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Abstract 

The purpose of this paper is to illustrate alpha’s robustness and usefulness, using actual 

and simulated educational test data. The sampling properties of alpha are compared with the 

sampling properties of several other reliability coefficients: Guttman’s 2λ , 4λ , and 6λ ; test-

retest reliability; as well as congeneric reliability. The comparisons are based on different sample 

sizes and test models comprising dichotomous item and polytomous item tests. It is concluded 

that alpha is indeed a lower bound to reliability except under the assumption of essential-tau-

equivalence; however, it is robust to violations of this condition, and its values are competitive 

with other coefficients’ values based on splitting a test into parallel halves or repeating a test to 

estimate test-retest reliability.  Because it is not always possible to construct parallel half-tests or 

obtain test-retest data, it is very useful to have reliability coefficients, such as alpha, which are 

free of these constraints. 
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Statistical Considerations in Choosing a Test Reliability Coefficient 

 Introduction 

Several articles have criticized the use of coefficient alpha to estimate test reliability or 

test internal consistency (Bentler, 2009; Green, Lissitz, & Mulaik, 1977; Green & Yang, 2009a; 

Green & Yang, 2009b; Hattie, 1985; Revelle & Zinbarg, 2009; Schmitt, 1996; Sijtsma, 2009a; 

Sijtsma 2009b). In general, these articles criticize alpha on two counts. The first is that alpha is a 

lower bound to reliability, and not a very good one unless stringent assumptions are satisfied. 

The second is that the actual test attribute measured by alpha, often labeled internal consistency, 

unidimensionality, or item homogeneity, is either poorly defined or poorly measured by alpha. 

For an alternative view, see Feldt and Qualls (1996). Although these articles demonstrate alpha’s 

shortcomings, they ignore some of its advantages, such as conceptual simplicity, computational 

simplicity, and a known sampling distribution that is robust to violations of its assumption of a 

compound symmetric (CS) multivariate normal distribution (MVN) for the item scores. In 

addition, although alpha can be a poor estimate of test reliability for short tests with very 

heterogeneous item variances and inter-item covariances, it is fairly robust to violations of 

essential-tau-equivalence, and is a useful estimate of test reliability for many tests. This article 

uses actual and simulated educational test data to illustrate alpha’s robustness and usefulness. 

Although there are limitations to alpha as a measure of test reliability for some test data, 

it is argued here that test reliability is a well defined concept and, for a variety of test data, is well 

estimated by coefficient alpha. Simulations using dichotomous and polytomous educational data 

as well as covariance matrices derived from MVN distributed item scores are used to support 

these conclusions. Also, the sampling properties of alpha are compared with the sampling 

properties of several other reliability coefficients derived by Guttman (1945) and further 
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discussed by Revelle and Zinbarg (2009). These other coefficients are Guttman’s 2λ , 4λ , and 

6λ . Note that alpha is equal to Guttman’s 3λ , and Guttman’s 4λ  equals alpha for a test divided 

into odd and even split halves. In addition the correlation between two parallel tests, denoted 12ρ  

is investigated. Also investigated is reliability based on a one-factor factor analysis model, also 

called congeneric test score model (Jöreskog, 1971; Raykov, 1997), with its coefficient denoted 

ρc . All of the Guttman coefficients can be computed by SPSS (2006) and alpha can be 

computed by SAS (2008). Reliability coefficients that explicitly depend on determining the 

multifactor structure of a test are not considered. Determining the factor structure of a test is not 

always unequivocal especially for tests composed of dichotomous items or polytomous items 

with few score points, although specialized software such as TESTFACT (du Toit, 2003) does 

exist for tests composed entirely of dichotomous items.  

Test reliability is commonly defined in two different ways. For the usual test score model 

= +X T E , the first definition which is used by Gulliksen(1950), Guttman (1945), and Sijtsma 

(2009a) is the test-retest model. In this model, reliability is defined as the correlation between X  

and a parallel measure of X , denoted ′ ′= +X T E . This definition has the advantage of being 

defined in terms of observable quantities, namely X  and ′X . However, part of the definition of 

parallel measures is that both measures have the same reliability which leads to a circular 

definition. An alternate way to define reliability that is used by Lord and Novick (1968) is the 

squared correlation between X and T. This eliminates the circularity of the previous definition, 

and it depends on only a single test, but it involves the unobservable variable T. The latter 

definition is preferred in this paper as it offers a stronger rationale for methods of determining 

reliability based on a single test administration. However, coefficients derived form both 

definitions will be considered. Both definitions utilize the concept of a linear correlation in terms 
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of how well a test can predict itself, either its true self or a parallel version of itself, and so may 

be thought of as coefficients of internal linear predictiveness.  

 Data Source and Test Construction 

A random sample of 100,000 examinees who took the same form of the ACT® test 

battery (ACT, 2007) was selected and treated as the population from which random samples of n 

= 50, 100, 200, 400, 1000, and 2000 were drawn 1500 times. The random sampling was done 

with replacement. The ACT test battery is composed of five subject tests: English (75 

dichotomous items), Mathematics (60 dichotomous items), Reading (40 dichotomous items), 

Science (40 dichotomous items), and an optional Writing Essay polytomously scored on a scale 

of 2 to 12. Several dichotomous item content heterogeneous tests were constructed by selecting 

irregularly spaced samples of items from the first four subject tests, and combining them into a 

single test. Two content parallel 40-item tests each composed of different dichotomously scored 

items were constructed by choosing in the irregularly spaced item fashion 14 English items, 10 

mathematics items, eight reading items, and eight science items per test. A single 22-item subtest 

composed of dichotomously scored items was constructed from one of the 40-item tests by 

choosing in the irregularly spaced item fashion eight English items, six mathematics items, four 

reading items, and four science items. The tests were constructed such that they could be divided 

into approximately parallel odd-even split halves.  Finally, a single eight dichotomous item test 

was likewise created except that it was too short to be divided into parallel halves. The 

irregularly spaced sample of items was selected so that the sampled items represented not only a 

wide range of content but also a wide range of item difficulties. The 40 dichotomous item 

difficulties for the first 40 item test have a mean of .73, a standard deviation of .10, and they 

range from .42 to .89. Heterogeneity of item difficulties results in heterogeneous item variances 



 

 
 

4

and heterogeneous inter-item covariances. Therefore the test items are neither tau-equivalent nor 

essentially-tau-equivalent.  

