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ABSTRACT

The purpose of this study was to compare the characteristics of unidimen­

sional ability estimates obtained from data generated from the multidimen­

sional IRT (MIRT) compensatory and noncompensatory models. Reckase, Carlson, 

Ackerman and Spray (1986) reported that when the compensatory model is used 

and item difficulty is confounded with dimensionality, the composition of the 

unidimensional ability estimates differs for different points along the 

unidimensional ability scale. Eight data sets (four compensatory, four 

noncompensatory) were generated for four different levels of correlated two 

dimensional abilities: p = 0, .3, .6, .9. In each set difficulty was con­

founded with dimensionality. Each set was then calibrated using the IRT 

calibration programs LOGIST and BILOG. BILOG calibration of response vectors 

generated to the matched MIRT item parameters appeared to be more affected 

than LOGIST by the confounding of difficulty and dimensionality. As the 

correlation between the generated two-dimensional abilities increased, the 

response data appeared to become more unidimensional as evidenced in bivariate 

plots of vs. 0 2 for specified 0 quantiles.





A  Comparison Study of the Unidimensional IRT 
Estimation of Compensatory and Noncompensatory 

Multidimensional Item Response Data

One of the underlying assumptions of unidimensional item response theory 

(IRT) models is that a person's ability can be estimated in a unidimensional 

latent space. However, researchers and educators have expressed concern 

whether or not the response process to any one item requires only a single 

latent ability. Traub (1983) suggests that many cognitive variables are 

brought to the testing task and that the number used varies from person to 

person. Likewise, the combination of latent abilities required by individuals 

to obtain a correct response may vary from item to item. Caution over the 

application of unidimensional IRT estimation of multidimensional response data 

has been expressed by several researchers including Ansley and Forsyth (1985); 

Reckase, Carlson, Ackerman, and Spray (1986); and, Yen (1984).

Using a compensatory multidimensional IRT (MIRT) model, Reckase et a l . 

(1986) demonstrated that when dimensionality and difficulty are confounded 

(i.e., easy items discriminate only on 0 L, difficult items discriminate only 

on 02) the unidimensional ability scale has a different meaning at different 

points on the scale. Specifically, for their two- dimensional generated data 

set, upper ability deciles differed mainly on 02 while the lower deciles 

differed mostly on 0 1# These results led the authors to suggest that the 

univariate calibration of two-dimensional response data can be explained in 

terms of the interaction between the multidimensional test information and the 

distribution of the two-dimensional abilities. Reckase et al. (1986) examined 

the condition in which ability estimates were uncorrelated. Such an approach 

may not be very realistic, however, since most cognitive abilities tend to be 

correlated.
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Ansley and Forsyth (1985) examined the unidimensional estimates from two- 

dimensional data generated using a noncompensatory model (Sympson, 1978).

Ansley and Forsyth (1985) selected item parameters so that generated response 

data would match item difficulty parameters as taken from a "real" test. They 

examined situations in which abilities were correlated .0, .3, .6, .9, and 

.95. Although the issue of confounding dimensionality with difficulty may 

have occurred it was not addressed. The researchers found the a values were 

"best considered" as averages of the true a^ and a 2 values; that the b values 

were "overestimates of bj", and that 9's were "highly related" to the average 

of the true 0 values.

It was the purpose in this paper to extend this work by examining the 

unidimensional estimates of matched compensatory and noncompensatory data in 

which difficulty is confounded with dimensionality for different levels of 

correlation between two dimensional abilities. Two main issues were exam­

ined. The first area of focus was to investigate differences between the two 

MIRT models when difficulty was confounded with dimensionality. That is, 

could the results of the Reckase et al. study be replicated for both models.

The second issue was to determine if different levels of correlation between 

the two dimensional abilities had any affect on the confounding of difficulty 

and dimensionality under each model. It was hypothesized that as the correla­

tion between 0 L and 02 increased, the response data would essentially become 

unidimensional, and thus the confounding of difficulty and dimensionality 

would have little effect in either model.

Model Definition

A compensatory model, M2PL, Reckase (1985) was used for specification of

compensatory items. The model defines the probability of a correct response as:
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P(x. . - 1 |a. > d. , 0.) = -------------- --------------------
1 j 1 ~i i ~j n

1 + exp 1 - I=1a ik9 jk+ d il

where x^j is the response to item i by person j,

0. is the ability parameter for person j on dimension k, 

a ^  is the discrimination parameter for item i on dimension k, 

d^ is the difficulty parameter for item i.

