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ABSTRACT

The feasibility and effectiveness o f a Bayesian method, due to Lindley, fo r estimating 
regressions in m groups is studied by application o f the method to data from the Basic 
Research Service o f The. American College Testing Program. Evidence is found to support the 
belief that in many testing applications the collateral information obtained from each subset of 
m — /colleges w ill be useful fo r the estimation of the regression in the m-th college. Specifically, 
on cross-validation in a second sample, the Bayesian predictions had a smaller mean squared 
error in each of 22 colleges, the reduction averaging 9.7%, when compared with the least 
squares predictions when four predictor variables were used on a quarter sample in the 2 2  

colleges where in itia l within-college sample sizes ranged from 26 to 184. Furthermore, even 
when based on the fu ll sample w ith in  each college, the least squares predictions had an average 
cross-validated mean squared error only barely less than the Bayesian predictions based on the 
quarter sample. The most apparent benefit o f the Bayesian method is that it permits regression 
to be done in subpopulations (e.g., male-female) where sample sizes are small and where the 
regressions are different in the subpopulations. In the present study, a decrease of more than 
1 0 % in mean squared error was obtained using this approach.
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APPLICATIONS OF BAYESIAN METHODS 
TO THE PREDICTION OF EDUCATIONAL PERFORMANCE1

Melvin R. Novick 
Paul H. Jackson 

Dorothy T. Thayer2 

Nancy S. Cole

Since 1961 The American College Testing Program has provided predictive research services to participating 
institutions. Applications of this service have been primarily in academic areas. A component of these services 
is the computation of a least squares regression equation for predicting grade point average (GPA) from a 
linear combination of the four scores, English, Mathematics, Social Studies, and Natural Sciences, on the 
American College Test and several high school grades. These regression equations are computed on first 
semester GPA and then used on d ifferent students fo r predictive purposes for the next year. Predictive 
information is furnished to the college and to each applicant in order to foster a more rational, mutual 
evaluation of the benefits a particular student might gain from a particular college. The selection of students 
by a college and the selection o f a college by students depends on many factors other than predicted GPA, but 
this prediction is one objective and very useful piece o f information.

A requirement fo r participation in the predictive research services has been the availability o f a minimum 
sample o f 100 students in a single year. This arbitrary number was set as a result o f experience suggesting that 
smaller samples typically provide an unsatisfactory amount of sampling fluctuation. Unfortunately, many 
smaller colleges are not able to supply the requisite sample. Also, there is much interest in doing separate 
regression analyses fo r subgroups of different kinds o f students and different kinds of programs. Such analyses 
necessarily involve smaller sample sizes. The present extension of national testing programs into the areas of 
vocational and technical education intensifies this problem and provides a challenge that can be met only by a 
radically new and improved prediction technology.

'A n  invited paper presented for discussion at the American Statistical Association meetings, Detro it, Michigan, December 27, 1970. The authors 
are grateful to  Mr. David Christ fo r preparing the computer programs used in the cross-validation analyses reported here, and to Dr. E. James 
Maxey for providing the data from  the ACT Basic Research Services file. Supported in part under Grant 1 P01 HD01762 from  the National 
Institute o f Child Health and Human Development. Reproduction, translation, use. or disposal by or fo r purposes of the U.S. Government is 
permitted. The substance of this report is also contained in Research Bulletin 71-18 of the Educational Testing Service. The final published report 
w ill contain further theoretical details.

2 Dorothy T. Thayer is an assistant statistician w ith  the Educational Testing Service.



In vocational-technical programs, available criterion groups w ith in  specific programs w ill regularly be of 
very small size, much smaller than normally thought necessary fo r accurate prediction. One can get larger 
samples by pooling related programs, but this simple pooling is unlikely to be very satisfactory. However, a 
modified kind of pooling of students from like named programs from different institutions is possible and, 
indeed, may be useful. We recognize that regression weights fo r similar named programs should be similar 
across institutions, but we also know from experience that they w ill be d ifferent enough that direct pooling 
w ill be less than entirely satisfactory. What is really needed is a technique that takes account both o f the 
similarity of regressions across institutions and also the uniqueness of the individual programs.

A simple paradigm for a powerful approach to this problem has classic status in mental testing theory. 
Suppose we administer just two items randomly selected from the ACT Mathematics subtest and from a 
student's two incorrect responses we project a scaled ACT Mathematics score o f 10. Further suppose we know 
that the student comes from a high school in which the average score obtained by students is 25. The two 
pieces of information seem to conflict. If we had only the test results we would certainly want to use the 
projected value of 10. However, if we had no information on the student but only knew that he came from a 
school where the mean score was 25, we would probably pick that value as our best guess o f his true ability, 
his true score.

In the present intermediate situation it would seem to make sense to use both pieces of information giving 
appropriately different weights to each. Kelley (1927) provided a formal solution to this problem some 40 
years ago. His solution was to weight the observed score fo r the person and the average value over persons, 
respectively, by the reliab ility o f the test and one minus the re liability. Symbolically this is expressed

Estimated true score = rX + (1 — r)X

where X is the person's observed score, X is the mean of all observed scores, and r is the re liability of the test 
defined as the ratio of the variance of the true scores to the variance of the observed scores in the given 
population. The reliability o f a pair o f mathematics items is, perhaps, .30 and so, by this formula, we would 
have:

Estimated true score = (.30)(10) + (.70)(25) = 20.50.

Had the observed score been based on four items, the reliability would have been about .45 and

Estimated true score = (.45)(10) + (.55)(25) = 18.25.

Had the observed score been based on the fu ll subtest the re liab ility would be perhaps .90, and

Estimated true score = (.90)(10) + <. 10)(25) = 11.25.

This procedure seems to make a great deal o f sense. The collateral information contained in the scores 
obtained by the other students from the same school is information that should be ignored only if the 
re liability of the test is very high. It is not surprising to learn that Kelley showed that unless the reliab ility is 
very high the above procedure provides an estimate w ith substantially lower standard error than the estimate 
based solely on the observed score.