Next, two content parallel 8-item tests each composed of polytomous items were 

constructed from the two 40-item tests by summing sets of dichotomous items. The 14 English 

dichotomous items were divided into two groups of seven items and then summed to create two 

polytomous English items each taking values from 0 to 7. Likewise, two polytomous 

mathematics items taking values from 0 to 5, two polytomous reading items taking values from 0 

to 4, and two polytomous science items taking values of 0 to 4 were constructed by summing 

five dichotomous mathematics items, four dichotomous reading items, and four dichotomous 

science items, respectively. Differences in the number of dichotomous items making up the 

polytomous items in each content category resulted in the polytomous items having moderately 

heterogeneous item variances and inter-item covariances. So again the tests were neither tau-

equivalent nor essentially-tau-equivalent. 

Finally, the covariance matrix for one of the 8-item polytomous tests was used to 

generate the covariance matrices for two 8-item tests, where one formed a test with MVN 

distributed item scores and the other formed a test with CSMVN distributed item scores using 

the method of Odell and Feiveson (1966) as presented by Browne (1968). The compound 

symmetric covariance matrix was created by taking the average variance and average covariance 

from the original covariance matrix for the eight polytomous items. Therefore this test satisfied 

all of the assumptions necessary for alpha to equal reliability and for its sample estimate to have 

the F distribution discussed in the next section (van Zyl, Nuedecker, & Nel, 2000). 
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Distributions, Transformations, and Models 

Let 3
ˆ

α λ=r  denote the sample alpha coefficient for a test of m items administered to n 

examinees and 3αρ λ=  denote the parameter value. Kristof (1963) and Feldt (1965) showed that 

the ratio ( ) ( )1 / 1α αρ− −r  has a F ((n − 1)(m −1), n − 1) distribution when the data meet the 

assumptions of a random effects (Type II) two-way items by examinees ANOVA. Van Zyl et al. 

(2000) extended the distribution theory for coefficient alpha as did Kistner and Muller (2004). 

Note that this F distribution also holds for Guttman’s 4λ̂ with m = 2. Sedere and Feldt (1977) 

found that under certain conditions the above F distribution held for an analogous ratio based on 

Guttman’s 2λ̂ . For investigative purposes this F distribution also is hypothesized for Guttman’s 

6λ̂  and ˆ
cρ . Although the F distribution should be more accurate than its normalizing 

transformation especially for smaller sample sizes than those considered in this paper, the normal 

transformation is used here for ease of interpretation and comparison among the different models 

and coefficients.  

Bonett (2002) employed an approximate normalizing transformation to develop formulas 

for the sample size needed to obtain a certain level of power when making statistical inferences 

about coefficient alpha. See also Romano, Kromrey, and Hibbard (2010) for a comparison of 

different methods for computing confidence intervals for alpha. Two normalizing 

transformations are used in this paper. The first, proposed by Fisher (Johnson, Kotz, & 

Balakrishnan, 1995), is for the F distribution. For a random variable, X, with a F ( )ν ν1 2,  

distribution the transformation ( )ln / 2X  is approximately normally distributed with mean 

( )1 1
2 1 / 2ν ν− −= −  and variance ( )1 1

2 1 / 2ν ν− −= + . This transformation is applied to the above F 



 

 
 

6

distributed random variable ( ) ( )1 / 1α αρ− −r , as well as analogous ratios for the other variables 

hypothesized to have F distributions. After the transformation is applied the resulting variables 

are standardized so that they should have N (0, 1) distributions given that the original variables 

have the hypothesized F distributions. 

To exemplify the use of the first normalizing transformation for statistical inference, the 

lower and upper bounds for a confidence interval for coefficient alpha are given. Let (1 /2)πζ −  

denote the 100(1 / 2)π−  percentile of the standardized normal distribution with a mean of zero 

and a standard deviation of one. Then the lower and upper bounds of a 100 (1 )π−  percent 

confidence interval for αρ  are given, respectively, by 

( )

11

2

(1 /2)

2 2
1 (1 )exp

( 1)( 1) ( 1)( 1)

m m
Lower r

n m n m
α α πρ ξ

−

−

⎡ ⎤
⎛ ⎞−⎢ ⎥= − − − ⎜ ⎟⎢ ⎥− − − −⎝ ⎠⎢ ⎥⎣ ⎦

                     (1) 

 
and 
 

( )

11

2

(1 /2)

2 2
1 (1 )exp

( 1)( 1) ( 1)( 1)

m m
Upper r

n m n m
α α πρ ξ

−

−

⎡ ⎤
⎛ ⎞−⎢ ⎥= − − + ⎜ ⎟⎢ ⎥− − − −⎝ ⎠⎢ ⎥⎣ ⎦

.                    (2) 

The second normalizing transformation is Fisher’s inverse hyperbolic tangent 

transformation for the correlation coefficient (Johnson et al., 1995) that here is applied to the 

sample test-retest correlation coefficient and is given by ( )1
12tanh r− =  ( ) ( )12 12ln 1 / 1 / 2r r+ −⎡ ⎤⎣ ⎦ . 

This transformation has approximate mean equal to ( ) ( )12 12ln 1 / 1 / 2ρ ρ+ −⎡ ⎤⎣ ⎦  and approximate 

variance equal to ( )1/ 3−n  and hence is variance stabilizing. Again, the resulting transformed 

variable is standardized to have an N (0, 1) distribution. This transformation is applied to the test-
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retest reliability coefficient and it assumes that the two sets of test scores are normally 

distributed.  

