky, Barton and Lord, 1982) and 

scaled to a common ability metric using equivalent groups.

40 items which comprised the AAP Mathematics Form 26A were selected as 

the overall test target curve to remain consistent with a previously noted 

study conducted by Ackerman (1989). These 40 items were also included in the 

item pool. The Form 26A target curve was fit by evaluating the test 

information at K = 31 quadrature points on the 0 interval (-3.0, + 3.0}. The 

cumulative information function (CIF) was equally partitioned (based upon an 

integration of 1000 0 points) to locate the 31 points. That is, points were 

selected which divided the information curve into equal area partitions.

Additionally, the six content areas which comprise Form 26A of the AAP 

Mathematics test were used to generate six corresponding subtargets. The CIF 

of each subtarget was 1ikewise partitioned independently when generating the K 

= 31 quadrature points. These Form 26A subtest content areas contained the 

following numbers of items (for purposes of computing the information 

functions and generating subsequent subsets of items): AAR = 14 items, AAO =

4 items, G = 8 items, IA = 8 items, NNS = 4 items and AT = 2 items.
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Item Selection Procedures

The ITEMSEL microcomputer program was employed in a two-stage set of 

fitting procedures meant to generate six independent forms of the AAP 

Mathematics test. In the first stage, six forms of each of the content areas 

(AAR, AAO, G, IA, NNS and AT) were initially fit to the Form 26A subtest 

information targets. ITEMSEL thus generated a total of 36 content-restricted 

item subsets. In the second stage of fitting, an "optimizer" module in the 

ITEMSEL system was used to identify and combine composite groupings of the 

content-restricted item subsets which fit the overall Form 26A target 

information curve to produce six independent forms of the AAP Mathematics test 

(see Dealing with Item Subsets and Subtests). That is, each of the six 

generated total test forms was created as a summation of the unique AAR, AAO, 

G, IA, NSS and AT subsets of items which "best" fit the overall Form 26A 

target curve.

The generation of multiple forms during both stages of item selection was 

performed as a simultaneous operation. As described earlier, ITEMSEL 

automatically rotated all form indices as each item or item subtest was 

selected to ensure equalization of the item/subtest selection process across 

forms.

Results

In the present study, six forms of 40 items each were generated by 

ITEMSEL using the 600 items in the math pool and the Mathematics test Form 26A 

target information values conditional on K=31 quadrature points of 9. In 

assessing the quality of the algorithms to fit the Form 26A target a number of 

considerations and comparisons are presented.
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Summary of IRT Item Parameters

The IRT item parameters (discrimination, difficulty and the lower 

asymptote) provide an important starting point in consideration of the item 

selection process. Assuming that the test target represents an ideal 

composite of items, we would expect that the items selected or fitted via the 

ITEMSEL program should demonstrate similar distributions of the item 

parameters to those present in the target specifications or test.

A summary of the means and standard deviations of the item parameters is 

presented in Table 1. This table compares the distributional properties of 

the parameters for each of the six generated AAP Mathematics test Forms (A-F) 

with the Mathematics test Form 26A target parameters. In general, the 

apparent trend of the parameters suggests a very slight tendency (with one 

exception, Form F) by ITEMSEL toward overfitting the average item 

discrimination parameters (a) and toward choosing items with nominally higher 

mean difficulty parameters (b).

Insert Table 1 about here

The net result appears to be, therefore, a tendency for ITEMSEL to spread

out the information (i.e. produce a more platykurtic distribution of

information). Given the explicit averaging of the conditional information

functions, via the S algorithm, this minor distributional difference seems T m °
quite reasonable. It should also be noted that despite the minor 

distributional differences between the item parameters of the target test and 

those of the selected test forms, ITEMSEL was nonetheless very consistent in 

matching item parameters among Forms A through F of the test.
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As an additional comparison, consider Table 2 which shows the means and 

standard deviations of the IRT parameters from 12 manually constructed 

Mathematics test Forms (i.e. actual forms prepared by ACT test development 

staff). Table 2 would appear to provide strong evidence of a greater degree 

of variation in the types of items which were manually selected across forms 

than was present in the computer-selected forms summarized in Table 1. It 

should be noted, however, that these 12 manually-constructed test forms did 

not use target test information as the objective criteria.

