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ABSTRACT

Two methods of using collateral, information from similar institutions to 

predict college freshman grade average were investigated. One central prediction 

model, referred to as pooled least squares with adjusted intercepts, assumes that 

slopes and residual variances are homogeneous across selected colleges. The 

second model, referred to as Bayesian m-group regression, allows estimates of 

slopes and variances to vary across colleges without ignoring the available col­

lateral information. These models were compared with the more usual procedure of 

deriving regression equations within each college considered in isolation from 

other colleges. It was found that both models employing collateral information 

resulted in more accurate predictions, on cross validation, than did the within- 

college model, and that the Bayesian approach slightly outperformed the pooled 

least squares approach. It is noted that the Bayesian simultaneous regression 

model is highly adaptive to different regression structures and therefore can be 

expected to perforin as well as the other two models across most situations.
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The American College Testing Program offers predictive research services to 

postsecondary institutions that use ACT Assessment data in their admissions pro­

cedures. An important component of the predictive services is the capability of 

predicting freshman college grade point average (GPA) from a linear combination 

of the four subtests included in the ACT Assessment: the English Usage Test (E ),

the Mathematics Usage Test (M), the Social Studies Reading Test (SS), and the 

Natural Sciences Reading Test (NS), and from students' self-reported high school 

grades in these areas (ACT, 1987). Grade predictions can be provided to students, 

high school counselors, and colleges for each participating college selected by 

the students when they register for the ACT Assessment.

Currently, regression equations are calculated within each college separately 

using standard least squares methods. In calculating within-college equations 

(by whatever statistical procedure), one can encounter several practical problems. 

Among these potential problems are the necessity for "adequate" sample sizes within 

each college, the presence of negative regression weights, a lack of stability over 

time of estimated regression parameters, and the loss of predictive accuracy on 

cross validation. Under some circumstances, the need for adequate sample sizes 

would preclude the possibility of deriving separate regression equations for rele­

vant subpopulations within a college. In addition to the use of within-college 

regression equations, other factors that could lead to these problems are the low 

reliability of available criterion measures, differing degrees of range restric­

tion both within and across colleges due to disparate applicant populations and 

the criteria imposed for admittance, and different grading standards across col­

leges and across curricula within colleges.

It has long been thought that some improvement on within-college least 

squares equations could be realized by using collateral information from similar
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institutions through some form of central prediction system. Two categories of 

model specifications found in the literature surrounding central prediction sys- 

terns appear to be the most reasonable. One central prediction model, based on 

classical statistical methods, is pooled least squares with adjusted intercepts 

(denoted ADJUST in this report). A key assumption of this model is that the 

population regression coefficients be approximately equal across selected col­

leges, but that the intercepts may be quite different (reflecting differences in 

difficulty level) and must be estimated separately. Another model, motivated 

from a Bayesian perspective, is referred to as the m-group regression model.

There are several variations of m-group regression, ranging from empirical 

Bayesian to Bayesian. The model used in this investigation (denoted BAYES) is an 

extension of an empirical Bayesian model developed by Rubin (1980) and Braun, 

Jones, Rubin, and Thayer (1983). Another centralized prediction model proposed 

by Dempster, Rubin, and Tsutakawa (1981) is closely related to these empirical 

Bayesian models.

The within-college least squares model (denoted WCLS), the BAYES model, and 

the ADJUST model may be compared along a continuum. If all of the colleges were 

entirely different in their regression structures, then the WCLS model would 

likely be more appropriate than ADJUST. If all of the colleges were identical 

except for intercept, the ADJUST model would be appropriate. The BAYES model 

strikes a compromise between these two positions, and may be heuristically 

thought of as encompassing the other two models. Bayesian m-group regression 

brings to bear the available collateral information for the estimation of the 

regression parameters, while allowing for potential differences to exist among 

groups. Because the m-group regression model does not commit one to rigid a 

priori assumptions about the regression structures of the colleges, it may prove 

to be more flexible than WCLS and ADJUST.
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It is important to base evaluations of alternative prediction systems on 

criteria that reflect the manner in which the prediction equations are used.

There are at least three statistical criteria on which to compare prediction 

models that take into account the intended uses of the prediction equations 

provided by ACT to postsecondary institutions. The first criterion is the 

predictive accuracy realized from the model predictions upon cross validation 

over time. The second criterion on which to compare models is the stability of 

the estimated regression parameters over time. The third criterion is the amount 

of prediction bias introduced by use of the model. Prediction bias, as used in 

this analysis, is defined as the expected difference between predicted and ob­

tained criterion values, where the expectation is with respect to hypothetical 

base year and cross validation year populations.