A formula for a 100(1 )π−  percent confidence interval for 12ρ in terms of the hyperbolic 

tangent and inverse hyperbolic tangent is  

( ) ( )
(1 /2) (1 /2)1 1

12 12 121/2 1/2
tanh tanh ( ) tanh tanh ( )

3 3
r r

n n

π πξ ξ
ρ− −− −

⎡ ⎤ ⎡ ⎤
− ≤ ≤ +⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 .                              (3) 

 
Simplified lower and upper bounds for a 100(1 )π−  percent confidence interval for 12ρ  derived 

from the above are, respectively, 

 

( )
( ) ( )

1

(1 /2) (1 /2)12 12
12 1/2 1/2

12 12

2 21 1
exp exp

1 13 3

r r
Lower

r rn n

π πξ ξ
ρ

−

− −
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞+ +⎢ ⎥ ⎢ ⎥= − +⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟− −− −⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
                             (4) 

 
and 
 

( )
( ) ( )

1

(1 /2) (1 /2)12 12
12 1/2 1/2

12 12

2 21 1
exp exp

1 13 3

r r
Upper

r rn n

π πξ ξ
ρ

−

− −
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥ ⎢ ⎥= − +⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟+ +− −⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
.                              (5) 

Six test models are investigated and their abbreviations along with brief descriptions are 

as follows: 

(a) CSMVN8 denotes the eight item test consisting of eight MVN distributed items with 

compound symmetric covariance matrix. 

(b) MVN8 denotes the eight item tests with eight MVN distributed items with 

heterogeneous covariance matrix. 

(c) POLY8 denotes the eight item tests with polytomous items constructed from 

summing varying numbers of dichotomous items. 

(d) DICH8 denotes the eight dichotomous items test. 
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(e) DICH22 denotes the 22 dichotomous items test. 

(f) DICH40 denotes the 40 dichotomous items test. 

Except for the first model, which serves as a baseline for comparison to the other models, 

all the models display some violation of alpha’s distributional assumptions along with the 

assumption of essential-tau-equivalence. As mentioned previously, the dichotomous items used in 

models (d), (e), and (f) have varying difficulty values and hence varying variances and 

covariances because of the way in which the spaced sample of items was selected. The population 

covariance matrix for model (c) that is also used for generating the data for Models (a) and (b) is: 

 Σ =

2.18 1.28 0.67 0.93 0.55 0.52 0.59 0.61

1.28 2.33 0.69 0.98 0.63 0.58 0.65 0.65

0.67 0.69 1.35 0.84 0.36 0.33 0.47 0.49

0.93 0.98 0.84 1.90 0.52 0.48 0.68 0.70

0.55 0.63 0.36 0.52 1.10 0.46

0.52 0.58 0.33 0.48

0.59 0.65 0.47 0.68

0.61 0.65 0.49 0.70

0.40 0.41

0.46 1.05 0.39 0.38

0.40 0.39 1.11 0.53

0.41 0.38 0.53 1.23

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

As can be seen the variances and covariances are moderately heterogeneous with a 

largest to smallest variance ratio of about two and a similar covariance ratio of almost four. 

Clearly the items are not essentially tau equivalent. Of course, to compute the test-retest 

reliability for the various test models, covariance matrices with dimension twice as large as the 

number of items is needed, but they are not shown for space considerations. 

Results 

In the text, tables (Appendix A), and figures (Appendix B) that follow Guttmans’ lambda 

coefficients will be denoted L2, L3, L4, and L6. Their standardized normally transformed 

counterparts sometimes will be denoted Z2, Z3, Z4, and Z6. Test-retest reliability sometimes will 
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be denoted R12 and its standardized normal transform Z12. Congeneric reliability and its 

standardized normal transform may be denoted R Congeneric and Z Congeneric, respectively.  

Table A1 displays population values of the reliability coefficients along with means 

computed over the 1500 simulations for the various sample sizes and models. Results are 

reported to only two decimals for ease of comparison. Finer assessments are made in later tables 

and figures. Not all reliability coefficients are computed for all models for reasons of 

appropriateness or redundancy. The population values of all the coefficients for all the models 

are relatively homogeneous although alpha and L6 tend to be a bit smaller than L4 and R12 

which generally have the largest population values for all the models though not by much.  

Bias for the sample means is large for L6 in the test models with dichotomous items. In 

those models it is clearly positively biased for the smaller sample sizes. It also is slightly 

positively biased for the other models at the smallest sample size. L2 also shows a small amount 

of bias for the two shorter dichotomous item test models. All the other coefficients appear 

relatively unbiased for all models and all sample sizes even though their sampling distributions 

are, in general, negatively skewed. 

Table A2 presents the sampling standard errors for the six test models and six sample 

sizes. L4 tends to have the largest standard error at the smaller sample sizes which is not 

surprising because its distribution has the smallest degrees of freedom. Otherwise, the different 

coefficients tend to have similar standard errors that, as expected, decrease as sample size 

increases and the number of items increases. 

Tables A3 through A8 present statistics that give a concise summary of how well the 

normalized reliability statistics fit an N (0, 1) distribution for the various test models and sample 

sizes. The tables contain the means with 95% confidence interval bounds, the standard deviations 
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with 95% confidence interval bounds, and the Shapiro-Wilk (1965) statistics (W) for testing 

normality along with its p-value. Values of W range from 0 to 1 with smaller values indicating 

that normality should be rejected. The statistics in these six tables are based on simulated 

samples of 1500 observations and therefore are quite sensitive to small differences. A statistical 

significance level of .05 is loosely used for statistical significance and numbers in bold denote 

rejection of the null hypothesis at this level, but statistical significance does not necessarily 

imply practical significance. QQ plots for a subset of conditions are presented in Figures B1 

through B6. Each plot contains the theoretical normal quantile line along with the observed 

quantile points for quantiles between −4.0 and 4.0. The plots can be compared to their 

corresponding statistics to give an alternative, more practical assessment of the normalized 

sampling distributions fit to an N (0, 1) distribution. The sample sizes chosen for the figures are 

the ones where a good fit to an N (0, 1) distribution begins to occur for at least some of the 

models. The fit generally improves for larger sample sizes as can be seen from the corresponding 

tables. 

