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ABSTRACT

One of the important underlying assumptions of all item response theory 

models is that of local independence. This assumption requires that the 

response to an item on a test not be influenced by the response to any other 

items. This assumption is often taken for granted, with little or no scrutiny 

of individual test items for possible violations of local independence.

Ackerman and Spray (1986) proposed a dependency model with which the 

interaction of such factors as the amount and direction of item dependency, 

item difficulty and discrimination, and item order or sequence effects could 

be simulated. In this study item response data were generated with varying 

degrees of response dependency using their model. These data were used to 

determine the robustness of the IRT calibration programs LOGIST and BILOG to 

violations of local independence. Results suggest that calibrated dependent 

item discrimination parameters tend to be overestimated, and difficulty 

estimates tend to become homogeneous. Ability estimates, however, were 

affected as the degree of dependency increased.





The Robustness of LOGIST and BILOG IRT 
Estimation Programs to Violations of Local Independence

Although it is one of the basic assumptions underlying item response 

theory (IRT), local independence of item responses is often taken for granted, 

with little attention paid to determine if the process of responding to one 

item influences the response(s) to other item(s). Yet violations of this 

assumption can easily occur when several items are embedded in the same 

passage, or when items contain multiple parts. Local independence is violated 

whenever the response process of one item provides the necessary cognitive 

schema to trigger a response to a subsequent item.

The purpose of this paper is to examine the robustness of the IRT cali­

bration programs BILOG (Mislevy & Bock, 1984) and LOGIST (Wingersky, Barton, & 

Lord, 1982) to varying degrees of local dependence. Dependency was imposed 

upon a set of real test data using the model developed by Ackerman and Spray 

(1986).

Model Definition

Ackerman and Spray (1986) proposed an item dependency model which is based 

upon a finite, two state (0 or 1, incorrect or correct) Markov process. In the 

model Pj(0^) is defined as the probability an examinee with ability, 0^, will 

answer item j correctly, independently of any other test item. P^(0^) can be 

determined using any response function, however for the purposes of this 

study, it was defined by the two parameter logistic IRT model.

The dependency model is defined by a transition matrix between any two 

items, j - 1 and j, in a k-item test:
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jth item 

0 1

jth - 1 item 

1

1 - a P.(0.) 
J i

a P.(8.)

BQ.(0.) 
J i

1 - «.<•.)

In this model, aP^(0.) represents the probability that an examinee with 

trait 0^ will "move" from an incorrect response on item j - 1 (state 0) to a 

correct response on item j (state 1). Likewise, BQj(0^) represents a transi­

tion probability from a correct response on item j - 1 to an incorrect re­

sponse on item j. The probabilities 1 - aPj(0.) and 1 - SQj(0^) imply state 

consistency between item responses. It should be noted that items j and j -. 1

need not be adjacent items, but may occur anywhere throughout the test.

The parameters a and 0 a:e dependency weights where 0 < a < 1 and 0 < 8 ^ 1.

These dependency weights may take on any value within the specified range and 

need not be equal. The weights can be assigned values independently of one 

another, and thus fix the direction of state transition (e.g. increasing or 

decreasing the probability of going from a correct to an incorrect response).

When a = 8 = 1, the items are totally independent, and when a = 8 = 0, the 

items are completely dependent.

The probability of answering the jth item correctly, given an incorrect

t
or a correct response to the previous item is defined as P^(0.) wherel

P*. (0.) = q! . (0.) a P . (0. + P. . (0.) {l - B Q . (0. )} 
j l - 1 l J i  j -  1 l 1 J i j

and



3

Pj _  ̂ is the probability of a correct response on item j - 1 and

i
Q. = 1.0 - P. . 
J - 1 J “ 1

The degree to which local independence is violated depends upon several 

factors including the a and 0 weights, the individual parameters (i.e., 

difficulty and discrimination) of those items within the dependent sequence, 

the order of the items (e.g. easy to difficult, difficult to easy), and the 

length of the dependent sequence. Spray and Ackerman (1986) summarized all of 

these factors in terms of a statistic 4>. For a dependent sequence of length 

m, 4> is the sum of the absolute differences between the likelihood of each of 

the possible 2m response patterns which can occur under a joint density 

function of the Markov process and the likelihood under an assumption of local 

independence for the m items.

The absolute value of the differences is evaluated at some value 

0 = 9 ^  (which is thought to be representative of the entire examinee popula­

tion) and summed over all possible 2m response patterns.