Model Specifications 

The observable quantities consist of the criterion scores Y — (first semes­

ter college GPA) and the predictor variables (ACT subtest scores and high

school grades ) for i = l,...,nj students, j = l,...,m colleges, on k = l,...,p
m

predictor variables. Let n =.l. n. denote the total number of observations across
J = 1 J

all m colleges.

Within-College Least Squares (WCLS)

The regression model within each college j is given by 

P
Y. . = a . + , Z. 8., X.. + e. . j = 1,... ,m
ij j k=l jk ijk ij

where e* • is normally distributed with mean 0 and variance a 2.
J

o? is the residual variance at college j 

cij is the intercept for college j

8., is the regression slope for variable k at college j

Y . . is the observed GPA for student i at college j. 
ij
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This is Che ordinary least squares regression model with independent,

normally distributed homoscedastic error terms. Under this model regression

slopes, intercepts, and residual variances are allowed to vary across colleges.

Pooled Least Squares with Adjusted Intercepts (ADJUST)

The regression model is given by 

P
Y.. = a . + Z, 6. X.., + e. . j=l,... ,m
ij j k=l k ijk ij

where e . . is normally distributed with mean 0 and variance a 2 
ij

o2 is the common residual variance across colleges

8^ is the common regression slope for variable k across the m colleges.

All other notation is as previously defined.

Under this model, the intercepts are allowed to vary while the slopes and

residual variances are assumed constant across colleges. Thus, the regression

surfaces within each college are assumed parallel but not coincident. Note that 

the model assumes homoscedasticity of residual variances both within and across 

colleges.

M-group Regression (BAYES)

The m-group regression model uses the observed variability in regression 

coefficients and residual variances across the m groups to estimate the within- 

group parameters. The m-group parameter estimates are a weighted average of the 

individual within-group estimates and the estimates obtained from a pooled analy­

sis.

The m-group regression model is hierarchical and can be described in three

stages. While we distinguish between empirical Bayesian and Bayesian models, the

first two stages are identical in both approaches. At Stage 1, the standard

normal linear regression model within each college j is assumed.

P
Y.. = 6., X... + e.. j=l,...,m (1)
ij k=0 jk ijk ij
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This is the same as the WCLS model; the notation has been altered slightly by

introducing a dummy suffix k = 0 and a dummy variable X - •. = 1 in order toi-j k

include the intercept as another regression weight. For subsequent development, 

rewrite (1) in matrix notation as 

Y . = X .8. + e . j^l,...,m
"J ~J~J ~J

It is well known from the theory of linear models that the conditional sampling

distribution of the maximum likelihood estimates of the regression parameters

/v A

8. (denoted S., where 8- is a (p+1) x 1 random vector) has a multivariate normal
~J ~J ~J

distribution:

(B.|B., o?, X.) - N . [6., a 2 (X.’X.)'1] (2)
~j'~j J ~J P+ 1 ~J J ~J -J

At Stage 2 the Bayesian part of the model is introduced by the assumption 

that the unobservable vectors of regression parameters Bj are independent reali­

zations from a multivariate normal distribution with mean vector y and a positive 

definite covariance matrix L :

(B.|v 2) ~ N [y L] (3)
~J ~ " P+i "

The quantities u and I are referred to as hyperparameters. In a fully Bayesian

approach and in the approach utilized in this research, it is also assumed that 

the residual variances o? are independent realizations from an inverse chi-square

distribution with specified degrees of freedom used to incorporate the strength

of prior information.

Given the prior belief that the m colleges (or given subpopulations within 

each college) have similar characteristics, the colleges are said to constitute 

exchangeable units. The reader is referred to Lindley (1971) for further dis­

cussion of the important concept of exchangeability. For present purposes, the 

assumption of exchangeability permits one to act as though the unobservable 

parameters were randomly sampled from the stated distributions, although no 

actual random sampling of colleges is implied.

i
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If the residual variances o? and the hyperparameters y and E were known, 

standard Bayesian results (DeGroot, 1970; Box & Tiao, 1973) show that the 

posterior distributions of the 0^ are independent, multivariate normal with 

parameters

E[0.| = [oT2 (X.'X.) + E_1 f1 [a72 ( X . ’X . ) 6- + I ^ y ]  (4)
J ~J J -J ~J ~ J ~J ~J ~ ~