The necessary breakthrough in prediction technology came when Lindley (1970) showed that the logic of 
the Kelley method could be used to  improve predictions in individual groups by using information both from 
that group and from other similar groups. While the actual mechanics o f the Lindley method are complicated, 
they effectively involve the same kind of averaging as in the estimation of true score. Suppose there are m 
colleges and p predictor variables; then fo r each of the predictors and for each college a Bayesian regression 
weight is computed as a weighted average of the usual least squares regression weight for that variable and 
that college and the average over colleges of the weights fo r that variable. For example, suppose we have 10 
colleges with similar programs. In one college, we compute the following least squares regression:
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Least Squares Regression Weights (LSRW) fo r College 1

Variables 1 2  3 4
Weights .02 .01 .02 -.01

We make a similar computation w ith each college and fo r each variable separately obtain the average over 
colleges of these weights.

Average of LSRW over 10 Colleges

Variables 1 2  3 4
Weights .03 .03 .02 .01

The Bayesian regression weights fo r College 1 would then be computed as the following weighted averages:

(.02){W1) + {.03)(1 - W t>

(.01)(W2) + (.03X1 -  W2)

(.02}(W3) + (.02)(1 -  W3)

<-.01>(W4) + ( .0 1 )< 1 -W 4)

The weights W-|, W2, W3 , and W4  depend (among other things) upon the relative amount o f information we 
have from College 1. If we have a lot of information on this college, the weights (Wj) w ill be large and the 
Bayesian estimates w ill be similar to the least squares regression weights fo r College 1. If, however, we have 
only a little  information about College 1, the weights (Wj) w ill be small and the Bayesian regression weights 
w ill be more like the average for all 10 colleges. Suppose the weights were

(Wv  W2, W3, W4) = (.3, A, A , .4)

Then the "K e lle y " regression weights fo r College 1 would be .027, .022, .020, .002. The actual Bayesian 
procedure is much more complicated, but conceptually it differs little  from the simple technique described 
above.

Now we know that the least squares regression weights minimize the error in the present sample of students 
from College 1. Use of the Bayesian weights in the present sample would result in larger errors. But what w ill 
happen w ith next year's students? Which type of regression weights actually predicts better fo r next year's 
students? In this paper we report on an experiment that demonstrates the great value o f the Bayesian 
regression weights. We present, finally, a technical section giving further details on Lindley's method of 
deriving these weights.
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The Cross-Validation Experiment

In theory the Bayesian regression estimates should provide "better cross-validation" than the usual least 
squares estimates. This would mean that predictions using the Bayesian estimates would be more accurate, on 
the average, than those using the least squares estimates. Typically comparative studies are done on computer 
generated data. Such studies are useful, but never conclusive. These studies can tell us that the theory does or 
does not work when the assumptions of the model are satisfied or violated in specific ways. However, only a 
study with real data can pin down precisely how a technique w ill work on further data sets.

In the fields of education and psychology, the process o f seeing just how a prediction equation works in a 
second sample is called cross-validation. The variable being predicted is called the criterion, and the 
independent variables are called the predictors. The typical finding is that when the regression equation from 
one sample is used in a second sample the correlation between predicted values and the observed value of the 
criterion is lower, on the average, than it was in the first sample. This is a result o f the fact that the first 
sample regression equation imprecisely estimates the true relationship because it fits idiosyncrasies found in 
the first but not the second sample. With samples that are small relative to  the number o f predictors used, very 
high multiple correlations can even cross-validate to zero. While one can devise formulas to predict this 
shrinkage, it seems far more useful to reduce the shrinkage by discounting, to the extent possible, 
idiosyncrasies in the first sample. This is precisely the function of the Bayesian method.

For the present study, we decided to work w ith a group of traditional junior colleges providing academic 
transfer curricula. A sample of 22 such colleges was drawn from those participating in the Basic Research 
Service during both 1968 and 1969. The sample was selected w ithout reference to the present data but w ith 
careful attention to the curricula in the colleges, using information from the standard reference American 
Junior Colleges (Gleazer, 1967). We consider this to be a very homogeneous group of colleges since colleges 
that appeared at all different from the other members of the group were eliminated. On the information 
available to us, we consider these and similar colleges to be exchangeable, as regards the important 
considerations of this study. A fundamental statistical theorem, the de Finetti-Hewitt-Savage theorem, implies 
that we may, therefore, treat these as if they were a random sample from some population o f colleges. This, 
together w ith the usual tractability considerations, implies precisely the variance components model, Model II, 
to be considered here.

There are several common measures for comparing predicted GPA w ith observed GPA. The most common 
is mean squared error (MSE), the average of the squares of the differences between the person's predicted 
GPA and his actual GPA, w ith in each college. If, however, the principal interest is in ranking students w ith in 
each college, the correlation (COR) between the observed and predicted grades is a more suitable basis for 
comparison. Using COR, differences in the mean observed and mean predicted grades are ignored. On the 
other hand, another possible concern is w ith the average absolute magnitude of the error of prediction (AE) 
for each college. Finally, fo r some types of college decisions, a zero-one loss function (ZOL) is best. 
Differences in observed and predicted grades w ith in a certain range may be acceptable (zero loss) while those 
larger are considered to be errors (unit loss). In this case, in order to keep the measures comparable from one 
college to another, the acceptable interval was defined as one-half a standard deviation o f observed grades 
w ith in  each college. These four measures of goodness of prediction were computed for each of the 22 junior 
colleges. An overall index for each measure was obtained by averaging it over the 22 colleges.

The above computations were made using the least squares and the Bayesian linear prediction functions. 
The number of observations w ith in the colleges ranged from 105 to 739. In addition to making comparisons 
using all of the 1968 data, there was a need.to make similar comparisons w ith smaller within-college sample 
sizes. For this purpose, a 25% random sample w ith in each college was drawn and the entire study redone. The 
number of cases w ith in  the various colleges ranged from 26 to 184 in the 25% sample. Our overall expectation 
was that the Bayesian method would provide a modest average improvement w ith the fu ll sample and a much 
more substantial improvement w ith the quarter sample.

Following this, the fu ll 1968 sample in each college was divided into male and female subpopulations, and 
the least squares and Bayesian estimates were computed in each college sex subgroup. A comparative
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cross-validation analysis was then performed in male-female groups in the 1969 sample. The expectation was 
that the greatest benefit would be found in this application.

Results

In Table 1 we give the^results of the least squares regression analyses w ith in  each of the 22 colleges fo r the 
1968 data. The symbol j8q refers to the sample intercept and |8 -|, are the four sample least squares
regression coefficients corresponding to the four ACT test scores, English, Mathematics, Social Studies, and 
Natural Sciences, respectively. The sample multiple correlations w ith  GPA, which range between .4105 and 

p .6882, are given in the column labeled R. The column labeled 0  gives the estimated residual variances. 
Although there are clearly differences among the institutions, our thought that they are very similar is surely 
confirmed by these sets o f estimates.