Specifically,

2 m

* “  |  l p* ( H i  = “ K >  -  p ( “ n = “ J 9o>l

where

and

p* < H i  = “J 0 o> = p ( u i ' u ile o>p <u 2 = “2 |e0 >u i> 

p(u - u |e., u ..
m m'° m - 1;

p <“ t  = Ht l e o> = n l p ( u ; = u ; l®o>l  •
j = l J J
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It can be shown that for any given ability value, 0Q , 0.0 < $ < 2.0, regardless 

of whether P^(0O) is defined as a one, two, or three parameter IRT model.

When $ = 0.0, local independence holds throughout the m item sequence. As $ in­

creases, the degree of dependency increases.

Although the $ statistic is thought to be useful in describing the degree of 

dependency within a set of items, it is doubtful that it can be recovered in an 

estimation sense. That is, $ is based on all possible response patterns for a 

"representative" value of 0, while in reality each value of 0 may be unique and 

be represented by only one response pattern which may or may not be the most 

likely. Thus, $ is believed to be more of a tool for describing dependent data 

rather than an estimable parameter.

In summary, this study had two main objectives. The first objective was to 

validate the use of the dependency model developed by Ackerman and Spray (1986) 

as a useful tool for generating dependent data. The second goal was to determine 

the affect various degrees of dependency had on the IRT calibration process using 

different sample sizes.

Method

To accomplish these two objectives, response vectors to a calibrated set of 

item parameters were generated using four levels of dependency with three dif­

ferent sample sizes, producing 12 different data sets. Sets were first examined 

to insure that four levels of dependency existed in the created response sets. 

Then each of the 12 sets were calibrated using a two parameter logistic model 

with the computer programs BILOG and LOGIST. Ability and item estimates were 

examined to determine how dependency effected the estimation process.
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Data Generation

In this study data were generated using four levels of dependence (no depen­

dence, weak, medium, and strong) with three different sample sizes (N = 400, 800, 

and 1200). The degrees of dependency were selected to be representative of 

nearly the full range of dependency as described by the $ statistic. The speci­

fic sample sizes were chosen for three reasons: it was thought that such sample

sizes were realistic in terms of academic testing situations; it was felt that 

the sample size of 400 would be a minimum for use with the two parameter IRT 

model; and, that differences in calibration accuracy would be most evident in 

sample sizes having this range.

Data were generated using the ACT Assessment Math Usage Form 26A as a 

model. It is a 40 item multiple choice test with each item having five alterna­

tives. A brief description of the content of the test is provided in Appendix A.

A dependent sequence length of eight items was chosen because it was thought 

to be typical of the number of items assigned to a test passage. Items 1-8 were 

selected to be the dependent block of items. The dependency weights and 4> values 

for the four levels of dependency were:

Level of Dependency

6

Total independence 0.00 1.00 1.00

Weak 0.66 0.60 0.80

Medium 1.09 0.50 0.40

Strong 1.57 0.30 0.10

Using previous calibrated LOGIST two parameter logistic item parameter
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estimates, and randomly generated abilities from a N(0, 1) distribution, 1,000 

response vectors for the 12 datasets were generated using the dependent model. 

Each dataset was then calibrated separately using the IRT calibration programs 

LOGIST and BILOC. The two IRT calibration programs use different estimation 

procedures. A LOGIST uses a joint maximum likelihood estimation procedures, 

whereas BILOG uses marginal maximum likelihood estimation. The default method of 

scoring subjects was selected for all BILOG computer runs. This method of scor­

ing was expectation a posteriori using a normal N(0, 1) Bayesian prior. The

default log-normal prior was used in the item discrimination calibration. No

prior was used in estimating the difficulty parameters.

Mean inter-item tetrachoric correlations for the dependent and independent 

items are shown in Table 1. In the total independent datasets the mean correla­

tions ranged from .383 to .433 suggesting a moderate degree of similarity among 

response patterns for the original 40 items. The effect of the dependency model 

is clearly demonstrated. As compared to the independent case, the average tetra­

choric increases as the level of dependency increases.

After each calibration run, Yen's Q3 statistic (Yen, 1984) was computed and 

used as a comparison measure to determine how robust the calibration programs 

were to violations of local independence. is defined as the correlation taken

over examinees of!

