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ABSTRACT

The purpose of this paper is to define a model of item dependency and to 

use it to illustrate the effect that violations of local independence have on 

the behavior of item characteristic curves. The dependency model is flexible 

enough to simulate the interaction of a number of factors including item 

difficulty and discrimination, varying degrees of item dependence and item 

order or sequence effects. The model also provides for an ability-by-depen- 

dence interaction. Results suggest that the shift in an item's characteristic 

curve can be fairly dramatic, producing nonlogistic response probability 

curves. Suggestions for future work with the model and its implications are 

made.





A General Model for Item Dependency

Local independence is an assumption of all of the current item response 

theory (IRT) models. The violation of this assumption certainly can occur in 

situations where items are nested (i.e., multiple part questions where the 

correct solution to one part or item must be achieved before the solution to 

subsequent parts can be achieved —  see the example in Figure 1). Further­

more, the violation of the independence assumption could occur in other 

situations which are much less obvious. In fact one of the justifications for 

considering IRT models that would allow for the violation of the local inde­

pendence assumption would be to be able to detect and possibly eliminate or 

modify items that would inadvertently "cue” the correct response to other 

items on the same test. The purpose of this paper is to define a model of 

item dependency (in which local independence between item responses is a 

special case) and use it to illustrate what happens to typical test items, as 

represented by the behavior of their item characteristic curves (iCC's) when 

varying degrees of dependency exist.

The item dependency model proposed is flexible enough to simulate or 

describe the interaction of a number of factors such as item difficulty and 

discrimination, the amount and direction of the dependency, and item order or 

sequence effects. An underlying assumption of the model is that each item 

within a sequence of k. items is dependent only on the previous item (i.e., a 

"one-item-back" dependency, the simplest situation). However, other "item- 

lags" are possible to describe with the proposed m o d e l .
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Definition of the Model

The item dependency model is defined as follows. Let P^(0^) represent 

the probability of an examinee with trait measure, 0^, answering test item j 

correctly, independently of any other test item. Later, we will assume 

that Pj(0^) is determined by a particular function of 0, but for the present 

discussion, simply define P^(0^) as a probability measure. To link the items 

in a dependent fashion, define transition probabilities between two items, j 

and j-1, as pictured below.

0

j-1

1

In this model, a , . represents the probability that an examinee with 
ij

trait 0^ will move from an incorrect response on item j-1 (state 0) to a

j.
correct response on item j (state 1). Similarly, 6 —  represents a transition

probability from a correct response on item j-1 to an incorrect response on

j. j#
item j. The probabilities, 1 - cu ̂  and 1 - 6 ^  imply state consistency 

between items.

We note that items j and j-1 are assumed to be adjacent test items only 

for the purpose of discussion in this paper. This is not a requirement, 

however, and in fact all discussion may be generalized to any two test items, 

j and j-x, where t = l,2,...,k-l and j = t + 1 ,x + 2 ,...,k.

J

0 1

*
1 - a- . a- ,

ij i j

* *
B- . i - e . .
ij i j
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These four cell probabilities are functions of (1) the jth item-by-ith 

trait interaction, as given by P^(0.), and (2) the amount and direction of any 

item dependency. This definition of the transition probabilities is similar 

in structure to the latent Markov chain model described by Lazarsfeld and 

Henry (1968). These probabilities are defined as follows.

a? . = aP .(6.) 
ij J i

and

B? . = BQ - (0 - ) 
ij J i

where

Q.(0.) = 1 - P.(0.).
J 1 J 1

The parameters, a and 8, are used as dependency weights, with 0 < a < 1 

and 0 < B < 1. For the purpose of the simple examples provided in this paper, 

the weights are assumed to be equal for all adjacent pairs of items in the k- 

item sequence. This is not required, however; within one k-item sequence, 

a and 8 may take on any of the values in the range described above between any 

two pairs of items, and a and 8 need not be equal to one another.