TABLE 1

Regression Coefficients and ResiduaI Variances for 
AC T Test Predictions o f GPA in 22 Colleges 

(100% Sample, 1968 Data)

COLL N
A

^ 0

A

h

A

h
A

%

A

P4 R 0

1 171 0.798 0.023 0.006 0.037 0 .0 1 1 .4612 0.57493

2 204 1.172 0.042 0 .0 1 1 0.006 -0 .00 5 .4765 0.29663

3 223 0.317 0.043 0 .0 2 1 0.030 0.018 .6234 0.37718
4 307 0.925 0.009 0.036 0.003 0.016 .4507 0.47905
5 461 0.775 0.033 0.019 0 .0 1 1 0 .0 1 1 .4561 0.38946
6 175 0.104 0.029 0.036 0 . 0 2 0 0.007 .4865 0.58086
7 105 0.287 0.069 0.025 0.007 0 .0 0 1 .5237 0.58290
8 118 0.362 0.005 0.037 0.042 0.004 .5402 0.52335
9 113 0.401 0.042 0.033 0.042 -0 .02 3 .5429 0.49640

1 0 128 0.045 0.068 0.038 0 .0 1 2 0 .0 1 1 .6882 0.44949
11 165 1.087 0.060 0.006 0 .0 2 2 -0 .00 5 .5502 0.42804
1 2 132 1.205 0.048 0.005 0 .0 1 2 0.007 .5478 0.29100
13 174 0.916 0.024 0.025 0 . 0 0 2 0.017 .4905 0.36637
14 334 0 .1 2 2 0.070 0.019 0.017 0 .0 0 1 .5095 0.83703
15 167 0.215 0.070 0.031 0.026 - 0 . 0 2 0 .5775 0.40428
16 327 0.385 0.043 0.034 0.015 -0 .0 0 6 .4745 0.44930
17 739 0.864 0.035 0.026 0.014 -0 .01 3 .4317 0.39968
18 235 1.193 0.043 0.006 0.025 -0 .00 9 .4105 0.44821
19 117 1.056 0.065 0.006 0.024 -0 .00 9 .4756 0.38558
2 0 209 0.892 0.053 0.007 0 . 0 1 0 0 .0 1 2 .4438 0.48622
21 394 -0 .277 0.078 0.034 0 .0 1 1 -0 .00 8 .5207 0.62199
2 2 410 0.075 0.030 0.046 0 .0 1 1 0.013 .5591 0.46034
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The multiple correlations found in the 1968 sample are typical o f the results to be found when the ACT 
test is used in colleges having a homogeneous first semester program. Obviously, when students take widely 
varying kinds of courses during their first semester no single regression equation w ill be suitable, but rather, 
specific regression equations must be computed for each program. If this is not done, multiple correlations 
using fixed combinations of predictors can be very low.

The striking feature of this table is the presence of negative regression weights fo r the Natural Science 
variable (&q) in 9 of the 22 colleges. We must ask our'selves if these are accurate estimates or if the correct 
values are all zero or slightly positive, w ith the negative sample quantities due solely to sampling variation. The 
data are certainly consistent w ith this hypothesis on first glance. We look to the Bayesian analysis to clarify 
this point.

In Table 2 we give the least squares estimates together w ith the Bayesian estimates fo r each college. The 
general effect has been to moderate extreme values throughout. The regression weight for Natural Science (j34) 
is estimated to be near zero (actually just slightly positive) for all colleges. No meaningful differences in the < 
regression coefficients, across colleges, were detected for the Social Studies {£3 ) or Natural Sciences (04 ) 
variables, but substantial differences were found for the English (j3-|) and Mathematics (fy ) variables. A 
negative intercept </3q)is still found fo r College 21, but this is small enough that it does not cause us undue 
discomfort.

TABLE 2

Comparison o f Least Squares and Bayesian Prediction Functions 
{100% Sample, 1968 Data)

COLL N ^ 0 h h h 04

1 171 LSQ
BAY

0.7981
0.8374

0.0231
0.0406

0.0062
0.0195

0.0374
0.0169

0.0107
0.0017

2 204 LSQ
BAY

1.1724
0.9737

0.0423
0.0295

0.0114
0.0175

0.0060
0.0169

-0 .0046
0.0017

3 223 LSQ
BAY

0.3169
0.6152

0.0430
0.0562

0.0208
0.0223

0.0300
0.0169

0.0181
0.0017

4 307 LSQ
BAY

0.9254
0.8276

0.0094
0.0293

0.0363
0.0235

0.0032
0.0169

0.0164
0.0017

5 461 LSQ
BAY

0.7753
0.7605

0.0329
0.0349

0.0192
0.0219

0 .0 1 1 2

0.0169
0.0108
0.0017

6 175 LSQ
BAY

0.1041
0.1599

0.0293
0.0383

0.0359
0.0334

0 . 0 2 0 0

0.0169
0.0070
0.0017

7 105 LSQ
BAY

0.2864
0.4192

0.0686
0.0494

0.0250
0.0262

0.0075
0.0169

0.0006
0.0017

continued *
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TABLE 2 (continued)