A A

d.  = u.  - P .  ( 0  ) and  
l • l • l

d .  = U .  -  P .  ( 0  )
J‘ J’ J

where u. is the score of an item on item i, 
i •
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u.. is the score of an item on item j
n

and P, (8 ), P. (9 ) are the probabilities of a correct
1 * J

response based upon the estimated item and ability 

parameters. A Fisher r-to-z transformation of Q3 is 

approximately distributed as a normal variable with mean 

equal to zero and variance equal to l/(N-3).

Average absolute differences (AAD) between the calibrated items parameters 

for the independent datasets and the dependent datasets were computed as a mea­

sure of item parameter shift.

To examine bias in the estimated abilities, bias (0 - 0) was plotted for 

each dataset within each calibration program. Correlations between the ability 

estimates for each level of dependency with equal sample sizes were also calcu­

lated .

Results

The mean p value and biserial correlation for items 1-8 and items 9~40 for 

each level of dependency are shown in Table 2. As the degree of dependency 

increased the average difficulty (p) increased. This is due in part to the order 

of difficulty within the dependent block, of items. That is, if an easier item 

precedes and is dependent with a subsequent item, it will have a tendency to make 

the subsequent item easier, (See Ackerman & Spray, 1986, p. 12-13). Thus, subse­

quent items tend to become more similar in difficulty to the previous items on 

which they are dependent. It can also be seen in Table 2 that the items within 

the dependent block become more homogeneous as the dependency increases. (Note
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biserial correlations were computed using the item score with the total test 

score.)

The AAD values and correlations between the estimated item parameters for 

LOGIST and BILOG are displayed in Tables 3a and b. The AAD discrimination and 

difficulty values for the dependent items increased dramatically for each estima

tion program as the level of dependency increased. ' This was more true of BILOG

than LOGIST. AAD difficulty differences did not, however, increase nearly as 

much as the AAD discrimination differences.

Correlations between b and b for the dependent items dropped appreciably 

from the medium to the strong dependency level. For both LOGIST and BILOG, 

the r * for the strong dependency case was negative, except for the BILOG cali­

bration when the sample size was 1200. Correlations between the discrimination 

parameters and their estimates for the dependent items also fell noticeably from 

the medium to the strong level of dependency. However, the difficulty and dis­

crimination estimates for the independent items appeared to be unaffected by the 

various levels of induced dependency.

Yen’s Q3 analysis of the calibrated parameters is shown in Table 4. The

pattern observed by Yen (1984) can also be observed in these data. That is, the

more locally dependent the items the higher the Q3 value. By comparing the Q3 

computed on the calibrated dependent items data with the Q3 based on the indepen 

dent item sets one can obtain a relative sense of how robust each calibration 

program is to the violation of local independence. The Q3 value for the depen­

dent item block increased for each sample size as the dependency level in­

creased. For each level of dependency the Q3 value for the N = 800 case was 

larger than the two other sample sizes, except for the BILOG estimation of the 

strong dependency case. This might be a result of sampling variance. However, 

the overall Q3 values computed using BILOG estimates do not increase as much as 

though computed using the LOGIST estimated values.
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It should be noted that using Bock’s x 2 goodness-of-fit measure (Bock & 

Mislevy, 1982), each calibration program’s item parameter estimates fit the 2PL 

IRT model for all datasets at the .01 level of significance.

Correlations between estimated abilities for the no dependency case and the 

three other levels of dependency for each calibration program for each sample 

size showed little difference. For each sample size as the dependency increased, 

the correlation between 9 and 0 dropped from .95 to .90. This suggests that if 

the violation of local independence is great enough, ability estimation can be 

affected. No difference was detected for the ability estimates between the two 

calibration programs.

Bias plots of 0 - 9 for each of LOGIST and BILOG calibration runs are shown 

in Figures 1, 2, and 3. The 9's were rank ordered and divided into quantiles in 

.2 increments from -3.0 to +3.0. All estimated abilities were rescaled to 

the 0 scale. Mean differences between 0 - 9  were obtained for each group and 

then plotted. As dependency increased both estimation programs appeared to 

increasingly overestimate abilities at the lower end of the ability scale and 

underestimate abilities at the upper end of the scale. One possible explanation 

is the following: Because the dependency was built into the easiest items, low

ability students would have a tendency to get more items near their true ability 

level correct, thus increasing their estimated abilities. Upper ability students 

would have underestimates of their ability because, although they would be likely 

to have the same number of correct responses, the items would be less diffi­

cult. Less variance in the 0 - 0  difference was detected for the sample size of 

800, then for N = 400, or N = 1200.
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Conclusions

The results of this study have several implications for the calibration of 

locally dependent items. First, the stronger the violation of local independence 

(as defined in the model by Ackerman and Spray, 1986) the greater the effect of 

item parameter calibration regardless of sample size. For cases of strong depen­

dency, item difficulty and discrimination estimates correlated negatively with 

their parameters. If items of this type are calibrated in a dependent sequence 

and used separately (e.g.; in an adaptive testing pool), the overestimates/under­

estimates of the parameters could affect ability estimation.