Figure B1 presents sample size 100 results for Z2 under all six test models.  The plots for 

the three non-dichotomous item test models show good fits to N (0, 1) distributions though Z2 is 

slightly under-estimated due to L2 being slightly over-estimated. For the three test models with 

dichotomous items, the fit to an N (0, 1) distribution is not as good with greater under-estimation 

of Z2 due to the larger positive bias of L2, and the standard deviation of Z2 is over-estimated for 

the DICH8 model as can been seen in Table A3. The results in Table A3 for larger sample sizes 

show that the fit improves, but there remains some under-estimation especially for the 

dichotomous item models. 



 

 
 

11

Figure B2 shows the Z3 results for sample size 50. Except for some discrepancies in the 

tails the fit is generally good except for the DICH8 model where the lack of parallelism between 

the empirical and theoretical quantile lines indicates the standard deviation of Z3 is too large. 

Table A4 shows that the fit generally improves as the sample size increases. The Z4 plots for a 

sample size of 50 are presented in Figure B3 where the empirical quantiles show very close 

agreement with the N (0, 1) quantiles except for a small amount of disparity in the tails. The fit 

remains excellent for larger sample sizes as shown in Table A5. 

The fit for Z6 is shown in Figure B4 for a sample size of 2000. From Table A1 and Table 

A6, it is obvious that 6λ̂  is over estimating 6λ  even at this large sample size. However, the 

transformed and standardized distribution of 6λ̂  does appear to be normally distributed for 

sample size 2000 and smaller sample sizes as can be seen from Table A6. Results for the test-

retest coefficient are given in Table A7 and for sample size 50 in Figure B5. The plots for 

models MVN8 and DICH40 indicate good fit except at the lower tails, but the fit for POLY8 is 

not as good. The fit improves as the sample size increases as can be seen in Table A7. The 

transformed congeneric reliability coefficient does not quite fit the normal distribution for 

sample size 100 as shown in Figure B6, but the fit improves as sample size increases as shown in 

Table A8.   

Discussion and Conclusions 

The results indicate that although alpha is a lower bound to reliability except under 

essential-tau-equivalence, it is robust to violations of this condition, and its values are 

competitive with other coefficients’ values based on splitting a test into parallel halves or 

repeating a test to estimate test-retest reliability. It is not always possible to split tests into 

parallel-half tests, and obtaining test-retest data is often difficult in practice; therefore, having 
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reliability coefficients that are free of these constraints is useful. The distribution of alpha also is 

robust to violations of its assumptions at least for the sample sizes and test models considered in 

this paper, so confidence intervals based on the normal distribution theory can be computed. For 

small sample sizes or tests with few items, especially dichotomous items, statistical inference can 

be based on the F distribution theory that has been extensively developed by Feldt (Feldt, 

Woodruff, & Salih, 1987) for just such situations. It should be more accurate than the 

normalizing transformation used here. However, results, not reported here, obtained with a test 

constructed from one polytomous item with many categories and many dichotomous items, show 

that if item variances and inter-item covariances differ dramatically in scale with largest to 

smallest ratios greater than 10, then alpha can perform poorly. In this situation where many items 

with small variances and covariances are combined with one item with very large variance, alpha 

does underestimate reliability. An alternative in this situation may be an estimate of reliability 

based on a congeneric model even though larger sample sizes are needed for normal theory 

based inference.  

This paper used factor analysis to compute congeneric reliability for its polytomous item 

data models, and factor analysis of dichotomous data can be problematic in some situations. 

However, Gilmer and Feldt (1983) and Feldt (2002) present an alternative, computationally 

simpler method for computing congeneric reliability that avoids having to do factor analysis. In 

addition, Feldt (2002) presents an interesting formula comparing coefficient alpha to congeneric 

reliability. This can be expressed by the inequality 

2 2

1 1
2 2 2 2

1 1
1 1

i i

m m

x x
i i

c

X X

m m

m m m
α

γ

σ σ
ρ ρ

σ σ σ
= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= − > − =

− − −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑
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that holds whenever 2
γσ , the variance of the factor loadings, is greater than zero. This inequality 

is not based on the usual factor analysis constraint that the true score variance is one, but rather 

on the constraint that the factor loadings sum to one which is the case in Feldt’s method for 

computing congeneric reliability. From this the ratio of alpha to congeneric reliability is 

approximately equal to 21 m γσ−  when m is large. However, when m is large and the γ’s are all 

positive 2
γσ  will tend to be small because the γ’s sum to one, and hence the ratio will approach 

unity. 

Another alternative to alpha is L2, which is especially suited to situations where there are 

negative inter-item covariances. For larger sample sizes (n > 100) and polytomous items, L2 is 

approximately normally distributed, but for tests composed of many dichotomous items, it is less 

accurate until the sample size becomes very large (n > 2000). If confidence intervals are desired 

when items are dichotomous, then Feldt’s F distribution theory may be more accurate. 

If a test can be divided into parallel-half tests then L4 is highly recommended. Its 

transformed sampling distribution is very robust to violations of its assumptions. If it is possible 

to administer two parallel tests to the same sample of examinees, preferably in a counter-

balanced design, then test-retest reliability can be assessed. The transformed test-retest reliability 

coefficient also has a sampling distribution robust to violations of its assumptions, but its values 

were not appreciably larger than the values of the other coefficients included in this study. 