COLL N
0 0 01 02 03 04

8 118 LSQ 0.3619 0.0046 0.0367 0.0424 0.0042
BAY 0.3742 0.0420 0.0291 0.0169 0.0017

9 113 LSQ 0.4011 0.0416 0.0332 0.0417 -0.0231
BAY 0.4431 0.0467 0.0265 0.0169 0.0017

1 0 128 LSQ 0.0448 0.0681 0.0385 0.0123 0 .0 1 0 1

BAY 0.4244' 0.0631 0.0251 0.0169 . 0.0017

11 165 LSQ 1.0865 0.0596 0.0063 0 .0 2 2 1 -0 .0051
BAY 1.0643 0.0510 0.0131 0.0169 0.0017

1 2 132 LSQ 1.2053 0.0475 0.0045 0.0118 0.0068
BAY 1.1415 0.0433 0.0128 0.0169 0.0017

13 174 LSQ 0.9157 0.0241 0.0253 0.0016 0.0174
BAY 0.8352 0.0342 0 .0 2 1 2 0.0169 0.0017

14 334 LSQ 0.1218 0.0699 0.0187 0.0175 0.0014
BAY 0.2375 0.0539 0.0285 0.0169 0.0017

15 167 LSQ 0.2148 0.0701 0.0309 0.0259 -0 .0196
BAY 0.3451 0.0519 0.0273 0.0169 0.0017

16 327 LSQ 0.3847 0.0434 0.0339 0.0153 -0 .0062
BAY 0.3299 0.0405 0.0296 0.0169 0.0017

17 739 LSQ 0.8642 0.0349 0.0264 0.0141 -0 .0133
BAY 0.7245 0.0289 0.0229 0.0169 0.0017

18 235 LSQ 1.1934 0.0425 0.0064 0.0251 -0.0091
BAY 1.0253 0.0412 0.0151 0.0169 0.0017

19 117 LSQ 1.0554 0.0645 0.0065 0.0237 -0 .0093
BAY 1.0919 0.0517 0.0125 0.0169 0.0017

2 0 209 LSQ 0.8921 0.0528 0.0074 0 .0 1 0 0 0 . 0 1 2 0

BAY 0.8857 0.0468 0.0173 0.0169 0.0017

21 394 LSQ -0 .2766 0.0778 0.0338 0 .0 1 1 0 -0 .0082
BAY -0 .1400 0.0524 0.0358 0.0169 0.0017

2 2 410 LSQ 0.0751 0.0301 0.0461 0 .0 1 1 1 0.0128
BAY 0.1698 0.0428 0.0344 0.0169 0.0017
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The cross-validations using the 100% sample are given in Table 3. The advantage of the Bayesian method is 
very modest, being approximately 1% more or less, on the average, depending upon the error function 
considered. Thus, unless these results are contradicted in future samples or unless some refinements are found 
in the method, we must conclude that the Bayesian method has little  to offer in the way of increasing 
predictive efficiency w ith sample sizes as large as those being considered.

TABLE 3

Comparisons o f Classical and Bayesian Predictions o f 1969 Data 
Using 1968 Data from 100% Sample

COLL N MSE AE ZOL COR

1 171 LSQ 0.6652 0.6614 0.6145 0.3894
BAY 0.6675 0.6721 0.6145 0.3827

2 204 LSQ 0.4469 0.5094 0.4854 0.5345
BAY 0.4325 0.5034 0.5146 0.5417

3 223 LSQ 0.4322 0.5020 0.5400 0.4508
BAY 0.4127 0.4881 0.5200 0.4706

4 307 LSQ 0.5559 0.5806 0.5683 0.3282
BAY 0.5312 0.5662 0.5535 0.3805

5 461 LSQ 0.4887 0.5454 0.5373 0.4524
BAY 0.4843 0.5429 0.5448 0.4598

6 175 LSQ 0.8589 0.7530 0.6034 0.5065
BAY 0.8427 0.7448 0.6034 0.5229

7 105 LSQ 0.4486 0.5345 0.5652 0.4533
BAY 0.4525 0.5373 0.5826 0.4397

8 118 LSQ 0.3653 0.4595 0.4821 0.5991
BAY 0.3391 0.4438 0.4375 0.6366

9 113 LSQ 0.5761 0.6231 0.6176 0.4453
BAY 0.5933 0.6187 0.6078 0.4047

1 0 128 LSQ 0.5495 0.5968 0.6525 0.3677
BAY 0.4950 0.5723 0.6186 0.3757

11 165 LSQ 0.5767 0.5427 0.4437 0.5760
BAY 0.5764 0.5447 0.4375 0.5801

continued
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TABLE 3 (continued)

COLL N IVISE AE ZOL COR

12 132 LSQ
BAY

0.3883
0.3853

0.4907
0.4959

0.5463
0.5556

0.5213
0.5278

13 174 LSQ
BAY

0.5967
0.5744

0.6082
0.5958

0.5570
0.5380

0.4536
0.4881

14 334 LSQ
BAY

0.7164
0.7264

0.6926
0.6986

0.6446
0.6506

0.4604
0.4494

15 167 LSQ
BAY

0.4876
0.4713

0.5538
0.5418

0.5928
0.5689

0.3607
0.3548

16 327 LSQ
BAY

0.5836
0.5786

0.5861
0.5826

0.5246
0.5246

0.4961
0.5031

17 739 LSQ
BAY

0.4632
0.4553

0.5408
0.5373

0.6222
0.6159

0.4013
0.4016

18 235 LSQ
BAY

0.8013
0.7907

0.7354
0.7282

0.6061
0.6104

0.5476
0.5520

19 117 LSQ
BAY

0.7549
0.7501

0.6531
0.6411

0.4818
0.4455

0.5055
0.5221

2 0 209 LSQ
BAY

0.4301
0.4243

0.5088
0.5063

0.5376
0.5434

0.5699
0.5740

21 394 LSQ
BAY

0.7252
0.7229

0.6740
0.6737

0.5680
0.5561

0.4816
0.4800

2 2 410 LSQ
BAY

0.4008
0.3979

0.5144
0.5137

0.5594
0.5718

0.4948
0.4961

AVE ERROR LSQ
BAY

0.5596
0.5502

0.5848
0.5795

0.5614
0.5552
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We then undertook to study what would happen if the sample requirement were indeed reduced to a 
minimum sample size of 25. A random 25% sample w ith in each college was used and the study redone. 
Sample sizes now ranged from 26 to 184. In Table 4, which is analogous to Table I, we give the least squares 
estimates for the 25% sample from each college. Notice that w ith these greatly reduced sample sizes, there are 
far more negative regression weights. They are even to be found for the first two predictors despite the fact 
that the 100% sample has strongly suggested that these weights should be positive. Furthermore, two of these 
negative weights are of substantial magnitude, specifically the Mathematics variable (0 2 ) fo r College 1 and the 
English variable (/3-j) for College 8 .