Once the transition probabilities have been defined, the complement 

probabilities can be written as

1 - a?. = 1 - aP .(0.)
J i

and

1 - 6?. = 1 " 8Q . (0. ). 
i J J i-
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The dependency weights, a and 8, fix the amount of dependency among the k. 

items, and since they can be assigned values independently of one another, 

they also fix the direction of item dependency (e.g., from correct to incor­

rect). When a = B = 1, the items are independent, and when a = 8 - 0, the 

items are completely dependent. This is more easily seen from the definition

of the success probability for item j that results from the item dependency of

i i
previous items, or P^(0^). P^(0^) is the probability of answering the jth

item correctly, given an incorrect response to the previous item or given a

correct response to the previous item. In other words,

p . ( e . )  =  Q.  . ( e . ) a ? .  + p . . ( e .  ) { i  -  b ?  .} 
j i ^j-i i ij j-i i

= q . .(e.)aP.(e.) + p. .(e.){i - 6 Q.(e.)} . (l)
j-i i j i j-i i j i

When a = 8 = 1»

p '.(e.) = Q. . (0. ) P . ( 0 .  ) + P. .(0. ){l - Q . ( 0 .  )} 
j i J - 1  i J i J - 1  i J i

= {l - P. , (9. )}P.(0. ) + P. .(8. )P.(0. ) 
j - 1  i j i j - 1  i j i

i i
P.(0.) - P.(0.)P. ,(0.) + P . ,(0.)P.(0.) 
J 1 J i J-1 i J-1 1 J 1

= P.(9.) . 
J i

This implies that the response for the jth item, given 9^, depends only on the 

jth item's I C C .
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Similarly, when a = 8 - 0, P.(0.) = P. .(0.) and the jth item response is
J i J-l i

solely determined by the previous item probability of a correct response.

That is, no characteristics of the jth item have any influence on the correct 

response for item j.

This model is a Markov chain with nonstationary transition probabilities 

(i.e., the transition probabilities remain constant only between pairs of 

items for an examinee with trait measure, 9^). However, the joint probability 

distribution for k dependent items within the same sequence can still be 

written as with a Markov chain with stationary transition probabilities. 

Specifically, if Uj is the response variable for the jth item (with the 

examinee or trait index deleted for notation simplicity), where

( 1, for a correct response

u . = <

 ̂ ( 0, otherwise,

then the joint probability distribution for a given examinee for items 1 and 2 

within the sequence of k dependent items can be written as

p (u1 ,u2 ) = p (u 2 |u 1) p (u x) .

For items 1, 2, and 3, the joint probability distribution can be written as

p ( u lfu 2 ,u3 ) = p(u3 |u1 ,u2 ) P ( u 1(u 2 )

= PCU3 IUj,U2 ) P(U2 |U1 ) P C U j )

= P(U |U ) p ( u 2 I

I



6

and for k items,

P < V U 2 ..... V  = P(UklUk - l ) P(Uk - l |Uk - 2 )' " P(Ul )- (2)

In this manner, the joint probability distribution for k items can be 

"built up" as products of the probability distribution of the first item and 

the appropriate, subsequent transition probabilities of the remaining item 

pairs. This is similar to the construction of the joint probability distribu­

tion for a Markov chain with stationary transition probabilities (Ross, 1976).

From this definition of a joint probability distribution, it is easy to 

see that equation (1) is actually the marginal probability of answering item j 

correctly, or is the ICC for item j, given that there is some dependence on 

item j-1, since

1

I
i=0

1

P(U.=1) = I P(U.=1,U. =i)
J i t n  J J " 1

= I P(U.=l|U. =i) P(U. =i)
ii0 J J"1

Specifically, in the case of the proposed model,

P(U.=1) = P(U. =0)a" + P(U. =1) (l-8 
J J“1 J J-1 J

which is equivalent to equation (1).

Therefore, we can study the influence of the dependency between item 

responses on an item's ICC by graphing equation (1) as the dependency weights,
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a and 8, vary. In addition if some specific structure defines P.(0.) (e.g..
j 1

the l- ,2- or 3-parameter logistic function) then we can also study the effects 

that item difficulty, discrimination and pseudo-chance interactions with the

»
dependency have on the resulting ICC, P^(Q^).

Dependency Influences on ICC's

For the sake of comparison, we have included a graphical interpretation 

of the influence of item dependency on the ICC's of X — ,2— and 3-parameter 

logistic models, abbreviated as l-,2- and 3-PLM. However, discussion primar­

ily will center around the 2-parameter model. Table 1 gives the parameter 

values for three items in terms of their independent ICC's (i.e., in terms of 

what the parameters would be if the items were locally independent of each 

other).