Var[B.|B.,y,E,o?,X.J = [oT2 (X.'X.) + I- 1 ]’1 (5)
J -J J ~J ~J

The posterior mean centroid of 6. is a weighted average of the sample estimates 6.
J J

and the mean of the prior distribution y, with the weights being the sampling 

precision of the 8^ and the prior precision, respectively. The posterior precision 

is the sum of the sampling precision and the prior precision. (Precision is the 

inverse of variance.) Note that the estimate of 0^ is regressed toward the mean 

centroid of the prior distribution. The concept of regressed estimates of unob­

servable parameters is prominent both in Bayesian statistics and in classical 

psychometric theory.

The distinction between Bayesian and empirical Bayesian approaches to m-group 

regression arises because the hyperparameters y and Z and the residual variances 

a? are not known in most applications. Their determination constitutes the 

third stage of the hierarchical model. A Bayesian approach places prior distri­

butions with fully specified parameters on these unknown quantities, whereas 

empirical Bayesian approaches estimate the prior distributions from the observed 

data.

In a Bayesian approach, the elements of the vector y are typically assumed 

to follow a multivariate normal distribution, L is taken to have a Wishart dis­

tribution, and the o? are taken to be inverse chi-square (see Novick., Jackson, 

Thayer, & Cole; 1972). With these prior specifications, the joint distribution
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of the data, parameters, and hyperparameters can be found. In principle, the 

joint posterior density of the parameters is then obtained by integrating out the 

hyperparameters and conditioning on the data, though the estimation of the prior 

distributions and the numerical techniques involved in obtaining the joint pos­

terior distributions are complex. The reader is referred to Lindley (1970), 

Jackson, Novick, and Thayer (1971), Novick, Jackson, Thayer, and Cole (1972) for 

details. Although not the approach used in this study, a simplified version of a 

Bayesian approach to m-group regression, developed by Molenaar and Lewis (1979) 

and employed by Dunbar, Mayekawa, and Novick (1986), appears to be promising.

The Molenaar-Lewis model places greater restrictions on the specification of 

prior information in order to increase computational efficiency and avoid 

problems in estimation.

In the empirical Bayesian approaches developed previously, maximum like­

lihood estimates of vi,Z, and o? (j=l,...,m) are obtained from the data via 

implementation of the EM algorithm (Dempster, Laird, & Rubin, 1977). The joint 

likelihood function is integrated over the distribution of 8j to produce a 

marginal likelihood; the EM algorithm is then used to obtain estimates of

u, Z, and o? that maximize the marginal likelihood. The 8- are then estimated 
~ ~ J ~J

from their conditional posterior distribution, conditioned on these maximum 

likelihood estimates and the data.

The approach used in this study to estimate y, I, and o? is a refinement of 

the empirical Bayesian approaches. Rather than estimate the residual variances o? 

by the method of maximum likelihood, the current model allows for an informative 

prior distribution on the residual variances. In the current implementation, 

data-based estimates of the degrees of freedom and the scale parameter of the 

inverse chi-square distribution for the exchangeable within-college error vari­

ances are obtained. Residual variances are estimated by forming a weighted
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average of the mean of the prior distribution and the maximum likelihood esti­

mates of the residual variances within each group. The model developed by Rubin 

(1980) and Braun et al. (1983) in effect places a locally uniform prior distri­

bution (Box & Tiao, 1973) on the residual variances. As within-group sample 

sizes increase, the results obtained from the current approach and the approach 

used by Braun et al. (1983) converge. Informal comparisons made during this 

study indicate that even for small sample sizes the two approaches yield similar 

results.

For illustrative purposes, assume only one predictor variable and that the 

predictor and criterion variables have been standardized to zero mean and unit 

variance within each group (to avoid dealing with an intercept term). Analogous 

to equations (2) and (3) assume that

^  n  * a

where °j(&j) = t*ie sampling variance of 3 ̂ ,

and (B | ~ N [ M h

where $ represents the between group variance of the single regression weight 3^.

The regression slope for college j can be estimated by the mean of its posterior 

distribution.

E[B 13. ,Xj ] = [ct“2C ) + 4-1]-1 [o“2<e )Bj + ®-1u] (6)

Equation (6) is the scalar equivalent of equation (4). Two observations are appar­

ent from equation (6). As the "between-group" variance of the 0 ̂ , increases
A

relative to the within-group sampling variance greater emphasis is placed

on the data from college j considered in isolation from the other m-1 colleges.