TABLE 4

Regression Coefficients and ResiduaI Variances for 
AC T Test Predictions o f GPA in 22 Colleges 

(25% Sample, 1968 Data}

COLL N h h h h H R 0

1 42 0.841 0.023 -0 .037 0.037 0.034 .4834 0.59344
2 51 1.533 -0 .006 0.028 0.059 -0 .05 3 .5504 0.27666
3 55 -0 .34 8 0.052 0.036 0 . 0 1 0 0.038 .6138 0.43976'
4 76 0.964 - 0 .0 1 0 0.055 0.004 0.015 .4749 0.40149
5 115 0.379 0.047 0.017 - 0 .0 0 1 0.031 .5060 0.39646
6 43 0.717 0.005 0.017 0.026 0.009 .3026 0.68759
7 26 -0 .36 9 0.060 0.004 0.033 0.028 .6624 0.33275
8 29 1.182 -0 .05 5 - 0 .0 0 2 0 .1 2 1 -0 .01 6 .6625 0.26714
9 28 -1 .095 0.038 0 . 0 0 0 0.051 0.079 .8288 0.27665

1 0 32 0.670 -0 .00 9 0.047 0.028 0.032 .7735 0.30405
11 41 1.051 0.064 0 .0 0 0 0 .0 1 2 0 .0 1 2 .5369 0.45857
1 2 33 0.856 0.041 0.017 0.015 0.025 .7404 0.16812

 ̂ 13 43 0.797 -0 .018 0.039 0.014 0.027 .4731 0.35890
14 83 . 0.128 0.034 0.041 0.035 - 0 .0 0 2 .5390 0.75269
15 41 0.571 0.023 0.017 0 .0 2 2 0.018 .5230 0.33592
16 81 -0 .46 9 0.094 0.036 0.005 0.003 .6293 0.46772
17 184 0.815 0.040 0.028 -0 .004 0 .0 0 0 .4322 0.39847
18 58 1.362 0.042 -0 .003 0.046 -0 .03 2 .4392 0.41840
19 29 0.812 0.045 0.007 0.038 0.007 .5453 0.39524
2 0 52 1.193 0.042 - 0 .0 0 2 0.006 0 .0 2 1 .5125 0.38224
21 98 -0 .409 0.052 0.035 0.028 0.005 .5260 0.58589
2 2 1 0 2 0.286 0.030 0.028 0.030 0 .0 0 1 .4693 0.47440

The results o f the Bayesian regression analyses are given in Table 5. Again we find that the negative 
regression weights have vanished. No differences across groups are found in the fourth regression weight and 
only very small differences in the third weight. The Bayesian estimates of the regression weights from the 25% 
sample are very similar to those from the 1 0 0 % sample.
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TABLE 5

Comparison o f  Least Squares and Bayesian Prediction Functions 
(25% Sample, 1968 Data)

N 0 0 01 02 03

42 LSQ
BAY

0.8405
0.4923

0.0227
0.0327

-0 .0370
0.0229

0.0373
0.0192

51 LSQ
BAY

1.5331
0.6596

-0 .0062
0.0285

0.0281
0.0224

0.0591
0.0171

55 LSQ
BAY

-0.3481
0.5319

0.0519
0.0364

0.0364
0.0235

0 .0 1 0 1

0.0192

76 LSQ
BAY

0.9635
0.7754

-0 .0105
0.0267

0.0546
0.0231

0.0042
0.0160

115 LSQ
BAY

0.3786
0.5377

0.0467
0.0338

0.0165
0.0230

- 0 .0 0 1 1

0.0178

43 LSQ
BAY

0.7173
0.3034

0.0051
0.0307

0.0166
0.0239

0.0261
0.0183

26 LSQ
BAY

-0 .3690
0.4234

0.0596
0.0351

0.0044
0.0234

0.0331
0.0192

29 LSQ
BAY

1.1819
0.6297

-0 .0545
0.0312

- 0 .0 0 2 0

0.0228
0.1214
0.0185

28 LSQ 
' BAY

-1 .0948
0.3404

0.0383
0.0376

0 .0 0 0 0

0.0238
0.0506
0.0208

32 LSQ
BAY

0.6702
0.8390

-0 .00 9 4
0.0330

0.0472
0.0226

0.0276
0.0181

41 LSQ
BAY

1.0505
1.0468

0.0640
0.0335

-0 .0003
0.0213

0.0123
0.0175

33 LSQ
BAY

0.8564
1.0310

0.0406
0.0332

0.0170
0.0216

0.0154
0.0175

43 LSQ
BAY

0.7968
0.5557

-0 .0177
0.0301

0.0387
0.0233

0.0144
0.0175
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TABLE 5 (continued)

COLL N 0 0 01

CSI
CQ. 03 04

14 83 LSQ 0.1281 0.0345 0.0409 0.0355 -0 .0025
BAY 0.4068 0.0369 0.0239 0.0204 0 .0 1 1 1

15 41 LSQ 0.5713 0.0232 0.0167 0.0218 0.0181
BAY 0.4985 0.0331 0.0232 0.0186 0 .0 1 1 1

16 81 LSQ -0 .4690 0.0940 0.0362 0.0046 0.0026
BAY 0.2706 0.0399 0.0243 0 .0 2 0 1 0 .0 1 1 1

17 . 184 LSQ 0.8150 0.0396 0.0282 -0.0041 -0 .0004
BAY 0.5875 0.0291 0.0230 0.0142 0 .0 1 1 1

18 58 LSQ 1.3618 0.0424 -0 .0027 0.0459 -0 .0322
BAY 0.8372 0.0322 0.0215 0.0176 0 .0 1 1 1

19 29 LSQ 0.8125 0.0450 0.0066 0.0375 0.0073
BAY 0.9686 0.0345 0.0217 0.0183 0 .0 1 1 1

2 0 52 LSQ 1.1932 0.0421 -0 .0017 0.0062 0.0213
BAY 0.8965 0.0316 0.0217 0.0168 0 .0 1 1 1

21 98 LSQ -0.4091 0.0520 0.0353 0.0280 0.0050
BAY 0.0946 0.0376 0.0243 0.0208 0 .0 1 1 1

2 2 1 0 2 LSQ 0.2856 0.0297 0.0278 0.0296 0.0009
BAY 0.2967 0.0335 0.0240 0.0195 0 .0 1 1 1

Again, both the Bayesian and least squares equations were applied to the 1969 sample and the predictions 
compared. Some of the key cross-validation results of the study are found in Table 6 . When the reduced 
sample was used to construct the prediction equations, the reduction in mean squared error (MSE) comparing 
the Bayesian method to the least squares method in the following year's students is about 9.7%, w ith smaller 
reductions in absolute (AE) and zero-one error (ZOL). Furthermore, some improvement in mean squared 
error was found in each of the colleges. The increase in the cross-validation correlations (COR) was about .04 
on the average. We judge these to  be very significant improvements indeed. The most impressive result, 
however, is in the comparison of the average mean squared errors for the Bayesian method w ith  the 25% 
sample and the classical method w ith the 100% sample. A difference of less than one-quarter of 1% was 
found. Apparently, w ith these data, a 75% savings in sample size was possible by adopting the Bayesian 
method.