Therefore, the added expense of developing an additional form of the test and the additional 

examinee testing time required may not be worthwhile.  

Finally, L6 is not generally recommended unless the sample size is very large and the 

items are not dichotomous. Although its transformed value does approach normality, its sample 

estimate tends to be positively biased, especially for tests composed of many dichotomous items. 
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Table A1. 
 
Population Means and Sampling Means for the Six Test Models and Six Sample Sizes 

 

  Population Results from 1500 random samples 

Test Model Coefficient N = 100,000 n = 50 n = 100 n = 200 n = 400 n = 1000 n = 2000

CSMVN8 

Lambda 2 .84 .83 .84 .84 .84 .84 .84 

Lambda 3 .84 .83 .83 .84 .84 .84 .84 

Lambda 6 .82 .84 .83 .82 .82 .82 .82 

MVN8 

Lambda 2 .84 .84 .84 .84 .84 .84 .84 

Lambda 3 .84 .83 .83 .84 .84 .84 .84 

Lambda 4 .87 .87 .87 .87 .87 .87 .87 

Lambda 6 .83 .85 .84 .84 .83 .83 .83 

Test-retest .86 .86 .86 .86 .86 .86 .86 

Congeneric .84 .84 .84 .84 .84 .84 .84 

POLY8 

Lambda 2 .84 .84 .84 .84 .84 .84 .84 

Lambda 3 .84 .83 .83 .84 .84 .84 .84 

Lambda 4 .87 .86 .87 .87 .87 .87 .87 

Lambda 6 .83 .85 .84 .84 .83 .83 .83 

Test-retest .86 .86 .86 .86 .86 .86 .86 

Congeneric .84 .84 .84 .84 .84 .84 .84 

DICH8 

Lambda 2 .54 .56 .55 .54 .54 .54 .54 

Lambda 3 .54 .51 .52 .53 .53 .53 .54 

Lambda 6 .51 .57 .53 .52 .51 .51 .51 

DICH22 

Lambda 2 .77 .78 .78 .77 .77 .77 .77 

Lambda 3 .77 .76 .76 .77 .77 .77 .77 

Lambda 4 .79 .78 .78 .79 .79 .79 .79 

Lambda 6 .77 .87 .82 .79 .78 .77 .77 

DICH40 

Lambda 2 .86 .86 .86 .86 .86 .86 .86 

Lambda 3 .86 .85 .85 .86 .86 .86 .86 

Lambda 4 .87 .86 .87 .87 .87 .87 .87 

Lambda 6 .86 .97 .92 .89 .88 .87 .86 

Test-retest .86 .86 .86 .86 .86 .86 .86 
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Table A2. 
 
Sampling Standard Errors for the Six Test Models and Six Sample Sizes 
 

  Results from 1500 random samples 

Test Model Coefficient n = 50 n = 100 n = 200 n = 400 n = 1000 n = 2000 

CSMVN8 

Lambda 2 .036 .025 .017 .012 .008 .006 

Lambda 3 .038 .026 .017 .012 .008 .006 

Lambda 6 .036 .026 .018 .013 .008 .006 

MVN8 

Lambda 2 .036 .023 .016 .012 .007 .005 

Lambda 3 .038 .024 .017 .012 .007 .006 

Lambda 4 .039 .026 .019 .013 .008 .006 

Lambda 6 .035 .024 .017 .012 .008 .006 

Test-retest .037 .026 .018 .013 .008 .006 

Congeneric .039 .026 .017 .012 .008 .005 

POLY8 

Lambda 2 .037 .024 .018 .012 .008 .006 

Lambda 3 .039 .025 .018 .012 .008 .006 

Lambda 4 .042 .027 .019 .013 .009 .006 

Lambda 6 .035 .025 .018 .013 .008 .006 

Test-retest .036 .027 .018 .013 .008 .005 

Congeneric .039 .027 .018 .013 .008 .006 

DICH8 

Lambda 2 .111 .079 .056 .042 .026 .018 

Lambda 3 .132 .087 .059 .043 .026 .018 

Lambda 6 .113 .081 .057 .043 .026 .018 

DICH22 

Lambda 2 .047 .033 .024 .016 .011 .007 

Lambda 3 .054 .036 .025 .017 .011 .008 

Lambda 4 .067 .045 .032 .022 .013 .010 

Lambda 6 .031 .028 .022 .016 .011 .007 

DICH40 

Lambda 2 .028 .020 .015 .011 .006 .005 

Lambda 3 .032 .022 .016 .011 .006 .005 

Lambda 4 .041 .028 .019 .013 .009 .006 

Lambda 6 .007 .013 .012 .010 .006 .005 

Test-retest .038 .026 .018 .013 .008 .006 
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Table A3. 
 