The probability of a correct response for the noncompensatory model 

proposed by Sympson (1978) is:

1 - c .

P. . (X. = l|0. ) = c . + ---------------------- J------------------
ij j 1 in j n

n (1 + exp [-1.7a. (0. - b. }])
. r 1 in 1 in inJ J

n=l

where bjn is the difficulty of item j in dimension n. For this study, Cj, the

guessing parameter, was set to zero.

Method

To test the effects of correlated ability dimensions, four levels of 

correlation were selected p = .0, .3, ,6, and .9).

Parameters for a set of 40 two-dimensional compensatory items were 

selected with difficulty and dimensionality confounded. Discrimination 

parameters ranged from a 1 = 1.8, a 2 = .2 to a L = .2, a 2 = 1.8. Difficulty was 

confounded with dimensionality such that the difficulty parameters ranged from
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d = -2.4 (for a : = 1.8, a 2 = .2) to d = 2.4 (for a : = .2 and a 2 = 1.8). Thus 

as the items became more difficult, they discriminated less along 0 2 and more 

along Qj. The guessing parameter was set to zero because there was concern 

over how much "noise" would be added to the multidimensional data with a 

nonzero guessing parameter.

An item vector plot (See Reckase, 1985) representing the distance and 

direction from the origin to the point of maximum slope (discrimination) is 

shown in Figure 1. The longer a vector is in the third quadrant the easier 

the item, and the longer a vector is in the first quadrant, the more difficult 

the item.

Corresponding noncompensatory items (same probability of a correct 

response) were created using a least squares approach to minimize the differ­

ence.

£[(PC |0, a, d) - (Pn c |9, a, b))2

is the compensatory model's probability of correct response; 

PjjC is the noncompensatory model's probability of correct 

response.

0 is a vector of two dimensional abilities generated from a 

bivariate normal distribution.

Four noncompensatory item sets corresponding to the four levels of 

correlation among the two ability dimensions (p = .0, .3, .6 and .9) were
0 x0 2

created.

Item difficulties for each item (dj for the 40 compensatory items and

where

and
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bj, b, for the 40 noncompensatory items) for the p = 0.0 case are plotted in
1 2

Figure 2a. It is interesting to compare the two sets. The selected dj values 

are positively related to the item number. In the noncompensatory items, b 2 

is highest for item 1 and decreases steadily as the item number increases. 

Difficulties for dimension 1 do not vary greatly over the item set.

The discrimination parameters for both the compensatory and noncompensa­

tory items for the p = 0.0 case are displayed for each item in Figure
1 2

2b. The a t parameters for each model are greatest in item 1 and decrease with 

item number. The a L parameter is greater for the noncompensatory model for 

all items and decreases at a slower rate than its compensatory counterpart.

The a 2 parameters for each model are lowest for the first item and greatest 

for the last item. The a 2 parameters constantly increase with item number.

To help understand how the probability of a correct response differs in 

each model, several item response surfaces (IRS) and corresponding contour 

plots for matched items are presented in Figures 3, 4, and 5. The IRS and its 

corresponding contour plot are shown for items 1, 20, and 40 for both the 

compensatory and matched noncompensatory models. Little difference exists 

between the IRS for each model when the item discriminates only along 0 2 

(Figure 3) and only along 8j (Figure 5). However, when both discriminate 

equally along and 0 2 (Figure 4) the noncompensatory equiprobability curves 

are in direct contrast to the parallel lines of equiprobability of the 

compensatory item.

Multidimensional test information plots (INFLINE, see Reckase, 1985) for 

two sets of match item parameters are shown in Figures 4a and 4b. For both

sets little information is provided for examinees with extremely high or

areas where this is not true.

extremely low ability on both dimensions. In general, more information is

provided by the set of compensatory items. However, there are some isolated
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Eight response data sets were then produced. Using the compensatory item 

parameters, 1,000 response vectors were simulated for each of four correla­

tional values (p = 0, .3, .6, .9) from a bivariate normal. For each set
0 102

of noncompensatory item parameters, 1,000 response vectors were generated 

using the same (0lt 02) combinations as produced the compensatory response 

data sets.

Descriptive statistics were then obtained for each of the eight data 

sets. This was done to validate the similarities in item difficulty and to 

show the dimensionality of the data. These results are displayed in Table 1.