In this study* dependency was injected into an eight item sequence at the 

beginning of the test where the items were the easiest; Thus, ability estimation 

was affected more at the low end than the middle and upper levels of the ability 

scale; -ifj> however?- thi's^dependency •'had', been’ imposed on middle difficulty or 

very hard items * it is believed that ability estimates at the middle and upper 

ends of the scale would be moire affected than the lower levels of ability.

Very little difference was noted between BILOG and LOGIST’s ability estima­

tion. Within each level of sample size, the 6 LOGIST and 6 BILOG tended to 

correlate in the neighborhood of ;98 to ;99;. Bias plots of the estimated abili­

ties revealed that both programs are affected as the dependency increases, re­

gardless of sample size. BiLOG resolves violations of local independence by 

overestimating the discrimination parameters more so than LOGIST.

Yen's Q3 statistic validated the Ackerman and Spray dependency model as a 

useful tool for simulating dependent data. The Q3 results suggest that BILOG is 

slightly better than LOGIST at calibrating response data in which the assumption 

of local independence has been violated. Perhaps by imposing appropriate Baye­

sian priors on the ability and item distribution the BILOG calibration process 

could be further improved.
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These results strongly suggest that the calibration of item parameters 

should be conducted jointly with a review of the response processes for all items 

on the calibrated test; If after studying the response process required for each 

item violations of local independence are suspected, calibration results should 

be guarded.

This study needs to be replicated to verify the findings. Other directions 

for future research would be to impose dependency with items of differing diffi­

culty levels to see if there is an effect on ability estimation at other points 

of the ability scale. Likewise, the results should be replicated with a 3PL 

model to study the effect of guessing.
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Mean Interitem Tetrachoric Correlations for Items 
in the Dependent and Independent Item Blocks

TABLE 1

4» N

Items 1-8 
(Dependent Block)

rtetra

Items 9-32 
(Independent Block)

0.00 400 .433 .488

(no dependency) 800 .383 .477

1200 .429 .476

0.66 400 .553 .488

(weak) 800 .481 .477

1200 .527 .476

1.09 400 .644 .488

(medium) 800 .594 .477

1200 .645 .476

1.57 400 .827 .488

(strong) 800 .855 .477

1200 .866 .476
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Mean Difficulty, Biserial Correlations, and Reliability Coefficients 
for the Dependent (D) and Independent (I) Items for each Level of Dependency

TABLE 2

$ D I D I KR-20

0.0 .61 .36 .66 .73 .94

0.6 .64 .36 .68 .73 .94

1.1 .69 .36 .71 .73 .94

1.5 .79 .36 .79 .72 .94

Note. Sample size was 1200.
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Correlations and Average Absolute Differences of the Dependent (D) 

and Independent (I) Items for Values of LOGIST Calibrated 

a, b and a, b for Different Dependency Conditions

TABLE 3a

N
aa bb

y I LLb-b,L
k

D I D I D I D I

0.0 400 .82 .94 .98 .97 .16 .11 .07 .08

800 .91 .98 .98 .98 .10 .10 .06 .05

1200 .87 .98 .99 .99 .13 .07 .03 .04

0.6 400 .87 .93 .90 .97 .14 .12 .13 .10

800 .94 .97 .93 .98 .07 .07 .13 .07

1200 .85 .93 .93 .99 .11 .07 .12 .05

1.1 400 .60 .94 .82 .97 .37 .12 .23 .08

800 .50 .96 .76 .98 .23 .13 .25 .06

1200 .44 .98 .90 .99 .39 .08 .19 .04

1.5 400

00o•1 .94 -.17 .97 .95 .17 .33 .08

800 .02 .98 -.21 .98 1.04 .19 .34 .08

1200 -.24 .98 -.09 .99 1.25 .13 .31 .05
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Correlations and Average Absolute Differences of the Dependent (D) 