For simultaneous regression procedures to prove more effective than within-college 

least squares, care mist be taken to identify colleges that constitute exchangeable
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units. The weighted average approach also provides some protection against the 

inclusion of non-exchangable units.

Equation (6) also indicates that as the sampling precision of the Bj increases 

(through increased sample sizes or more properly selected design points), more 

emphasis is placed on estimates of Bj obtained from group j data considered in 

isolation. Conversely, if large sample sizes are not available, estimates of 

regression parameters may be substantially regressed toward the mean obtained from 

the exchangeable units. Simultaneous regression procedures are likely to prove 

more effective than within-group least squares when there are a sizable number of 

exchangeable units with small to moderate sample sizes available within each unit.

Method

Data Source

Data available for this investigation were obtained from colleges that par­

ticipated in the ACT predictive research services during the 1983 and 1984 academic 

years, and that had fewer than 100 records , in 1983. These data were a subset of 

data analyzed by Sawyer (1987). Of the 125 colleges in the data set, two groups 

were selected for subsequent analysis.

Group 1 colleges were selected from among four-year public institutions whose 

self-described freshman admission policies were "liberal" or "open." Hierarchical 

cluster analysis was used to select a subset of these colleges based on the per­

centages of students enrolled in various programs and majors. The nine colleges 

selected were characterized as having the vast majority of students enrolled in 

fine arts, humanities, and foreign language programs.

Group 2 colleges consisted of two-year public institutions with freshmen 

over the age of 25 years. Ten two-year public colleges were selected for which 

the number of freshmen over the age of 25 years was greater than 20 in both the
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1983 and 1984 school years. The need for adequate sample sizes and for a raoder 

ate number of similar colleges within each group precluded using data from col­

leges with more selective admission policies.

Sample sizes for Group 1 and Group 2 colleges in both the 1983 and 1984 

school years are presented in Table 1.

TABLE 1

Available Sample Sizes

Year
Group College 1983-1984 1984-1985

1 1 67 59
2 56 73
3 71 53
4 56 98
5 72 54
6 51 49
7 98 104
8 51 51
9 50 50

(Total) 572 591

2 1 32 32
2 34 75
3 32 27
4 28 50
5 68 55
6 53 58
7 28 37
8 22 27

9 31 37
10 47 47

(Total) 375 445

The colleges within Group 1 and the colleges within Group 2 were considered to be 

exchangeable for the Bayesian portion of the analysis.
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Procedure

Predictor variables of interest in this study are the four subtests comprising 

the ACT Assessment (E, M, SS, and NS) and high school grade point average (HSA).

The criterion variable is first semester grade point average (GPA), reported on a 

scale from 0.0 to 4.0. Preliminary inspections of bivariate scatterplots were made 

for each college in order to identify any serious departures from the linearity and 

homoscedasticity assumptions of the within-college regression models. No serious 

violations of these assumptions were found.

Three separate regression models were applied to the nine Group 1 colleges

for the 1983 base year. The three regression models were within-college least 

squares (WCLS), pooled least squares with adjusted intercepts (ADJUST), and 

Bayesian m-group regression across the nine colleges (BAYES). The prediction 

equations derived from each of these three models were then cross validated using 

1984 data from the same schools. These procedures were repeated for the 10 Group 2 

colleges using data only for students age 25 or over.

There are several criteria for comparing predicted versus obtained GPA. The

cross validation analyses utilized three of the most common criteria: mean squared

error (MSE), mean absolute error (MAE), and the squared correlation coefficient

(R ). MSE is defined as the squared deviation between predicted and observed GPA

averaged across students at a given college. MAE is defined as the mean absolute

2 •
deviation between predicted and observed GPA. R is the squared zero-order cor­

relation between predicted and observed GPA at a given college.

Cross validated prediction bias for non-traditional aged freshmen (over the 

age of 25 years) in the Group 2 colleges was also calculated. The following iden- 

tity was used in the computation: E(d ) = Var(d) + BIAS , where d is the

prediction error, E denotes the expectation operator, and BIAS = E(d). The

quantity Var(d) corresponds to error variance and the quantity BIAS represents
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prediction bias. Prediction bias for nontraditional aged freshmen was computed 

with respect to the three models WCLS, ADJUST, and BAYES, as well as with respect 

to the total group within-college least squares regression model that employed 

all freshman records from each college.