Fit Statistics for Z2: Means, SD’s, CI’s and Normality Test Statistics 
 

Sample Size Model   Meana 95 % CI      SDb 95 % CI       Wc  p−value

n = 50 

CSMVN8 −.112 −.162 , −.061 .996 .962 , 1.033 .9986 .2479

MVN8 −.134 −.185 , −.083 1.002 .967 , 1.039 .9968 .0038

POLY8 −.124 −.176 , −.072 1.033 .998 , 1.072 .9978 .0400

DICH8 −.384 −.440 , −.328 1.102 1.064 , 1.143 .9959 .0005

DICH22 −.308 −.358 , −.258 .984 .950 , 1.021 .9981 .0872

DICH40 −.377 −.427 , −.327 .989 .955 , 1.026 .9993 .8868

n = 100 

CSMVN8 −.115 −.166 , −.064 1.001 .966 , 1.038 .9977 .0318

MVN8 −.064 −.113 , −.015 .968 .935 , 1.004 .9991 .7348

POLY8 −.120 −.171 , −.069 1.003 .968 , 1.040 .9986 .2497

DICH8 −.250 −.306 , −.193 1.116 1.077 , 1.157 .9979 .0463

DICH22 −.255 −.305 , −.205 .990 .956 , 1.027 .9971 .0077

DICH40 −.277 −.327 , −.226 .995 .961 , 1.032 .9940 .0000

n = 200 

CSMVN8 −.079 −.128 , −.031 .959 .926 , .995 .9983 .1285

MVN8 −.071 −.120 , −.023 .966 .933 , 1.002 .9984 .1594

POLY8 −.099 −.152 , −.047 1.038 1.002 , 1.077 .9981 .0788

DICH8 −.205 −.263 , −.148 1.143 1.103 , 1.185 .9985 .2121

DICH22 −.166 −.217 , −.114 1.014 .979 , 1.052 .9988 .4175

DICH40 −.177 −.229 , −.125 1.032 .996 , 1.070 .9988 .3819

n = 400 

CSMVN8 −.107 −.157 , −.057 .990 .955 , 1.026 .9984 .1775

MVN8 −.066 −.115 , −.016 .982 .948 , 1.018 .9985 .1960

POLY8 −.086 −.138 , −.034 1.024 .989 , 1.063 .9977 .0278

DICH8 −.133 −.193 , −.073 1.193 1.151 , 1.237 .9974 .0154

DICH22 −.184 −.235 , −.134 .991 .957 , 1.028 .9984 .1678

DICH40 −.170 −.224 , −.117 1.049 1.013 , 1.088 .9979 .0523

n = 1000 

CSMVN8 −.065 −.116 , −.015 .998 .963 , 1.035 .9991 .6524

MVN8 −.066 −.116 , −.017 .974 .940 , 1.010 .9991 .6609

POLY8 −.080 −.132 , −.027 1.034 .998 , 1.072 .9993 .8938

DICH8 −.037 −.096 , .021 1.151 1.111 , 1.194 .9990 .6034

DICH22 −.124 −.177 , −.072 1.035 .999 , 1.073 .9991 .6909

DICH40 −.077 −.127 , −.027 .991 .957 , 1.028 .9987 .3220

n = 2000 

CSMVN8 −.042 −.094 , .009 1.013 .978 , 1.051 .9991 .7324

MVN8 −.008 −.059 , .044 1.024 .988 , 1.062 .9971 .0074

POLY8 −.043 −.096 , .010 1.047 1.011 , 1.086 .9986 .2862

DICH8 −.054 −.111 , .003 1.126 1.087 , 1.168 .9982 .0946

DICH22 −.085 −.136 , −.035 1.004 .969 , 1.041 .9989 .4870

DICH40 −.060 −.111 , −.008 1.014 .979 , 1.052 .9990 .5962
a Values in bold are significantly different from 0 at the .05 level. 
b Values in bold are significantly different from 1 at the .05 level. 
c The Shapiro-Wilk statistic as computed by SAS for sample size ≤ 2000 
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Table A4. 
 
Fit statistics for Z3: Means, SD’s, CI’s and normality test statistics 
 

Sample Size Model   Meana 95 % CI      SDb 95 % CI       Wc  p−value

n = 50 

CSMVN8 .033 −.018, .085 1.014 .979 , 1.052 .9985 .2004

MVN8 .003 −.047, .053 .995 .961 , 1.032 .9954 .0002

POLY8 .029 −.023, .081 1.025 .990 , 1.063 .9972 .0091

DICH8 −.018 −.078, .042 1.181 1.140 , 1.224 .9944 .0000

DICH22 .063 .011, .116 1.035 .999 , 1.074 .9978 .0419

DICH40 .007 −.046, .059 1.033 .998 , 1.072 .9993 .8826

n = 100 

CSMVN8 −.015 −.066, .036 1.010 .975 , 1.048 .9975 .0207

MVN8 .028 −.020, .076 .948 .916 , .983 .9992 .8058

POLY8 −.016 −.066, .034 .979 .946 , 1.016 .9984 .1523

DICH8 .027 −.032, .087 1.174 1.133 , 1.217 .9972 .0087

DICH22 .023 −.028, .075 1.025 .990 , 1.064 .9969 .0042

DICH40 .013 −.039, .064 1.025 .990 , 1.063 .9938 .0000

n = 200 

CSMVN8 −.009 −.058, .039 .963 .930 , .999 .9983 .1224

MVN8 −.012 −.060, .036 .949 .917 , .985 .9984 .1812

POLY8 −.026 −.078, .025 1.015 .980 , 1.053 .9981 .0927

DICH8 −.002 −.062, .057 1.178 1.137 , 1.222 .9987 .3407

DICH22 .037 −.016, .089 1.037 1.002 , 1.076 .9988 .3846

DICH40 .036 −.017, .089 1.051 1.015 , 1.090 .9987 .3635

n = 400 

CSMVN8 −.058 −.109, −.008 .992 .958 , 1.029 .9984 .1911

MVN8 −.016 −.065, .033 .968 .934 , 1.004 .9982 .1011

POLY8 −.031 −.082, .020 1.002 .967 , 1.039 .9976 .0232

DICH8 .016 −.045, .078 1.215 1.173 , 1.260 .9972 .0090

DICH22 −.039 −.090, .012 1.005 .971 , 1.043 .9983 .1488

DICH40 −.017 −.071, .037 1.062 1.025 , 1.101 .9980 .0587

n = 1000 

CSMVN8 −.034 −.084, .017 .998 .964 , 1.035 .9990 .6284

MVN8 −.038 −.086, .010 .953 .920 , .988 .9992 .7509

POLY8 −.046 −.097, .005 1.007 .973 , 1.045 .9993 .8795

DICH8 .056 −.003, .115 1.165 1.124 , 1.208 .9989 .5011

DICH22 −.030 −.083, .023 1.044 1.008 , 1.083 .9990 .6123

DICH40 .022 −.029, .072 .998 .963 , 1.035 .9987 .3145

n = 2000 

CSMVN8 −.020 −.072, .031 1.013 .978 , 1.051 .9991 .7272

MVN8 .008 −.042, .059 1.002 .968 , 1.040 .9969 .0041

POLY8 −.023 −.074, .028 1.014 .979 , 1.052 .9985 .1959

DICH8 .013 −.044, .071 1.135 1.096 , 1.177 .9982 .1056

DICH22 −.020 −.071, .032 1.012 .977 , 1.049 .9989 .4901

DICH40 .011 −.040, .063 1.018 .983 , 1.056 .9990 .5798
a Values in bold are significantly different from 0 at the .05 level. 
b Values in bold are significantly different from 1 at the .05 level. 
c The Shapiro-Wilk statistic as computed by SAS for sample size ≤ 2000 
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Table A5. 
 