An interesting supplementary analysis was performed in which the prediction functions from the 
1968 25% sample were cross-validated on the remaining (75%) 1968 sample. Average mean squared errors on 
this within-year cross-validation were: fo r least squares .5518 and fo r Bayes .5037 as compared to .6208 and 
.5603 when the cross-validation was done on the 1969 data. The gain using Bayes was 8.7% as compared w ith
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TABLE 6

Comparisons o f  Classical and Bayesian Predictions o f 1969 Data 
Using 1968 Data from 25% Sample

COLL N IVISE AE ZOL COR

1 42 LSQ 0.7717 0.7254 0.6704 0.3511
BAY 0.7477 0.7189 0.6536 0.3643

2 51 LSQ 0.5579 0.5934 0.5848 0.3607
BAY 0.4398 0.5228 • 0.5439 0.5383

3 55 LSQ 0.5051 0.5404 0.5360 0.4661
BAY 0.4574 0.5259 0.5520 0.4704

4 76 LSQ 0.5985 0.6062 0.6089 0.2736
BAY 0.5307 0.5665 0.5535 0.3736

5 115 LSQ 0.5098 0.5555 0.5653 0.4323
BAY 0.4946 0.5480 0.5485 0.4522

6 43 LSQ 0.9511 0.8014 0.5866 0.4454
BAY 0.8594 0.7476 0.5866 0.5123

7 26 LSQ 0.4809 0.5473 0.5739 0.4598
BAY 0.4676 0.5478 0.6000 0.4259

8 29 LSQ 0.4819 0.5449 0.5179 0.4525
BAY 0.3397 0.4379 0.4375 0.6409

9 28 LSQ 0.9632 0.7619 0.6275 0.3398
BAY 0.6238 0.6387 0.6078 0.3992

1 0 32 LSQ 0.5804 0.6236 0.6780 0.2905
BAY 0.4604 0.5613 0.6356 0.3592

11 41 LSQ 0.5918 0.5393 0.4375 0.5608
BAY 0.5907 0.5470 0.4375 0.5579

1 2 33 LSQ 0.4152 0.4994 0.5463 0.4851
BAY 0.3983 0.4996 0.5370 0.4973

13 43 LSQ 0.7184 0.6701 0.5759 0.3187
BAY 0.6075 0.6178 0.5759 0.4705

continued
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TABLE 6 (continued)

COLL N MSE AE ZOL COR

14 83 LSQ
BAY

0.7495
0.7153

0.7078
0.6883

0.6596
0.6054

0.4257
0.4320

15 41 LSQ
BAY

0.4881
0.4793

0.5551
0.5490

0.6048
0.6108

0.3225
0.3351

16 81 LSQ
BAY

0.6188
0.5882

0.5927
0.5840

0.5014
0.5275

0.4948
0.5048

17 184 LSQ
BAY

0.4880
0.4668

0.5493
0.5421

0.6127
0.6095

0.3681
0.3898

18 58 LSQ
BAY

0.8239
0.7734

0.7402
0.7212

0.6147
0.6234

0.4552
0.5174

19 29 LSQ
BAY

0.7442
0.7243

0.6306
0.6223

0.4727
0.4727

0.5139
0.5167

2 0 52 LSQ
BAY

0.4849
0.4398

0.5490
0.5208

0.6012
0.5665

0.5477
0.5595

21 98 LSQ
BAY

0.7325
0.7237

0.6716
0.6805

0.5609
0.5561

0.4792
0.4757

2 2 1 0 2 LSQ
BAY

0.4020
0.3982

0.5153
0.5162

0.5817
0.5693

0.4871
0.4965

AVE ERROR LSQ
BAY

0.6208
0.5603

0.6146
0.5866

0.5781
0.5641

9.7% when the cross-validation was done with the 1969 data. The suggestion here is that the Bayes procedure, 
to some extent, smoothes out year to year sample variations. These variations are an important cause of the 
shrinkage found in the multiple correlation when weights from one year are used in a second year. Thus, it is 
clear that only cross-validations on data from a subsequent year include all the important types of variation 
found in actual practice.

The effect of doing the predictions on the 1969 data separately for males and females from the 
corresponding 1968 data was to substantially reduce the average mean squared error. The relevant figures are 
given in Table 7.

It is clear from Table 7 that a worthwhile reduction in mean squared error can be obtained when Bayesian 
weights are used and prediction is done separately fo r males and females. Some reduction (3.6%) is found, on
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TABLE 7

Comparison o f  Cross- Validated Average Mean Squared Errors 
Using Least Squares and Bayesian Predictions When the 

GPA Predictions Are Done Separately fo r Males and Females

ORIGIN OF GROUP LSQ BAY
WEIGHTS PREDICTED FOR

100% Sample Combining Sexes (1968) 1969 Combined Sexes .5596 .5502
100% Sample Combining Sexes (1968) 1969 Males .5641 .5539
100% Sample Combining Sexes (1968) 1969 Females .5505 .5400

25% Sample Combining Sexes (1968) 1969 Combined Sexes .6208 .5603

Males only from 100% Sample (1968) 1969 Males .5609 .5418
Females only from 100% Sample (1968) 1969 Females .5004 .4632

the average, using classical weights in the divided group, but this average reduction is much less than w ith the 
Bayesian weights (10%). The relative efficacy of the Bayesian method w ill be even greater when predictions 
are done in the subgroups o f even smaller sample sizes. With present sample sizes, it appears that we can get a 
10% reduction in mean squared error w ith predictions in the divided group //w e  use the Bayesian method.

A t present, a minimum sample size o f 100 is required fo r any regression function reported by the Basic 
Research Service, and thus many colleges are unable to have separate weights for males and females. With the 
new Bayesian methodology, it is clear that, fo r the kinds of colleges being studied here, requirements can 
easily be cut in half while providing better predictions than are now being provided. There seems little  reason 
to doubt that this conclusion w ill hold fo r other testing programs.