The definition of prediction bias used in this study provides an estimate of 

the average bias which occurs over the range of the predictor score scales and 

across all examinees. Houston and Novick (1987) have demonstrated that these 

indices of average bias may be misleading if there are selected cut-off points on 

the predictor variables. In such situations, regression equations derived from 

various models should be compared at these cut-off points. However, indices of 

average bias do provide one useful method for comparing how various models perform 

overall on cross validation.

Results

Group 1

The estimated regression parameters obtained from the within-group least 

squares (WCLS), the m-group regression (BAYES), and the pooled least squares with 

adjusted intercepts (ADJUST) models for Group 1 colleges during the 1983 school 

year are presented in Table 2.
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Estimated Regression Coefficients and Residual Variances 
Group Is 1983-1984 School Year

TABLE 2

No.
Prediction

method Intercept
ACT

English
ACT
Math

ACT
Social
Studies

ACT
Natural
Sciences

HS
Average

Residual

Variance

1 WCLS 1.3214 .0653 .0280 .0036 -.0030 .1776 .6371
BAYES 1.6718 .0466 .0188 .0070 .0071 .0826 .5775
ADJUST 1.1270 .0392 .0209 .0031 .0125 .3132 .4393

2 WCLS .8570 -.0268 .0547 .0074 .0080 .3198 .4048
BAYES .4529 .0102 .0361 .0052 .0116 .4143 .4248
ADJUST .2391 .0392 .0209 .0031 .0125 .3132 .4393

3 WCLS .7329 .0228 .0273 .0057 -.0014 .3614 .3287
BAYES .6096 .0301 .0240 .0005 .0090 .3288 .3545
ADJUST .4155 .0392 .0209 .0031 .0125 .3132 .4393

4 WCLS .4345 .0383 .0167 -.0100 .0131 .3858 .2673
BAYES .3811 .0303 .0228 .0003 .0116 .3729 .3200
ADJUST .3251 .0392 .0209 .0031 .0125 .3132 .4393

5 WCLS .5479 .0475 .0146 -.0018 .0163 .2641 .4992
BAYES .5535 .0389 .0178 .0040 .0099 .3088 .4741
ADJUST .4456 .0392 .0209 .0031 .0125 .3132 .4393

6 WCLS .0271 .0662 -.0129 .0360 .0161 .2450 .4686
BAYES .1960 .0553 .0047 .0116 .0136 .3171 .4631
ADJUST .3903 .0392 .0209 .0031 .0125 .3132 .4393

7 WCLS .2493 .0555 .0072 .0065 .0156 .3032 .4022
BAYES .3487 .0461 .0120 .0069 .0119 .3236 .4059
ADJUST .4023 .0392 .0209 .0031 .0125 .3132 .4393

8 WCLS .2421 .0130 .0264 .0098 .0223 .3600 .4969
BAYES .3171 .0276 .0238 .0000 .0127 .3858 .4696
ADJUST .2913 .0392 .0209 .0031 .0125 .3132 .4393

9 WCLS -.7201 .0450 .0218 -.0238 .0053 .7638 .1848
BAYES -.3261 .0191 .0269 -.0057 .0190 .5439 .2809
ADJUST .0149 .0392 .0209 .0031 .0125 .3132 .4393

The within-college Least squares estimates would seem to confirm that the insti­

tutions are somewhat similar. Notable features of the results include the presence 

of negative regression weights and the relatively small magnitude of the weights
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associated with the ACT Social Studies and Natural Sciences subtests across all 

nine colleges. The general effect of the m-group regression procedure has been 

to regress the within-group estimates toward the estimates obtained from the 

ADJUST analysis. Shrinkage of parameter estimates towards pooled values has the 

effect of eliminating the negative weights derived under the WCLS model. Note 

that the BAYES estimates of the regression parameters remain distinct across 

colleges. Although not reported in the table, squared correlations from the 

within-college analysis ranged from .16 to .67.