and Independent (I) Items between Values of BILOG Calibrated
A A

a, b and a, b for Different Dependency Conditions

TABLE 3b

aa bb
Ihzil

k

D I D I D I D I

0.0 400 .82 .95 .99 .98 .76 .71 .06 .08

800 .92 .97 .98 .99 .60 .72 .05 .05

1200 .87 .99 .99 .99 .74 .70 .03 .04

0.6 400 .86 .94 .90 .98 .74 .58 .13 .09

800 .92 .98 .93 .99 .48 .58 .13 .06

1200 .87 .98 .93 .99 .66 .57 .12 .06

1.1 400 .51 .94 .83 .98 1.16 .72 .23 .08

800 .48 .98 .76 .99 .80 .83 .26 .06

1200 .43 .98 .91 .99 1.19 .71 .20 .04

1.5 400 -.17 .95 -.21 .y8 2.38 .82 .33 .07

800 -.09 .98 -.23 .98 2.87 .77 .33 .07

1200 -.15 .98 .17 .99 3.66 .74 .30 .04
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Yen's Q3 Analysis of Dependent and Independent Item Blocks 
Calibrated with LOGIST and BILOG

TABLE 4

Q3

LOGIST BILOG

4> N DEP IND DEP IND

0.0 400 -.042 -.024 -.032 -.012

800 -.025 -.024 -.013 -.012

1200 -.039 -.024 i • o i—
i* 

oo -.013

0.6 400 .040 -.027 .053 -.015

800 .053 -.027 .076 -.014

1200 .040 -.027 .061 -.014

1.1 400 .100 -.029 .106 -.019

800 .137 -.030 .160

C
M

O
.>

1200 .113 -.029 .113 -.020

400 .267 -.034 .206 -.023

800 .308 -.036 .192 -.021

1.5 1200 .251 -.033 .124 -.017
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Figure 1. Bias Plots of 0 " 0 for LOGIST (a) and BILOG (b) Calibration Runs: 

N = 400.
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e

e
Figure 2. Bias Plots of 0 - 0 for LOGIST (a) and BILOG (b) Calibration Runs: 

N = 800.
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Figure 3. Bias Plots of 0 
N = 1200.

e
— 0 for LOGIST (a) and BILOG (b) Calibration Runs:



Appendix A

ACT MATHEMATICS USAGE TEST

Description of the test The Mathematics Usage Test is a 40-item. 50-minute test that measures the students’ 
mathem atical reasoning ability. Ii emphasizes the solution of practical quantitative problems that are 
encountered in many postsecondary curricula and includes a sampling of mathematical techniques covered in 
high school courses. The test emphasizes quantitative reasoning, rather than memorization of formulas, 
knowledge of techniques, or computational skill. Each item in the lest poses a question with five alternative
answers, the last of which may be “None of the above.”

C onten t o f the test. In general, the mathematical skills required for the test involve proficiencies emphasized in 
high school plane geometry and first* and second-year algebra. Six types of content are included in the test.
These categories and the approximate proportion of the test devoted to each are given below.

M athem atics C ontent Area P ropo rtion  of Test N um ber of Item s

a. Arithmetic and Algebraic Operations .10 4
b. Arithmetic and Algebraic Reasoning .35 14
c. Geometry .20 8

d. Intermediate Algebra .20 8
e. Number and Numeration Concepts .10 4

f. Advanced Topics .05 2

Total 1.00 40

a. Arithmetic and Algebraic Operations. The items in this category explicitly describe operations to be 
performed by the student. The operations include manipulating and simplifying expressions containing 
arithmetic or algebraic fractions, performing basic operations in polynomials, solving linear equations in one 
unknown, and performing operations on signed numbers.

b. Arithmetic and Algebraic Reasoning. These word problems present practical situations in which algebraic 
an d /o r arithmetic reasoning is required. The problems require the student to interpret the question and either 
to solve the problem or to find an approach to its solution.

c. Geometry. The items in this category cover such topics as measurement of lines and plane surfaces, properties 
of polygons, the Pythagorean theorem, and relationships involving circles. Both formal and applied problems 
are included.

d. Intermediate Algebra. The items in this category cover such topics as dependence and variation of quantities 
related by specific formulas, arithmetic and geometric series, simultaneous equations, inequalities, exponents, 
radicals, graphs of equations, and quadratic equations.

e. Number and Numeration Concepts. The items in this category cover such topics as rational and irrational 
numbers, set properties and operations, scientific notation, prime and composite numbers, numeration 
systems with bases other than 10. and absolute value.

f. Advanced Topics. The items in this category cover such topics as trigonometric functions, permutations and 
combinations, probability, statistics, and logic. Only simple applications of the skills implied by these topics 
are tested.
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