Insert Table 2 about here

Goodness-of-Fi t

In addition to the descriptive summary of the item parameters, we can 

also consider the test information curves, themselves. As shown in Figure 1, 

all six selected Mathematics Test Forms (A-F, 40 items each) demonstrated 

quite similar patterns of information. That similarity is perhaps even more 

evident in terms of the means and variances of the information curves (for 

which estimates of the expectations can be derived across the 31 quadrature 

points of 9). For the target test, Form 26A, the mean information across the 

31 quadrature points of 9 was 21.67. Comparatively, the average of the 

expected means of the test information curves for the six selected test forms 

(A-F) was 21.54. Likewise, the approximate variance of the Form 26A target 

information curve for 31 quadrature points was 152.53. This compares to an 

average variance of 161.55 for the Form A-F test information curves. 

Therefore, the general indication is that the information curves from the six 

selected test forms were essentially centered at the same point as the target 

curve, but with nominally larger variances.
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Insert Figure 1 about here

Figure 2 presents the subsets of items selected by ITEMSEL to fit the 

individual content area subtargets (AAR, AAO, G, IA, HNS and AT). Some 

caution is warranted, however, when reviewing these content-specific graphs of 

the item subsets. The apparent differences in the curves across content areas 

must take into account the scaling of the ordinate axes. For example, the AT 

Forms appear to demonstrate a greater lack of fit than the AAR Forms.

However, if we consider the ordinate axes of the AT curves versus the AAR 

curves, it should be obvious that the real differences between the AT curves 

(2 items per subtest form) are actually as small or smaller than the 

differences between the AAR curves (14 items per subtest form).

In judging the actual degree of fit between curves, a more useful set of

presents four such indices for the six AAP Math Forms fit to the Form 26A 

target information.

Insert Figure 2 about here

goodness-of-fit indices (beyond visual inspection) seems needed. Table 3

Insert Table 3 about here

The unweighted average absolute difference (|UAD|) represents the mean of

the unsigned differences between the curves, as given by
K

UAD (14)K



17

The unweighted root mean square (URMS) index represents the square root of the 

mean squared deviations between the fitted and target curves along the 

quadrature points. That is,

URMS =

K „ 2
Jl'VV

K -  Cl5)

The weighted mean square (WMS) is similar to the URMS, but uses a normalized 

weighting of the standardized true scores, given each quadrature point, to 

essentially scale the information differences to the expected score density of 

the 9 metric for the selected items. Therefore, the weighted mean square is 

given by

where

WMS = I  *(Ck). (T - T ) (16)
k=l

k' K -c2, (17)___k
I 2 k-1

and

K JI vv ■ I I v v 1K 1-1 J k - 1  i - 1  -1

KI I VV - [ I I VV 
k -1  i -1  J k k -1  i -1  J

K J K J (18)
)]2

K(K-l)
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given P.(0 ) as the probability of a correct response to item j, conditional 
J **■

upon 8^. Finally, delta (A) is given as a squared difference weighted by the 

normalized information functions (densities) of the target function.

Accordingly, delta becomes

* ■ I  \  - Vk=l

K 2
(19)

where

( 20 )

By themselves, the four goodness-of-fit indices provided in the upper 

half of Table 3 imply both weighted and unweighted functions of various forms 

of the average unsigned differences between the Form 26A target curve and the 

selected test information curves (i.e. the curves for Forms A-F). However, to 

put these indices in a different perspective, we might consider these indices 

as proportions of an information function, conditional upon some value of 0.