The results from the cross validation analysis for Group 1 colleges in the

1984 school year are given in Table 3. The table contains mean squared errors 

(MSE), mean absolute errors (MAE) and squared correlations (R ) between predicted 

and observed criterion scores.
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TABLE 3

Mean Squared Error, Mean Absolute Error, and Squared Multiple Correlation 
for Cross Validation Analysis of Group 1: 1984-1985 School Year

College
Prediction

method MSE MAE R2

1 WCLS .2712 .4139 .2187
BAYES .2611 .4042 .2572
ADJUST .2628 .4118 .2311

2 WCLS .4529 .5660 .4331
BAYES .3718 .5061 .5444
ADJUST .3577 .4959 .5554

3 WCLS .6029 .5432 .2318
BAYES .5986 .5330 .2357
ADJUST .6035 .5375 .2343

4 WCLS .3484 .4678 .3113
BAYES .3451 .4601 .3162
ADJUST .3470 .4604 .2982

5 WCLS .5780 .5135 .4400
BAYES .5612 .5100 .4612
ADJUST .5621 .5051 .4559

6 WCLS .3768 .5051 .4181
BAYES .3292 .4820 .4872
ADJUST .3715 .5019 .4844

7 WCLS .4825 .5440 .2756
BAYES .4716 .5350 .2863
ADJUST .4742 .5362 .2916

8 WCLS .6328 .6291 .1414
BAYES .6118 .6283 .1490
ADJUST .6276 .6272 .1303

9 WCLS .9989 .7810 .1772
BAYES .9756 .7518 .1875
ADJUST .9974 .7758 .1681

(AVERAGE) WCLS .5272 .5515
BAYES .5029 .5345
ADJUST .5115 .5391

The results in Table 3 indicate a small yet consistent trend toward smaller

errors of prediction on cross validation using an m-group regression model than
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those obtained from the classical models. These results are consistent with 

previous comparisons of m-group regression with conventional approaches (Novick 

et a l ., 1972). The average reduction in MSE, comparing the BAYES model to the 

WCLS model, was about 5%. Some improvement in MSE was found in each of the nine 

colleges. Somewhat smaller reductions were found for MAE, though the general 

trend was the same. Differences between the BAYES and ADJUST models in both MSE 

and MAE were very small.

Group 2

Table 4 presents the estimated regression parameters obtained from the three 

models for Group 2 colleges during the 1983 school year.
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Estimated Regression Coefficients and Residual Variances 
Group 2: 1983-1984 School Year

TABLE 4

No.
Prediction

method Intercept

ACT

English

ACT

Math

ACT
Social
Studies

ACT

Natural
Sciences

HS
Average

Residua!
Varianci

1 WCLS 2.3260 -.0097 -.0088 .0266 .0101 .1151 .2354
BAYES 1.4728 .0303 -.0041 .0223 .0019 .2666 .2823
ADJUST 1.2957 .0351 -.0071 .0239 -.0018 .3025 .3716

2 WCLS .9640 .0204 .0086 -.0006 .0060 .4797 .2661
BAYES 1.0017 .0287 .0028 .0127 .0026 .3767 .2834
ADJUST 1.1366 .0351 -.0071 .0239 -.0018 .3025 .3716

3 WCLS 1.0038 .0626 .0017 -.0062 -.0273 .3710 .3591
BAYES .7757 .0410 -.0044 .0143 -.0054 .3793 .3748
ADJUST .8081 .0351 -.0071 .0239 -.0018 .3025 .3716

4 •WCLS 2.4561 .0060 -.0308 .0598 -.0205 .1627 .3747
BAYES 1.8813 .0346 -.0109 .0311 -.0066 .1687 .3811
ADJUST 1.5632 .0351 -.0071 .0239 -.0018 .3025 .3716

5 WCLS .3790 .0660 -.0335 .0187 .0186 .4467 .4679
BAYES 1.1846 .0383 -.0060 .0203 .0036 .3078 .4836
ADJUST 1.1741 .0351 -.0071 .0239 -.0018 .3025 .3716

6 WCLS 1.6193 .0497 -.0294 .0382 -.0161 .1014 .5791
BAYES 1.1917 .0412 -.0091 .0222 -.0076 .2901 .5600
ADJUST 1.0324 .0351 -.0071 .0239 -.0018 .3025 .3716

7 WCLS 1.7335 .0254 -.0107 .0267 .0010 .2652 .1256
BAYES 1.7225 .0304 -.0056 .0260 -.0021 .2192 .1774
ADJUST 1.5069 .0351 -.0071 .0239 -.0018 .3025 .3716

8 WCLS .6735 .0016 -.0003 -.0296 .0600 .5346 .3660
BAYES 1.0146 .0271 .0040 .0121 .0042 .3807 .3853
ADJUST 1.1667 .0351 -.0071 .0239 -.0018 .3025 .3716