The ICC's for all three items in a hypothetical three-item sequence are 

of the general form

P.(0.) - c . * (1-c . )/{1+expf-1.7 a .( b --0.)]}
J i J J 1 J J 1

where aj and bj are the item discrimination and difficulty parameters for the 

jth item and cj is the pseudo-chance parameter which is zero in the 1- and 2- 

parameter models. Many of these results are best presented graphically.

Figure 2 shows how three test items in this sequence, consisting of an easy, a 

medium and a difficult item, would behave as a and 8, in increments of .1, go 

from the independent condition to the completely dependent case. In each 

situation we have let a - 8. However, as mentioned previously, this is not 

required.



The first item in the sequence (ITEM #1') w a s runaffected by any other item 

and thus its ICC was determined solely by Its-initial item parameters, a^ and 

b^. The second item's family of ICC's is shown at the top right of Figure 2.

When 0 = 0 = 1 ,  the item was totally independent of ITEM #1 and the first item 

had no effect. When a = 6 - 0, the item was totally dependent on the previous 

item and the ICC of ITEM #2, in fact, was that for ITEM #1. This implied that 

ITEM #2's difficulty and discrimination parameters had no bearing on how an 

examinee responded to that item,' but rather the probability of' a correct response 

was the same as in ITEM #1.

The general result of these cases of dependency for ITEM #2 was to make the 

item easier than it would have been had local independence held. Furthermore, 

the item was generally less discriminating than it would have been in the inde­

pendent case. ........... '*

The third item was the most difficult of the three, and the independent ICC 

for this item is shown as the lowest curve in the bottom half of the figure.

Once again, as the d e g r e e 1of dependency strengthened (i.e., as a = 6 approached 

0), the ICC became increasingly distorted until, in the totally dependent case, 

it was identical to the ICC for ITEM #1 (i.e., ITEM #3 looked like ITEM #2 which 

looked like ITEM #1). Of course, keep in mind that we have set ot and 0 values to 

be the same on each item pair in the sequence. Thus, when o = 0 - 0 between ITEM 

#1 and #2, and a = 0 = 0 between ITEM #2 and ITEM #3, the ICC for ITEM #3 became 

that of ITEM #1 rather than ITEM #2. Again, this is not a requirement of the 

model and in those cases where the values of a and 8 are not the same across the 

different pairs of items within the same sequence, this ICC identity for all 

items would not hold.

The effect of this dependency on the third item within this sequence was to 

make the item easier for all examinees and to make the item, overall, less dis-
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criminatory. These tendencies were also evident in the 1- and 3-parameter models 

(See Figures 3 and 4). Note the ICC distortion, especially for strong cases of 

dependency. The resulting ICC's, although still monotonic, became nonlogistic in 

shape.

Item Order or Sequence Effects of the ICC

It should be noted that the order of the items is also important. If an 

easy item were to follow a more difficult one with some dependency between the 

items, the resulting ICC of the dependent item would be more difficult than the 

independent case. This order effect is shown in Figures 5, 6 and 7 in conjunc­

tion with Table 2. The table lists six different item sequences based on the 

possible permutations of the three items (Easy, b = -2.3; Medium, b = 0.0; Diffi­

cult, b = 2.0). Each figure gives the four different ICC's (based on the 2- 

parameter model) for the three items, depending upon each item's position within 

the sequence, either second or third. The solid ICC on each graph represents the 

item's independent ICC while the family of three dotted lines represents situa­

tions where a = 8 = .4, .5 and .6 from left to right, respectively, all cases of 

moderate dependency.

For example in Figure 5, the easy item is in the second position in Sequence 

C and E. In C the item follows the medium difficulty item while in E, it follows 

the most difficult item. The ICC of this particular item shifts to become more 

difficult for all examinees in both sequences, but the shift is more dramatic 

after following the most difficult item. In the bottom portion of this figure, 

the same easy item is now located in the third position of the three-item se­

quence. In Sequence D, the series begins with the medium difficulty item, fol­

lowed by the most difficult item. In Sequence F, the order f the first two items
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is reversed, with the difficult item being first, followed by the medium diffi­

cult item in second position. It can be demonstrated that the effect of prior 

items depends upon the values of a and 6. It can also be seen in the figures 

that when a = 8 = .5, the ICC of the item in the third position will be the same 

regardless of the sequence (e.g., A and C). Similar results hold for Figures 6 

and 7.