The eight item response sets have the same mean difficulty, with the range of

p values also similar. The mean biserials for compensatory and noncompensa­

tory item sets appear to be more similar as the correlation between abilities 

increase. As the mean biserials increase, the KR-20 reliability coefficient 

also increase. Eigenvalues of the principal component analysis of the inter­

item tetrachoric matrix were computed. Evidence of multidimensionality can be 

seen by forming a ratio of the first to the second eigenvalue, X 1|X2 (See

Hambleton & Murray, 1983). As the correlation between the abilities in­

creases, the ratio increases suggesting a more dominant first principal

component and that at p = .9 the data are almost unidimensional.
1 2

Each dataset was then calibrated twice, once using LOGIST (Wingersky, 

Barton, & Lord, 1982), and again using BILCG (Mislevy & Bock, 1982). The two 

IRT calibration programs use different estimation procedures. LOGIST uses 

joint maximum likelihood estimation. The default method of scoring subjects 

was selected for all BILOG computer runs. The default method of scoring was 

expectation a posteriori using a normal N(0, 1) Bayesian prior. The default 

priors were also used in the item parameter calibration: a log-normal prior

on the discrimination estimates and no prior on the difficulty estimates.
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These data were then evaluated to determine the effect of confounding 

difficulty with dimensionality for both the compensatory and noncompensatory 

item sets. In addition, the effects of correlation between ability dimensions 

was studied.

Results

To estimate the LOGIST and BILOG orientation in the two dimensional 

ability plane, the ability estimates from each calibration run were first 

rescaled to the compensatory ability estimates for the p = 0.0 case.

12
The 0 for each calibration run were rank ordered and divided into twenty 

quantiles. The mean of the 0ĵ  and 0 2 parameters for each quantile were then 

calculated and plotted. These CENTROID plots were then examined to see if 

there was any curvelinearity suggesting that the composite (0lt 0 2) combina­

tion was not uniform across the univariate scale as predicted by the Reckase 

et al. (1986) study.

The centroid plots for the LOGIST calibration of the four compensatory 

and four noncompensatory data sets are shown in Figures 4a and b. The BILOG 

counterparts are presented in Figures 5a and b.

The LOGIST orientation appears to be similar for each level of correla­

tion and for each type of MIRT model. The BILOG centroids are noticeably more

variable. For the BILOG centroids, as p approaches zero, the plot of the
9 102

centroids increase in curvature. Thus, BILOG appears to be more sensitive to
a

the confounding of difficulty and dimensionality. When the ability correla­

tion is .9, the centroids for both calibration programs are almost linear.

This is somewhat predictable because if the abilities are highly correlated,

their response data would be expected to be unidimensional.
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The correlations between 0 (univariate estimate) and each of the two 

abilities (0x and 02) and the mean absolute difference (MAD) between 0 and 

each of 0j and 02 are shown in Table 2. Compared to the centroid plots, the 

data are much more alike for compensatory and noncompensatory data sets and 

for LOCIST estimates compared to BILOG's estimates. It is interesting to note 

that the univariate ability estimates correlate about equally with 0 X and 02 for 

all levels of ability correlation and for each model. The correlations between

A A

0. and 0, and 02 and 0 range from *59 (p = 0 ) t o . 9 5 ( p  = . 9 ) .  These
0 j 0 2 1 2

results parallel the mean absolute differences; as the correlation between 

ability dimensions increase the MAD values decrease. Thus as the data become 

more unidimensional, the MAD and correlational values support that the programs 

both appear to align the univariate scale about equidistant from the ability 

axes.

For the compensatory data sets, correlations and MAD values between 

a (univariate discrimination) and a^, and b (univariate difficulty) and d 

are shown in Table 3. As the correlation between abilities increases, the 

correlation between a and a x and a and a 2 approach zero for both LOGIST and 

BILOG. MAD values between the discrimination estimates and parameters were 

slightly higher for BILOG in all correlational conditions. For both programs, 

the correlation between b and d was .99 for all data sets. This would suggest 

very strongly that the pattern of difficulty between the individual items, is 

recoverable to a high degree.