9 WCLS .7593 .0026 .0266 .0173 .0026 .4680 .1828
BAYES .8738 .0257 .0064 .0093 .0057 .4141 .2278
ADJUST 1.0918 .0351 -.0071 .0239 -.0018 .3025 .3716

10 WCLS 1.7222 .0492 -.0001 .0223 -.0149 .1849 .1374
BAYES 1.6315 .0323 -.0045 .0240 -.0025 .2352 .1757
ADJUST 1.4381 .0351 -.0071 .0239 -.0018 .3025 .3716
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Variation from group to group in the magnitude of the within-college least 

squares weights is evident, with a large number of estimates taking on negative 

values. In the absence of other data, a reasonable explanation of this finding 

is that the negative weights are due, in part, to the small within-group sample 

sizes employed and that the f,trueM coefficients are very small. However, a 

rather disturbing feature of the results presented in Table 4 is the negative 

weights associated with the mathematics and natural science subtests obtained 

from the ADJUST analysis in which a sample size of 375 was available. Once again, 

the general effect of the m-group regression procedure was to shrink parameter 

estimates toward common values. Note from Table 4 that m-group regression is not 

effective in eliminating negative regression weights when the weights derived 

from the pooled analysis are themselves negative. For those variables in which 

the ADJUST model yielded positive weights, the Bayesian procedure also proved 

effective in eliminating the negative weights obtained from the WCLS model. 

Although not reported, squared correlations from the within-college WCLS model 

ranged from .13 to .60.



19

Results from the cross validation analysis of Group 2 colleges are given in 

Table 5.

TABLE 5

Mean Squared Error, Mean Absolute Error, and Squared Multiple Correlation 
for Cross Validation Analysis of Group 2: 1984-1985 School Year

Prediction
College________method________MSE_________MAE___________ R^

1 WCLS .6352 .6626 .1056
BAYES .5262 .5769 .1589
ADJUST .6197 .6463 .1560
WCLS (ALL) .6190 .6476 .1505

2 WCLS .3433 .4689 .5271
BAYES .3463 .4684 .5407
ADJUST .3796 .4871 .4775
WCLS (ALL) .3111 .4731 .4816

3 WCLS .2593 .4158 .3856
BAYES .1880 .3433 .4543
ADJUST .2085 .3652 .4476
WCLS (ALL) .2272 .3868 .3469

4 WCLS .4171 .4524 .1376
BAYES .4009 .4420 .1401
ADJUST .4301 .4517 .1183
WCLS (ALL) .4262 .4961 .1552

5 WCLS .4205 .5021 .2809
BAYES .3610 .4808 .3557
ADJUST .3598 .4810 .3560
WCLS (ALL) .4327 .5100 .2735

6 WCLS .4430 .5440 .1452
BAYES .3447 .4760 .2632
ADJUST .3851 .5094 .2533
WCLS (ALL) .4466 .5406 .1764

7 WCLS .2667 .4129 .2218
BAYES .2512 .3990 .2305
ADJUST .2747 .4136 .2210
WCLS (ALL) .2874 .4396 .1849
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TABLE 5 (continued)

College

Prediction
method MSE MAE R2

8 WCLS .6569 .6600 .2391
BAYES .6572 .6608 .2450
ADJUST .7139 .7137 .1945
WCLS (ALL) .8080 .7650 .2704

9 WCLS .4479 .5278 .3612
BAYES .4311 .5226 .3516
ADJUST .4730 .5458 .3170
WCLS (ALL) .4941 .5443 .3493

10 WCLS .3491 .4984 .0829
BAYES .3284 .4834 .0906
ADJUST .3434 .4990 .0773
WCLS (ALL) .3438 .5089 .0762

(AVERAGE) WCLS .4239 .5141
BAYES .3835 .4853
ADJUST .4189 .5113
WCLS (ALL) .4396 .5309

In order to compare the methods investigated in this study with the currently

used model (total group within-college least squares), indices of predictive 

accuracy obtained from the cross validation of within-college least squares 

equations derived from all freshman records in the 1983 data set are presented 

under the model labeled WCLS (ALL). It is evident from Table 5 that using the 

Bayesian m-group regression model resulted in an increase in predictive accuracy 

compared to any of the other models investigated. Most notably, the m-group 

regression model achieved a 12.8% reduction in average MSE compared to the WCLS 

(ALL) model, and a 9.6% reduction in average MSE compared to the specific group 

WCLS model. The use of the Bayesian model resulted in a reduction in average MAE 

of 8.8% and 5.6% compared to WCLS (ALL) and WCLS, respectively. The use of the 

Bayesian model attained reductions of 8.5% and 5.1% in average MSE and MAE, 

respectively, compared to the ADJUST model.
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Table 6 presents a comparison of the prediction bias that resulted from the 

use of the four models for Group 2 colleges.