We argue that a major benefit o f the Bayesian method is that it permits working with smaller samples and 
that this, in turn, permits working in separate subpopulations. Not only does this increase overall efficiency of 
prediction but it provides a fairer prediction system. Consider the Bayesian prediction weights fo r College 17: 
for simplicity, suppose we set x-j = x 2  = x 3  = x 4  , then the prediction functions for males, females, and the 
overall population are as follows:

x =  1 0 2 0 30
males 6 .693 + .063x 1.32 1.95 2.58

females 9 .670 + .088x 1.55 2.43 3.31

overall □ .725 + .071x 1.43 2.15 2 .8 6

In Figure 1, we have plotted the lines fo r males, females, and the combined group.

15



Fig. 1. Graph of Bayesian prediction lines for 
male, female, and overall groups for College 17.

The results presented here are typical. A t all meaningful levels of ACT scores, the predicted GPA is higher 
in the female subpopulation and lower in the male subpopulation. The difference between these two values is 
large for the higher levels o f ACT scores. The prediction line, derived from the total group, falls between that 
for the two subpopulations. Thus, it is clear that predictions based on the prediction function derived from 
the total group w ill, on the average, be too high fo r males and too low for females. One might well say that 
total group predictions discriminate against females, though other interpretations are possible.

Technical Details

The Bayesian model fo r regression in m groups as developed by Lindley (1970) is as follows:

a. W ithin each group we consider the linear regression

C
e i v i j l  = <*j + hj i  (3h ix h ij

for i = 1 , 2 ..... m colleges, j = 1 , 2 , ..., nj persons w ith in each college and h = 1 , 2 , ..., £ variables.

b. We write:

1. yj = (y ^ ,  ..., y -j..... y jnJ the vector o f nj observations of the criterion in College i .

2. j3- = (odj, j3-| j, / ^ j ,  •••, /?hj, /fyj) the vector o f £ + 1 regression weights fo r College i .
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_ 1 m _ i m
3. |3' = (oc. , j3-|. , ) where a. = m 2  and 0^. = m 2  / ^ j  the vector o f average values, over

i=1  j=1

colleges, o f the and the .

4.

? i

Xl i l  Xl i2

^ h i l  *>112

XU 1  XU 2

kl i j

" h i j

XU j

l i n

*h in .

U n .l

the matrix o f predictor scores fo r the rij persons in the /-th college. The constant 1 has been put at the 
head of each column so that the «j can be treated as regression weights j3Qj .

5 1 a l * ! !
« • •

2 1 3 h l  * * *

? 2 a 2 3 1 2 6 2 2 6 h 2 ^ 1 2

•
=

• • •

5 i a i
3 2 i  . . . 3 h i  * * •

-
a

 
1

. 
. 

CO. 1
1

a
m * 1 » ^ 2 m 3 h m  • * *

and
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1.6  = m (Z0 j ^ ^, the harmonic mean of the 4>\ r where 0 j is the residual variance in the /-th college.

8 .7 7  = , the geometric mean of the 0 j .

9. k = a small positive constant to  be specified.

It is then assumed that these colleges and others that might be included in this analysis are exchangeable 
w ith respect to prior in form ation,and, hence, by virtue of the de Finetti-Hewitt-Savage theorem (Lindley, in 
press), the available colleges can be treated as a random sample from some population o f colleges. It is 
assumed that the j3- form a random sample from an (£ + 1 )-dimensional multivariate normal d istribution w ith 
mean vector f i' = (/iQ, n^, fig), and w ith a dispersion matrix whose inverse has elements 7 ^  (h, k = 0 , 1 , ...,
£); and we further assume the 0 : form a random sample such that is on v degrees of freedom.

- 9Further, the /Ltj are taken to be independently uniform, a priori. The parameters v and a are in effect taken to
be independently and approximately, uniform ly and log-uniformly distributed, though an additive constant, k ,
is introduced to bound the posterior density in the region o f the point at which all 0 j are equal. Effectively
this stipulates that we have a priori reasons fo r knowing that all o f the residual variances are not equal—hardly
a controversial assumption.

The parameters 7 ^  are assumed to  have a Wishart distribution with parameters v' and . The matrix 2 
is defined w ith typical element c r^  and the elements o f  ̂ are denoted by . Then £ (7 ^ )  = so that 

can be thought of as a prior estimate of the covariance across colleges of j3^j and . We then assume 
= 0 and take o^h = aj- >  0 . The constant v' is a degrees of freedom parameter and effectively expresses 

the amount of prior information. When it is desirable to assume little  prior information, it is convenient to 
take v' = 1 since the posterior w ill converge for v' >  0  .

Proceeding to  do the usual Bayesian integrations, which in this case required careful use of approximations 
to certain integrands, Lindley obtained the posterior jo in t density o f B and the 0 j . It did not seem possible to 
obtain expected values as point estimates so the modal estimate of the elements o f B and of the 0 1 was sought 
by differentiation. What was sought was the matrix estimate B of B where B has row vectors j3 j, containing 
the estimates for the /-th college and the estimates 0 j o f 0 j , all from the jo in t posterior density.

Lindley's (1970) original solution involved the evaluation o f all cofactors o f large matrices. However, using 
the result that the matrix o f cofactors is equal to the transpose of the product of the inverse o f the original



matrix and the determinant o f the matrix, the 2m Lindley equations can be stated in the following convenient 
forms:

> . 1 ( y ' . x : )
1 i l - l

(Jj . V . C x . x ! )
1 -.1 -.I..!

( v 1 +  m -  1) ( B | -  3 ! ) [ v ’ E +  (B -  B . ) ’ (B -  B, . ) ]  1 = O' (4.1

-  (n . + 2) + +T1( y [ y . )  -  2 < t,~ V (X .y .)  + 'f’T V  (X .x p f3 .

m + 1 
m

1 -

4>± (0 1 + <)

1

l o g [ n ( 0  1 +  k ) ]
= 0 , (4.2)

for i = 2 ..... m .

_1
Each of the first m equations is linear in the j8 j , and each of the second m equations is linear in 0 j . 

Unfortunately all o f the vectors 0- are involved in B and B*, which appear in each of the first m equations and 
all o f the 0j are involved in 17 and 0 , which appear in each of the second set of m equations. Therefore, an 
iterative solution is required. However, before proceeding w ith this, the valid ity o f one of Lindley's 
assumptions is worth discussing.