To do so merely requires dividing the value of the indice in Table 3 by the 

information function at some point along the 0 metric (e.g. the mean 

information for the Form 26A target test of 21.67). For example, 

the |UAD|, URMS, WMS and A values (0.709, 0.849, 0.874 and 0.943) in the first 

row of Table 3 could be seen to represent proportional differences between the 

Form A curve and the target curve ranging from 3.28% to 4.36%, at the point of 

average test discrimination. These proportional differences, conditional upon 

the mean information in the Form 26A target curve, are provided in parentheses 

below each goodness-of-fit index in Table 3. The basic implication is that 

the fit between the information curves is actually far better than the indices
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in the upper half of Table 3 might suggest on the surface. That is, the 

apparent functional differences taken as relative ratios (proportions) to the 

amount of average information in the target curve (e.g. 3.1% to 5.0% in terms 

of |UAD|) are essentially inconsequential.

As another method of assessing the goodness-of-fit, we might consider the 

relationship between the test information and the standard error of the latent 

abilities, 9, given by

°e(0)
1

I ve) j-i j

Using this relationship, it becomes possible to restate the goodness-of-fit

statistics as weighted functions of the average unsigned differences between

the standard errors conditional on 0. These standard error differences are

provided in the lower half of Table 3.

The unweighted absolute average difference [|UADI^q^) an(* the

unweighted root mean square (URMS^g^j) of the standard errors obviously

appear larger than the weighted mean square anc* deUa ^SE(e)^

The reason has to do with the larger standard errors on 0 at the asymptotes of

the information curves. Because both the j UAD t  ̂q ) anc* ^^se(0) ibices

treat all quadrature points of 8 equally, both statistics essentially inflate

the apparent unsigned average differences between the standard errors for the

target versus fitted curves. ^ ^ s e(q ) further takes the square root which

inflates the difference even more for values between 0 and 1. The

and (a indices, therefore, appear to be more meaningful in that bothSE\ 9 /
tend to limit the impact of standard error differences for 9 values near the 

asymptotes. This is especially true if we consider that the seemingly largest
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differences between fitted forms and the target information functions occurred

for Form F (referring to the upper half of Table 3). However, considering the

weighted differences between the standard errors (lower half of Table 3), the

differences are negligible.

Expected Score Differences

The final determinants of the adequacy and accuracy in fitting a target

test using the S and S algorithms (as implemented in the ITEMSEL software)° m rm
are the expected score distributions obtained from the various tests. That

is, if we consider the issue of parallelism among test forms to extend beyond

our objective function (test information), then we must also consider what the 

score distributions of the fitted test forms will look like in comparison to 

the target test (AAP Math Form 26A, in this case).

Figure 3 presents the test characteristics curves (TCCs) for each of the

six fitted test forms along with the TCC for Form 26A. These TCCs are defined

by the sum of the conditional probabilities for all items in a test across 

the 0 metric. That is,

where is the probability of a correct response to item j, conditioned

upon 0 (see equation [13]). T(0) therefore defines the expectation of a

J
P(0) ( 2 1 )

random individual's true score on J items, given his/her ability level (Lord,

1980).

Insert Figure 3 about here
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Quite clearly, Figure 3 demonstrates a very close correspondence between 

true scores across the fitted forms of the AAP Math test and Form 26A. 

Additionally, the differences between predicted score distributions can be 

compared by converting the true scores to a discrete number-right scale. In 

the present study, predicted scores were obtained by assuming a (0,1) normal 

distribution on 9. Table 4 provides the means, standard deviations, skewness 

and kurtosis values of the predicted score distributions for the six AAP Math 

test forms fitted by ITEMSEL and the Form 26A target test. Classical item p- 

values and biserial correlations and their standard deviations are also shown 

in Table 4.

Insert Table 4 about here

Table 4 provides fairly clear evidence of parallelism among the six fitted

forms and the target test, not only in terms of predicted means and standard

deviations, but also skewness and kurtosis. In other words, the process of

fitting the target information was sufficient to fit the expected and

predicted score distributions for the present item pool. Finally, as

suggested by the mean p-values and biserial correlations (and their standard

deviations) the S and S „ algorithms also seem to satisfy classical testing m rm
theory criteria for parallelism.

Microcomputer Timed Performance

ITEMSEL was run on a Compaq 386/33 microcomputer for the present study.