Correlations and average MAD values between the discrimination and 

difficulty parameters and their estimates for the noncompensatory data sets 

are displayed in Table 4. The pattern of correlations between discrimination 

parameters and estimates is similar to that of the compensatory data. The 

correlations between b and bĵ  , are all .99, while the correlations between
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b and b 2 range from r = .38 to r = .42 for both LOGIST and BILOG. This 

suggests that for the noncompensatory data there is a tendency to measure one 

dimension more strongly. This may also be due to the restricted range of 

b 2 values*

A

In both the compensatory and noncompensatory data sets, the a's correlated 

positively with a l and negatively with a 2 except for the Pg g = »9 case. No­

ticeable differences exist between the MAD values for the noncompensatory dis­

crimination parameters and estimates for BILOG and LOGIST. For LOGIST the aver­

age absolute differences of both a x - a and a 2 - a range from .80 to .86, while 

the range is .32 to .38 for BILOG. For both calibration programs the correla­

tions between a and a ? are negative except for the p = .9 case in which the
0 10 2

pattern reverses.

Conclusion

Differences between the item response surfaces for each model when the 

item parameters are matched appear to be minimal and exist in places of 

the 0j, 0 2 plane where very few subjects would be expected to be found. Mean 

p-values for the eight sets were identical and the matches on biserial corre­

lations were almost identical for the p - .9 case. Thus the least squares
1 2

matching procedures appears to be an excellent method of matching the two MIRT 

models.

The confounding of difficulty with dimensionality, which was reported in

the results of the Reckase et al. (1986) study, was replicated, however, only

for the BILOG calibration of response data in which p was closer to 0.0.
1 2

The "wrap aroundM effect of the 0 X, 0 2 centroids did not occur for any of the

LOGIST estimation runs. Although it should be noted that in the Reckase study
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the items only measured 0 L or 02. Whereas in this study each item measured a 

combination of 0! and 02 to varying degrees. Thus the confounding was not as 

great as in the Reckase et al. study. Another possible explanation may be the 

method of estimation. Perhaps the marginal maximum likelihood procedure of 

BILOG is more sensitive to the confounding of difficulty and dimensionality.

The confounding of difficulty appeared to have the same affect on the 

ability parameter estimates for both the compensatory and noncompensatory 

datasets. Despite different test information patterns, as seen in the INFLINE 

plots, the orientation of the centroids appeared to be the same for each 

calibrations programs estimation of the two MIRT models.

The correlations among ability parameters and estimates suggest that as 

the relationship between the two ability dimensions become more linear, the

data in a sense become unidimensional. As p approached .9, 0 correlated
1 2

in the mid .90* s with 0 L and 0 2. This was confirmed by the plots of the 

0 lf 02 centroids and the correlations of the discriminating parameters with

A A,

their estimates. The correlations between a and and a and a 2 became

closer as the correlation between 0! and 02 increased. Likewise as

the p approached .9, the centroids appeared to align themselves along a 
0 1©2

45° line. Both of these results suggest that 0 X and 02 were being measured 

equally.

A

The plots of the 0 L, 02 centroids for tlie 20 0 quantiles revealed differ­

ences between the two estimation programs. The centroid plot for LOGIST revealed

only a slight confounding affect as p became closer to zero. However,
1 2

0j, 02 centroids for BILOG's 0 display a much sharper wrapping around about the 

negative 02 axis and the positive 0 t axis, especially when PQ Q = 0 .  Thus it 

would appear that BILOG is more sensitive to the confounding of difficulty with 

dimensionality for both MIRT models.
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Several directions for future research are suggested by this study* One 

area for future research would be to systematically vary test information with 

different two dimensional ability distributions to determine how the interaction 

of the two affects the orientation of the univariate ability scale in the two- 

dimensional plane. Also, the differences between maximum likelihood and marginal 

maximum likelihood estimation of multidimensional response data needs to be 

further explored.
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Descriptive Statistics of the Multidimensional Data Sets (N = 1000, i = 40)

TABLE 1

Data
Type p C e ^ j )

Eigenvalues

KR-20 P

Range of p

r

Range of bis Raw Score

\ 2 Lo Hi Lo Hi X 0

COMP .00 9.24 2.94 .91 .50 .16 .85 .64 .50 .71 20.15 8.64

.3 10.84 2.59 .93 .50 .17 .84 .69 .57 .75 20.18 9.41

.6 12.17 2.27 .94 .50 .18 .84 .73 .59 .79 20.15 10.04

.9 13.38 2.00 .95 .50 .18 .83 .76 .61 .82 20.18 10.61

NCMP .00 7.22 3.17

OO00• • Ul o .16 .84 .56 .47 .64 20.03 7.64

.3 9.52 2.69 .92 .50 .17 .83 .65 .57 .72 20.08 8.84

.6 11.64 2.25 .94 .50 .17 .84 .71 .65 .76 20.13 9.82

.9 13.53 1.98 .95 .50 .18 .83 .77 .69 .80 20.00 10.67

Note: Eigenvalues are those of the first and second principal components of the
inter-item tetrachoric correlation.
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A