Conclusions and Directions for Future Work

These preliminary results suggest that the degree of shift in an item's ICC 

can be fairly dramatic when the response to an item is contingent not only on the 

degree of dependency with previous items but also on the order and characteris­

tics of those items. Although more work, needs to be done to verify that the 

proposed dependency model accurately describes "real" test data, this issue 

raises the concern that users of IRT models should not accept the concept of 

local independence on faith for all situations.

The example presented in Figure 1 illustrates how the acceptance of the 

assumption of local independence might lead to erroneous item calibrations. If 

item #3 of this example were to appear on some test without the preceding two 

items in the example, the item parameters and, hence the ICC, could be estimated 

at values quite different from those that might arise when all three items were 

presented together. It would be highly probable that an examinee would be influ­

enced by the presentation of and subsequent responses to items #1 and #2, thus 

influencing his or her response to item #3. Therefore, if the item had been 

calibrated within the three-item sequence but later presented, say as a single 

item in a computer-adaptive testing situation, the item characteristics could be 

inaccurate and misleading.
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Future work involving this dependent IRT model will be continued in several 

directions. First, we are interested in the identification and estimation of 

item dependency in simulated and ultimately, real data sets to determine if this 

model is a valid representation of the violation of local independence. We are 

also interested in investigating the robustness of several popular nonlinear IRT 

model estimation computer programs (e.g., LOGIST, BILOG) with the violation of 

this assumption. And finally the issue of multidimensionality and its relation­

ship to item dependency needs to be investigated. We see all of these issues as 

important outgrowths of the model, so long as the validity of the model can be 

established on actual "dependent" item responses.
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TABLE 1

Item Parameter Values, Logistic Model 

Item Label 1-PLM 2-PLM 3-PLM

b -2.30 **2.30 -2.30

Ea sy a 1.00 .50 .50

c .00 .00 .20

b .00 .00 .00

Medium a 1.00 .75 .75

c .00 .00 .20

b 2.00 2.00 2.00

Difficult a 1.00 1.50 1.50

c .00 .001 .20
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Given: AE is parallel to BD

L ABD = 130°

L EDA = 600

L BCD = 30°

What is L CBD? Fi nd L

A. 50° A. 20'

B. 60" B. 30'

C. 65° C. 35(

D. 100° D. 60'

Find L BDC.

A. 130"

B. 100°

C. 90°

D. 85°

Figure 1. Example Test Items which Illustrate Local Dependence.
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MEDIUM (ITEM # 2)

SEQUENCE fl

THETR

DIFFICULT (ITEM « 3) 

SEQUENCE fl

----1 l l------1------1------1
3.0 -2.0 -J.0- 0.0 1.0 2.0 3.0

THETfl

2-PLM

Figure 2. ICCs Representing Che Affect of Various Levels of Local Dependence

on Items in a Three-Item Sequence Using a 2PL IRT Model.
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Figure 3. ICCs Representing the Affect of Various Levels of Local Dependence

on Items in a Three-Item Sequence Using a 1PL IRT Model .
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ERSY (ITEM m\) 

SEQUENCE fl
o

THETR

MEDIUM (ITEM * 2) 

SEQUENCE ft
a

THETR

DIFFICULT (ITEM # Z)

SEQUENCE R
a

THETR

3-PLM

Figure 4. ICCs Representing the Affect of Various Levels of Local Dependence

on Items in a Three-Item Sequence Using a 3PL IRT Model.
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EASY ( ITEM » 3] 

SEQUENCE D

EASY (ITEM « 3]

SEQUENCE F

THETR T H r 7 R

Figure 5. ICCs of an Easy Item Placed in Different Positions Within a Three-Item

Dependent Sequence.
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o

MEDIUM CITEM * 2 )

SEQUENCE fl

THETR

MEDIUM (ITEM « 2) 

SEQUENCE F
a

THETR

MEDIUM (ITEM # 3) 

SEQUENCE B
a

THETR

MEDIUM (ITEM « 3) 

SEQUENCE E
a

THETR

Figure 6. ICCs of a Medium Difficulty Item Placed in Different Positions within

a Three-Item Dependent Sequence.
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SEQUENCE B
a

THETR

DIFFICULT (ITEM « 3) 

SEQUENCE R
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DIFFICULT (ITEM * 2)

SEQUENCE 0

THETR

DIFFICULT (ITEM » 3)

SEQUENCE C
o

THETR

Figure 7. ICCs of a Difficult Item Placed in Different Positions within a

Three-Item Dependent Sequence.
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