As such, resulting performance indicators are perhaps optimistic ones for most: 

microcomputer environments. Also, due to the interactive nature of the 

fitting process, user skill greatly enters into the assessment of timed 

performance. Nonetheless, several timing indices can be stated.
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The entire process of constructing the six AAP forms, including all user 

inputs, fitting of subtargets and optimization of item content-designated 

subset$ to the overall target information curve ranged from 15 to 20 minutes 

in multiple trials. This compares to informal estimates made by ACT test 

development staff of about 170 hours to accomplish the same task manually 

(Noble, 1990). Of course, the 170 hours would also include formulating 

additional constraints and making qualitative judgements about the constructed 

forms beyond the test information fit criteria.

In terms of more precise time estimates, the fitting of the six item 

subsets (six forms each) ranged from 1.2 to 10.9 seconds, depending upon the 

number of items. The process of choosing optimal subsets took 1.5 seconds of 

CPU time. Comparatively, fitting six forms of the overall Form 26A target 

curve (without content breakdowns) used 70.7 seconds of CPU time on the same 

Compaq 386/33 microcomputer. It shor.Ld be noted, however, that these timing 

values also include the generation of graphics displays during ail selection 

stages.

Discussion

The S and S algorithms were introduced as viable methods for fitting m rm ° °
test items to a target information curve. Both algorithms use the criterion 

of a moving average of the conditional distance to the target function, across 

quadrature points of 9. Items are then selected by use of a weighted 

composite score which assesses their fit to the criterion.

This approach appears to demonstrate three distinct benefits. First, the 

moving average criterion, as a form of an objective function, absorbs and 

redirects error in fit thus allowing for a non-iterative solution. The result 

is a reasonably fast method of fitting any target information curve. Second, 

the algorithms simultaneously consider ail quadrature points which define the
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test information curves and upon which the information functions are 

conditional. That is, the entire information curve is always fit in the 

process of selecting items or items subsets. Finally, the algorithms can be 

conveniently extended for use with subtests/subtargets, item subsets and . 

multiple test forms.

In general, ITEMSEL was able to produce six test forms which reasonably 

matched the Form 26A target test along multiple levels of criteria. For 

example, IRT item parameters were shown to closely correspond to the 

parameters in the target test; more closely, in fact, than the parameters 

derived from existing, manually constructed forms of the Mathematics test. 

Other criteria denoting the fit of the selected test forms to the target test 

(e.g., comparisons of the actual information curves) likewise demonstrated a 

strong association between forms.

The crucial point appears to be that ITEMSEL was able to successfully 

generate test forms with similar information curves. This was even shown to 

be the case when extending the notion of parallelism to expected score 

distributions and classical item parameters.

The process is, of course, far from perfect. Nonetheless, from an 

applied viewpoint: (a) the method is fast (which makes it feasible for

microcomputer technology, even for large scale applications) and (b) it 

appears to be at least as accurate as manual test construction methods given 

the constraints of this study. When implemented as part of an integrated 

software package such as ITEMSEL, these methods should readily complement the 

test construction process. This applied viewpoint defines the final intent 

behind the methods described in this paper.
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Author Notes

^Partitioning the information CDF into equal areas essentially 

prioritises the quadrature points of 9 relative to the conditional information 

densities. Accordingly, the concentration and spread of 0 corresponds closely 

to the actual distributional properties of the test information function.
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Tab1e 1

Descriptive Summary of Fitted Item Parameters to Form 26A Target (40 Items)