Data a  .  X10 L - e| 1 \ q 2 - 0 | \
Calib Type 0 2) r(0, 8 ^  r(0, 02) ----------- ----------

TABLE 2

Correlations and Mean Absolute Differences Among 0, 0 t and 02 by Levels of
Correlation for Compensatory and Noncompensatory Data Sets

LOGIST COMP .00 .67

.3 .76

.6 .85

.9 .94

BILOG .00 .68

.3 .78

.6 .87

.9 .95

LOGIST NCMP .00 .65

.3 .76

.6 .85

.9 .94

BILOG .0 .67

.3 .77

.6 .86

.9 .94

.64 .65 .67

.76 .53 .53

.85 .42 .42

.94 .26 .27

.64 .63 .65

.76 .53 .54

.86 .43 .44

.95 .28 .28

.60 .66 .70

.72 .54 .58

.84 .42 .43

.94 .27 .28

.59 .62 .67

.73 .53 .56

.85 .42 .44

.94 .28 .29
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TABLE 3

Correlations and Mean Absolute Differences between LOGIST and BILOG Estimates and
Parameters under the Compensatory Model

Program p(0^y ^2^ r ~ 
a, a x CM

<u A

rb, d

I l « r a l Ila 2_ a l

k k k

LOGIST 0.0 .30 -.30 -.99 .40 .45 2.09

0.3 .26 -.26 -.99 .41 .45 2.09

0.6 .17 -.17 -.99 .41 .44 2.09

0.9 -.07 .07 -.99 .42 .43 2.09

BILOG 0.0 .26 -.26 -.99 .48 .52 2.09

0.3 .18 -.18 -.99 .49 .50 2.10

0.6 .19 -.19 -.99 .48 .50 2.10

0.9 i
• o .04 -.99 .48 • CO 2.10



TABLE 4

Correlations and Mean Absolute Differences between LOGIST and BILOG Estimates
and Parameters of the Noncompensatory model

O'

Program pCBjBj)
aa a a, bb bb.

I l a r a l I l a 2 _ a l I l b r b l I l b 2 _ b l

LOGIST 0.0

0.3

0.6

0.9

.31

.27

.19

.07

-.23

- . 2 2

-.14

.06

.99

.99

.99

.99

.42

.41

.40

.38

.86

.85

.84

.84

.82

.81

.80

.80

.67

.67

.67

.67

.87

.87

.86

.85

BILOG 0.0

0.3

0.6

0.9

.28

.19

.19

.40

-.21

-.17

-.20

-.01

.99

.99

.99

.99

.42

.41

.40

.39

.35

.33

.32

.32

.38

.37

.35

.35

.67

.67

.67

.67

.86

.86

.86

.85
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Figure 1. Item Vectors for the 40 Generated Compensatory Items.
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Figure 2. Difficulty (2a) and Discrimination (2b) Parameter Values for the

40 Matched Compensatory and noncompensatory Items.



Item 1

thetal

Figure 3. The Item Response Surface and Contour Plot for the Matched
*

Compensatory and Noncompensatory Item 1.
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Item 20
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Figure 4. The Item Response Surface and Contour Plot for the Matched

Compensatory and Noncompensatory Item 20.
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Item 40

thet&l

Figure 5. The Item Response Surface and Contour Plot for the Matched

Compensatory and Noncompensatory Item 40.
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Figure 6. Teat Information Vectors at Selected Point# in the Ability Plan#

for the Compensatory (4a) and Noncompensatory (4b) Data Sets.
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Figure 7. A Plot ot the Centraids for the LOGIST Calibrated Compensatory (5a)

and Noncompensatory (5b) Response Sets for Each Level of Correlation.
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Figure 8. A Plot of the Centroids for the BILOC Calibrated Compensatory (4a)

and Noncompensatory (6b) Response Sets for Each Level of Correlation.
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