The assumption that our prior information about the various regression coefficients is independent must be 
considered carefully. Generally, an independent prior assumption is standard in Bayesian work, and this is 
justified by asking oneself, "Suppose I know the value of parameter a , would this cause me to revise my prior 
d istribution for parameter b ?" The answer is usually negative, justifying the use of independent priors for the 
set o f regression coefficients (3 ,̂ ■ For simplicity, now consider a single predictor. In this case, a-{ and
jSj , the ordinate at the origin o f x  and the slope, respectively, o f the same regression line, one cannot so lightly 
return a negative answer. For if  of j and jSj are independent, and a* is the ordinate at some other value x *  of x  , 

we have a ? = * and so the covariance

bo2{$: (4.3)

showing that, unless 0j has zero variance, a * and are correlated and a fo rtio ri not independent. Conversely, 
if ttj and j3j are correlated, we have

a(af, j3;) = a(aj, 0j) + x * a 2(j3j) (4.4)
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showing that the ordinate a j  at the point

0 j)

x  =
o 2 iP\)

(4.5)

is uncorrelated w ith j3 j.
We are thus compelled, in formulating our prior distributions, to decide at what value x *  of x  it is 

reasonable to assume that the ordinate and slope are independently distributed a priori. The Lindley equations 
are derived on the assumption tha t this point has been identified and taken as the origin of x  . This d ifficu lty  
is notan artifact o f Bayesian methodology; it is intrinsic to the problem. For we wish, basically, to formalize 
our belief that the regression equations in the m groups w ill be similar. Thus, we expect the regression lines to 
be reasonably parallel (similar p's) and reasonably close together (similar a 's ). The latter statement is 
meaningless, however, except in the case when all the lines are exactly parallel (the case a^(|3,-) = 0  noted 
above), unless we say where the lines are to be close together; any two nonparallel lines are close 
together—indeed meet—somewhere*.

An obvious solution to this problem is to use (4.5) to scale x  so that a(aj, j3j) = 0 in the sample. In the 
m ultipredictor case, the extension o f this method is to move the origin o f x n to  the point which is the negative 
of the corresponding estimated coefficient in the regression of a on 0-j, ^  , across groups. A rescaling is
then required after the analysis is completed. This was done fo r analyses reported here and we shall not 
discuss this issue further. A more complete discussion is given by Jackson, Novick, and Thayer (1970), where 
empirical work suggests that the precise determination o f the x-value at which a  and p are uncorrelated may 
not be important. The question o f the prior covariance of the |3^j, is a far less sensitive issue. Some 
methods fo r adjusting for any available information are discussed by Jackson, Novick, and Thayer (1970), but 
considering the minimal weight being put on the prior distribution, this is unlikely to be of very great 
importance, unless the number o f groups in the study is very small. It should, moreover, be stressed that the 
discussion in that paper refers to an earlier model in which the covariance of a and p was not a parameter of 
the model. In the current model, it is an explicit parameter and is, therefore, “ estimated”  by the Bayesian 
analysis. A ll we have to specify is that the prior expected value o f the covariance is zero. The rescaling is thus 
a safety precaution, to  ensure that this specification is reasonable: in many situations it may have no effect on 
the final estimates.

An interesting feature o f the Lindley equations is that they apply in a lim iting sense fo r some nj
approaching zero. For such colleges the solution is to  take 0 '.= p ' the vector of average values over colleges_ i _ *  /
and 0•, = the geometric mean of the Bayesian estimates o f the . Since the Lindley equations were derived 
assuming noninformative priors, it  follows that the procedure provides prediction weights despite the lack of 
either prior or sample information. The reason fo r this is that the collateral observations on the remaining 
colleges, in effect, provide an informative prior d istribution fo r the colleges for which no observations are 
available.

A t the other extreme, if  any nj is infinite, the Bayesian prediction weights correspond with the least squares 
weights. In all less extreme situations, each Bayesian weight is roughly a weighted average of the least squares 
weight and the average of the least squares weights across colleges; however, some adjustment does occur to 
balance o ff the several weights, including the intercept. In fact, the Bayesian result is a generalization of a 
formula due to  Kelley (1927) for estimating true score (an expected value for a single experimental unit) as a
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weighted average of the observed score fo r that unit and the population mean of the observed scores. This 
relationship is discussed in detail by Novick, Jackson, and Thayer (in press). Some simple classical analogs of 
the Bayesian solution are given by Jackson (in preparation). It is worth noting here that the special case C = 0 
(no predictors) is precisely the Bayesian model II ANOVA solution to the Behrens-Fisher problem provided 
by Lindley (in press).

Solution o f the Lindley equations is accomplished through an iterative procedure. The initial step in the 
data processing involves computing the usual within-group least squares regressions. The correlation matrix of 
the regression weights (including a ) across colleges is then computed and the predictor variables are rescaled 
as indicated in the previous section. Since it is sometimes desirable to assume minimal prior information, we 
take v' = 1 . When m  is small this may be unsatisfactory. The off-diagonal elements of E are taken to  be zero 
indicating that our prior beliefs about the covariances of the regression coefficients are independent. The 
diagonal elements are generally taken to correspond to prior knowledge or as was done here can be 
“ bootstrapped" from the data using sample estimates. Such values have very little  effect on the final result. It 
is only necessary to  take our prior estimates not too near zero.

The least squares estimates are used as starting points fo r the iterations. In the first set o f Lindley equations
(4.1), these values are substituted fo r 0j, B, and B# (for alt occurrences of j3j and 0j except where 0j
appears explic itly). Then we have m sets o f (£ + 1) linear equations in (C + 1) unknowns, one for each of the m
vectors fr in (4.1). In the second set o f equations (4.2), the least squares estimates fo r 0: are used to compute

_i
77 and 0 . Then we have m equations, each linear in 0 j 1 . Each of the firs t sets is solved and the obtained 
values put immediately back into the set twice to stabilize the solution. The resulting set o f m(% + 1) estimates 
is then put in to the equations fo r the 0 “  ̂ and these are solved and iterated a further two times. This 
constitutes one cycle. The resulting set o f m{% + 2) estimates can then be put back into a second cycling. 
Estimates reported in the Results section o f this report were based on 200 such cycles. A listing and detailed 
description of the program is available from any of the authors.
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