Fit Statistics for Z4: Means, SD’s, CI’s and Normality Test Statistics 

 

Sample Size Model   Meana 95 % CI      SDb 95 % CI       Wc  p−value

n = 50 

MVN8 −.021 −.072, .030 1.002 .967 , 1.039 .9989 .5167

POLY8 −.011 −.064, .041 1.039 1.003 , 1.077 .9983 .1209

DICH22 .049 −.002, .101 1.019 .984 , 1.057 .9991 .6437

DICH40 −.011 −.063, .041 1.032 .996 , 1.070 .9980 .0691

n = 100 

MVN8 .015 −.034, .065 .974 .941 , 1.011 .9990 .5705

POLY8 −.003 −.054, .048 1.010 .975 , 1.048 .9987 .3651

DICH22 .005 −.046, .057 1.016 .980 , 1.053 .9986 .2877

DICH40 .047 −.005, .098 1.014 .979 , 1.052 .9983 .1359

n = 200 

MVN8 .002 −.049, .052 .996 .962 , 1.033 .9989 .4881

POLY8 −.023 −.076, .029 1.033 .997 , 1.071 .9989 .4789

DICH22 .012 −.041, .066 1.052 1.015 , 1.091 .9974 .0163

DICH40 .014 −.038, .066 1.031 .996 , 1.070 .9985 .1972

n = 400 

MVN8 .012 −.038, .062 .989 .955 , 1.026 .9993 .8723

POLY8 −.034 −.085, .017 1.007 .972 , 1.044 .9989 .4829

DICH22 −.040 −.091, .011 1.015 .980 , 1.053 .9987 .3325

DICH40 −.013 −.065, .039 1.024 .988 , 1.062 .9987 .3416

n = 1000 

MVN8 −.031 −.081, .018 .977 .944 , 1.014 .9983 .1436

POLY8 .008 −.044, .061 1.036 1.000 , 1.074 .9983 .1352

DICH22 −.057 −.108, −.006 1.009 .974 , 1.046 .9991 .6788

DICH40 .023 −.029, .075 1.024 .988 , 1.062 .9987 .3373

n = 2000 

MVN8 .034 −.017, .085 1.009 .974 , 1.046 .9989 .5205

POLY8 −.029 −.082, .024 1.041 1.005 , 1.080 .9991 .7329

DICH22 −.016 −.070, .037 1.055 1.019 , 1.094 .9991 .6445

DICH40 .056 .005, .107 1.007 .972 , 1.044 .9996 .9890
a Values in bold are significantly different from 0 at the .05 level. 
b Values in bold are significantly different from 1 at the .05 level. 
c The Shapiro-Wilk statistic as computed by SAS for sample size ≤ 2000 
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Table A6. 
 