TABLE 6

Bias Analysis for Group 2: 1984-1985 School Year

Average Absolute Bias Obtained from Regression Equations 
' Evaluated Across Range of Predictor Score Scales

Expressed in Raw Score Units

Prediction

method

Prediction

bias*

WCLS .1851

BAYES .1426

ADJUST .1752

WCLS (ALL) .2250

*Average absolute BIAS weighted by within college sample sizes

Note that use of the BAYES model resulted in less prediction bias than the other 

three models. Note also that all three models that utilized only those data 

from freshmen over the age of 25 attained substantially less prediction bias than 

the WCLS (ALL) model that derived regression equations based on all freshmen 

records in a college. The prediction bias reported in Table 6 was calculated by 

forming a weighted average of the absolute bias within each college.

In order to compare the stability of the estimated regression parameters for 

the BAYES, ADJUST, and WCLS models over time, estimates of these parameters were 

obtained for Croup 2 colleges in the 1984 data set in addition to estimates 

obtained from the 1983 data set already presented.
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Absolute Differences in Estimated Regression Parameters for 
1983 and 1984 School Years Averaged Across Group 2 Colleges

TABLE 7

Parameter WCLS
Prediction Method 

BAYES ADJUST

ACT English .025 .005 .006

ACT Mathematics .031 .017 .026

ACT Social Studies .021 .008 .015

ACT Natural Sciences .023 .004 .004

H.S. Average .140 .091 .027

Table 7 presents the absolute differences between the 1984 estimates and the 1983 

estimates for each predictor variable for the three models averaged across col­

leges. The results in Table 7 indicate that the BAYES and ADJUST estimates are 

substantially less variable over time than the WCLS estimates. The greater sta­

bility of estimates obtained from the BAYES and ADJUST models suggests that using 

collateral information reduces the effects of year-to-year sampling fluctuations.

Discussion

The results of this study indicate that increases, both in predictive accuracy 

obtained on cross validation and in the stability of the estimated regression param­

eters over time, can be realized from the use of a Bayesian simultaneous prediction 

method. Increases in predictive accuracy were also attained by use of the ADJUST 

model, in which regression slopes are assumed approximately equal across selected 

institutions, while intercepts are allowed to vary. The results of this investi­

gation provide evidence that the use of collateral information from similar insti­

tutions in the construction of prediction equations lead to increases in predictive 

accuracy and decreases in prediction bias obtained on cross validation. Although 

the empirical Bayesian method performed somewhat better on cross validation than



23

the pooLed least squares with adjusted intercepts method, the advantages may be 

offset by the increased cost, due to the added numerical complexity of the BAYES 

model.

An advantage of Bayesian simultaneous prediction methods is that the esti­

mates of regression slopes and residual variances are allowed to vary across 

colleges, while traditional least squares methods either assume homogeneity of 

slopes and variances across colleges (ADJUST) or fail to utilize any collateral 

information (WCLS). It should be noted that the colleges in this study were 

selected to be very similar, and thus to make the Bayesian and pooled least 

squares procedures perform well. It has yet to be determined whether or not 

either procedure can perform meaningfully better than within-college least 

squares methods in more general situations. Because the Bayesian approach is 

highly adaptive to different regression structures, the BAYES modeL can be 

expected to perform as well as the other two models across the vast majority of 

situations. The justification for Bayesian simultaneous regression hinges on 

whether the flexibility inherent in the Bayesian system can achieve meaningful 

improvements over more easily implemented approaches.

The greatest potential for centralized prediction systems has to do with 

special prediction situations involving small numbers of students. Such situ­

ations include the prediction of specific course grades, the calculation of 

prediction equations for socially or educationally relevant subgroups, and the 

calculation of regression equations for small colleges with limited numbers of 

ACT tested students. From either a classical or Bayesian perspective, the use of 

collateral information from similar institutions may provide a viable alternative 

to within-college least squares regression equations in situations such as these.
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