Means Standard Deviations Skewness Kurtosis

Form a b c a b c a b c a b c

AAP MATH 26A” 1.03 0.29 0.16 0.40 0.60 0.04 0.92 -0.62 0.03 0.19 -0.47 1.19

Form A 1.03 0.35 0.17 0.29 0.52 0.06 0.87 -0.20 0.52 0.96 -0.88 0.20

Form B 1 .05 0.35 0.17 0.29 0.50 0.06 1.03 -0.31 2.17 1.68 -0.79 9.65

Form C 1 .05 0.31 0.17 0.30 0.54 0.05 0.71 -0.12 0.25 1.09 -1.06 -0.2 5

Form D 1.05 0.32 0.16 0.29 0.55 0.06 1.46 -0.11 0.81 2.56 -0.66 1.50

Form E 1.04 0.31 0.17 0.28 0.50 0.06 1.25 -0.49 -0.32 1.88 -0.64 0.09

Form F 1.01 0.32 0.15 0.29 0.50 0.05 0.68 0.13 -0.2 7 0.88 -0.94 0.27

Target set of items
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Means and Standard Deviations of IRT Parameters for

Table 2

12 AAP Math Forms (Manually-Constructed)

(N = 40 Items)

Test Form a b c

Form 24B 1.058 .309 .160
(0.296) (.661) (.084)

Form 25B 0.994 0,395 0.159
(0.247) 0.973) (0.079)

Form 25C 1.078 0.359 0.157
(0.379) (0.744) (0.077)

Form 25D 1.068 0.321 0.142
(0.353) (0.830) (0.079)

Form 25E 1.057 0.307 0.128
(0.259) (0.633) (0.055)

Form 25F 0.950 0.385 0.152
(0.370) (0.863) 0.062)

Form 26B 0.989 0.240 0.172
(0.358) (0.875) (0.046)

Form 26C 0.930 0.328 0.162
(0.365) (0.876) (0.034)

Form 26D 0.951 0.392 0.185
(0.427) (1.283) (0.026)

Form 26E 0.972 0.254 0.166
(0.297) (0.777) (0.048)

Form 26F 0.926 0.342 0.159
(0.365) (0.953) (0.034)

Form 27A 0.990 0.332 0.178
(0.394) (0.868) (0.046)

( ) = Std. Deviation
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Goodness-of-Fit Indices (to Form 26A Target)

Table 3

Information Function Indices

Test Form | UAD | URMS WMS A

Form A 0.709 0.849 0.874 0.943

(0.033) (0.039) (0.040) (0.044)

Form B 0.681 0.788 0.637 0.644

(0.031) (0.036) (0.029) (0.030)

Form C 0.816 0.949 1.018 1.051

(0.038) (0.044) (0.047) (0.049)

Form D 0.733 0.889 0.733 0.688

(0.034) (0.041) (0.034) (0.032)

Form E 0.670 0.781 0.655 0.655

(0.031) (0.036) (0.030) (0.030)

Form F 1.078 1.276 1.885 1.944

(0.050) (0.059) (0.087) (0.090)

SE,^ vIndices (9)

Test Form lUADs E (e ) l URMSs e(0) WMSSE(6) as e(q )

Form A 0.040 0.159 0.006 0.0005

Form B 0.053 0.219 0.011 0.0010

Form C 0.039 0.146 0.004 0.0005

Form D 0.041 0.161 0.005 0.0006

Form E 0.039 0.150 0.005 0.0005

Form F 0.031 0.089 0.002 0.0003

( ) Proportion of mean information in the Form 26A target curve (21.67).
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Predicted Score Distributions for Six Fitted Test Forms and Target Form 26A

Table 4

Test
Form P S

P r, - 
b i  s Sr X S

X
Skew Kurto:

2 6 A" .495 .126 .591 .079 19.825 8.937 .369 -.812

A .496 .117 .585 .065 19.840 8.926 .361 -.808

B .493 .117 .586 .070 19.734 8.959 .365 -.844

C .492 .128 .588 .064 19.686 8.913 .331 -.826

D .497 .128 .598 .070 19.874 9.071 .333 -.845

E .489 .102 .594 .070 19.551 9.171 .337 -.878

F .503 . 1 1 1 .594 .081 20.139 9.117 .330 -.846

*Target
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Figure 1. Test Information Curves for Six Forms of AAP Mathematics 
Test Fit to Form 26A Target Information Curve
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Figure 3. TCCs for the Target Test Form 26A and 
Six Test Forms Fitted by ITEMSEL
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