Fit statistics for Z6: Means, SD’s, CI’s and Normality Test Statistics 
 

Sample Size Model   Meana 95 % CI      SDb 95 % CI       Wc  p−value

n = 50 

CSMVN8 −.685 −.737, −.634 1.009 .975 , 1.047 .9988 .3775

MVN8 −.715 −.767, −.664 1.024 .989 , 1.062 .9972 .0085

POLY8 −.774 −.827, −.720 1.064 1.027 , 1.103 .9980 .0605

DICH8 −.852 −.911, −.793 1.164 1.124 , 1.207 .9960 .0006

DICH22 −2.939 −2.995, −2.882 1.116 1.077 , 1.158 .9979 .0578

DICH40 −8.652 −8.722, −8.582 1.380 1.332 , 1.432 .9968 .0037

n = 100 

CSMVN8 −.494 −.544, −.443 .992 .958 , 1.029 .9983 .1320

MVN8 −.459 −.509, −.409 .981 .947 , 1.018 .9991 .7032

POLY8 −.550 −.602, −.499 1.012 .977 , 1.050 .9988 .4159

DICH8 −.526 −.583, −.470 1.120 1.081 , 1.161 .9976 .0242

DICH22 −1.804 −1.857, −1.751 1.048 1.012 , 1.087 .9962 .0009

DICH40 −3.907 −3.962, −3.852 1.086 1.049 , 1.126 .9944 .0000

n = 200 

CSMVN8 −.341 −.389, −.294 .945 .912 , .980 .9981 .0773

MVN8 −.335 −.384, −.285 .976 .942 , 1.012 .9983 .1458

POLY8 −.402 −.455, −.349 1.045 1.009 , 1.084 .9982 .0942

DICH8 −.389 −.445, −.332 1.118 1.080 , 1.160 .9986 .2462

DICH22 −1.167 −1.220, −1.114 1.043 1.007 , 1.082 .9987 .3227

DICH40 −2.393 −2.447, −2.339 1.072 1.035 , 1.112 .9985 .2059

n = 400 

CSMVN8 −.288 −.338, −.239 .973 .940 , 1.009 .9986 .2552

MVN8 −.255 −.304, −.205 .975 .942 , 1.012 .9984 .1827

POLY8 −.298 −.349, −.246 1.018 .983 , 1.056 .9971 .0067

DICH8 −.259 −.317, −.201 1.149 1.109 , 1.191 .9973 .0127

DICH22 −.869 −.920, −.818 1.001 .967 , 1.038 .9986 .2408

DICH40 −1.644 −1.698, −1.590 1.068 1.032 , 1.108 .9977 .0287

n = 1000 

CSMVN8 −.179 −.229, −.130 .977 .943 , 1.013 .9990 .5981

MVN8 −.187 −.236, −.137 .972 .939 , 1.009 .9989 .5419

POLY8 −.207 −.259, −.155 1.025 .989 , 1.063 .9993 .8943

DICH8 −.115 −.171, −.060 1.098 1.060 , 1.139 .9991 .6585

DICH22 −.548 −.601, −.495 1.043 1.007 , 1.081 .9992 .8000

DICH40 −.976 −1.027, −.926 1.001 .967 , 1.039 .9988 .3723

n = 2000 

CSMVN8 −.122 −.172, −.072 .991 .957 , 1.028 .9991 .7243

MVN8 −.087 −.139, −.035 1.018 .983 , 1.056 .9974 .0167

POLY8 −.134 −.187, −.081 1.044 1.008 , 1.083 .9991 .6464

DICH8 −.107 −.161, −.053 1.067 1.030 , 1.106 .9980 .0722

DICH22 −.380 −.431, −.329 1.003 .969 , 1.041 .9988 .3990

DICH40 −.686 −.738, −.634 1.020 .984 , 1.058 .9990 .5921
a Values in bold are significantly different from 0 at the .05 level. 
b Values in bold are significantly different from 1 at the .05 level. 
c The Shapiro-Wilk statistic as computed by SAS for sample size ≤ 2000 
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Table A7. 
 
Fit statistics for Test-Retest Reliability: Means, SD’s, CI’s and Normality Test Statistics 

 

Sample Size Model   Meana 95 % CI      SDb 95 % CI       Wc  p−value

n = 50 

MVN8 .071 .021, .121 .981 .947 , 1.017 .9988 .4080

POLY8 .077 .029, .126 .956 .923 , .992 .9987 .3533

DICH40 .086 .035, .137 1.003 .968 , 1.040 .9990 .5836

n = 100 

MVN8 .057 .007, .107 .990 .956 , 1.027 .9988 .4327

POLY8 .008 −.044, .059 1.016 .981 , 1.054 .9990 .5809

DICH40 .040 −.010, .091 .998 .963 , 1.035 .9991 .7352

n = 200 

MVN8 .010 −.040, .061 .993 .959 , 1.030 .9989 .4702

POLY8 .069 .019, .120 .991 .957 , 1.028 .9988 .3810

DICH40 .002 −.048, .053 .995 .961 , 1.032 .9988 .3796

n = 400 

MVN8 .060 .009, .110 .993 .959 , 1.030 .9990 .5485

POLY8 .053 .002, .103 .990 .956 , 1.027 .9991 .6566

DICH40 .042 −.007, .091 .971 .937 , 1.007 .9983 .1355

n = 1000 

MVN8 −.014 −.066, .037 1.014 .979 , 1.052 .9985 .2091

POLY8 .017 −.034, .069 1.021 .986 , 1.059 .9987 .3257

DICH40 −.029 −.079, .021 .986 .952 , 1.023 .9993 .8850

n = 2000 

MVN8 −.016 −.068, .036 1.022 .987 , 1.060 .9990 .5765

POLY8 .008 −.042, .058 .995 .960 , 1.032 .9986 .2865

DICH40 .034 −.017, .084 .994 .960 , 1.031 .9987 .3399
a Values in bold are significantly different from 0 at the .05 level. 
b Values in bold are significantly different from 1 at the .05 level. 
c The Shapiro-Wilk statistic as computed by SAS for sample size ≤ 2000 
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Table A8. 
 
Fit statistics for congeneric reliability: Means, SD’s, CI’s and normality test statistics 

 

Sample Size Model   Meana 95 % CI      SDb 95 % CI       Wc  p−value

n = 50 
MVN8 −.080 −.134, −.026 1.065 1.028 , 1.104 .9950 .0001

POLY8 −.019 −.073, .035 1.070 1.033 , 1.110 .9965 .0017

n = 100 
MVN8 −.074 −.127, −.021 1.052 1.015 , 1.091 .9988 .4310

POLY8 −.025 −.080, .029 1.078 1.041 , 1.118 .9965 .0016

n = 200 
MVN8 −.025 −.076, .027 1.011 .976 , 1.048 .9985 .1993

POLY8 −.042 −.097, .012 1.077 1.040 , 1.117 .9993 .8323

n = 400 
MVN8 −.005 −.057, .046 1.020 .985 , 1.058 .9989 .5030

POLY8 −.044 −.098, .010 1.075 1.038 , 1.115 .9968 .0032

n = 1000 
MVN8 −.025 −.076, .027 1.024 .988 , 1.062 .9991 .7215

POLY8 −.050 −.105, .005 1.088 1.050 , 1.128 .9989 .4653

n = 2000 
MVN8 −.045 −.096, .006 1.003 .968 , 1.040 .9990 .5738

POLY8 −.032 −.086, .022 1.068 1.031 , 1.107 .9984 .1794
a Values in bold are significantly different from 0 at the .05 level. 
b Values in bold are significantly different from 1 at the .05 level. 
c The Shapiro-Wilk statistic as computed by SAS for sample size ≤ 2000 
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Figure B1. QQ plots of Z2 for sample size 100 under all six models. 
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Figure B2. QQ plots of Z3 for sample size 50 under all six models. 
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Figure B3. QQ plots of Z4 for sample size 50 under four models. 
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Figure B4. QQ plots of Z6 for sample size 2000 under all six models. 
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Figure B5. QQ plots of Z12 for sample size 50 under three models. 
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Figure B6. QQ plots of Z Congeneric for sample size 100 under two models. 
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