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Abstract

This paper compares three methods of item calibration—concurrent calibration, 

separate calibration with linking, and fixed item parameter calibration— that are frequently 

used for linking item parameters to a base scale. Concurrent and separate calibrations were 

implemented using BILOG-MG. The Stocking and Lord (1983) characteristic curve method of 

parameter linking was used in conjunction with separate calibration. The fixed item parameter 

calibration (FIPC) method was implemented using both BILOG-MG and PARSCALE because 

the method is carried out differently by the two programs. Both programs use multiple EM 

cycles but BILOG-MG does not update the prior ability distribution during FIPC calibration 

whereas PARSCALE updates the prior ability distribution multiple times. The methods were 

compared using simulations based on actual testing program data and results were evaluated in 

terms of recovery of the underlying ability distributions, the item characteristic curves, and the 

test characteristic curves. Factors manipulated in the simulations were sample size, ability 

distributions, and numbers of common (or fixed) items. The results for concurrent calibration 

and separate calibration with linking were comparable and both methods showed good 

recovery results for all conditions. Between the two fixed item parameter calibration 

procedures, only the appropriate use of PARSCALE consistently provided item parameter 

linking results similar to those of the other two methods.





Linking Item Parameters to a Base Scale

In practice, psychometricians often use item response theory (IRT) to equate new test 

forms or to link parameters for pretest items to a base scale. In the context of equating, the new 

form is often comprised of both new and old operational items where the old operational items, 

called common items, were previously administered in another form of the test, referred to as the 

old form, and test-takers’ scores are based on their responses to all operational items. In the 

context of pretesting, some newly developed items, known as pretest items, may also be 

administered to test-takers along with the operational items in the test form and test-takers’ 

scores are based on their responses to the operational items only.

In both scenarios, we need to calibrate (that is, estimate the parameters of) the new items 

along with the “old” (previously calibrated) operational items and then place the new item 

parameters onto the already established (base) scale in order either to score the test or to evaluate 

item quality. Several different calibration methods have been applied in practice in both the 

equating and pretesting scenarios, namely, concurrent calibration, separate calibration with 

linking, and fixed item parameter calibration (FIPC).

Many testing programs require contractors to use FIPC for the purpose of linking item 

parameters to a base scale. There is significant research indicating that FIPC tends to yield 

biased estimates (see Baldwin, Baldwin, & Nering, 2007; Keller, Keller, & Baldwin, 2007; Paek 

& Young, 2005; Skorupski, Jodoin, Keller, & Swaminathan, 2003). Kim (2006). however, has 

identified a procedure for implementing FIPC that may yield satisfactory results. This paper 

compares, under the equating scenario, IRT fixed item parameter calibration as traditionally 

implemented and as recommended in Kim with concurrent calibration and separate calibration 

with linking. Because IRT item parameter scaling and linking is required for many operational



applications such as test score equating, pretest item calibration, differential item functioning, 

computerized adaptive testing, and so on, it is important to examine and confirm which linking 

procedure is most psychometrically accurate and robust.

Methods

Data and Study Design

In this study, the various calibration procedures are compared using simulated data. 

However, the generating item parameters were selected from calibrations of actual testing 

program data sets (two 60-item mathematics achievement test forms with sample sizes ranging 

from 4,294 to 4,557). It is assumed that we have data for two forms of a 50-item multiple-choice 

test and that the two forms have a set o f items in common (number of common, or fixed, items 

equals 10, 20, or 40). It is further assumed that the data were collected via a non-equivalent 

groups anchor-test (NEAT) data collection design (see Figure 1). Item parameters for the old 

form (form A) already exist from the calibration of data from a previous administration. The 

task of interest here is to equate scores on the new form (form B) to those on the old form, and to 

do that item parameters for the new form need to be estimated (calibrated) and placed onto the 

scale of the old form items.

FIGURE I. NEAT Data Collection Design for Common Item Equating
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In the NEAT design, one test form is administered to one group of test-takers and another 

test form is administered to another group of test-takers. The two groups are naturally occurring 

and therefore likely to differ in ability. For example, one might be a group taking the test in the 

fall and the other a group taking the test in the spring. A common test or anchor test, in this case 

common items, is administered to both groups in order to estimate the performance of the 

combined group on both forms, thus simulating, by statistical methods, the situation in which 

both groups take both forms.

The three-parameter-logistic (3PL) IRT model is used and the ability distribution of the 

base or reference group (group P) is assumed to be N(0,1). Other factors included in the 

simulation design were (1) two different sample sizes for both the base and target groups (500 

and 2000) and (2) three different ability distributions for the target group [i.e., group Q~ N(0,1), 

N(.25,l . l 2), or N(.5,l .22)]. These factors are critical ones that affect calibration in practice.

The sample size of 2000 was chosen to represent the usual practice of calibrating 

operational items with relatively large samples in order to produce stable item parameter 

estimates. The sample size of 500 was chosen to represent the minimum sample size in practice 

that is likely to yield acceptable calibration results with a 3PL model. To generate old form 

group (group P) examinees (simulees) a N(0,1) distribution was used. The new form group 

(group Q) distributions were selected to represent those situations where the old and new form 

groups are very similar in ability [N(0,1)J, differ somewhat in ability [N(.25,l.l )], and differ 

significantly in ability [N(.5,1.22)]. In practice, we seldom see group differences as extreme as 

those represented by the N(.5,l .2 ) distribution.
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There are a total of 18 conditions simulated in this study (2 sample sizes x 3 numbers of 

fixed items x  3 target group ability distributions). One hundred replications were generated for 

each condition for both base and target groups.

IRT Calibration and Unking Methods

When concurrent calibration is used with the NEAT design for equating, item parameters 

for the operational items in both the new and the old forms are estimated simultaneously in a 

single calibration run. Because the new and old forms have items in common, the resulting item 

parameters for all items in the concurrent calibration run are on the same scale. In every 

concurrent calibration run for this study, the old form group was treated as the reference group 

having 0 and 1 as the mean and standard deviation (SD), respectively, of their ability estimates. 

The mean and SD of the new form (target) group’s ability distribution were newly estimated 

through the item and ability parameter calibration process for each dataset. By treating the old 

form group as the reference group, instead of the pooled (old plus new) group, the parameters for 

both groups are placed onto the scale for the old form group.

In separate calibration with linking, the items taken by each group are calibrated in two 

separate runs, one for each group (groups P and Q in Figure 1). Using the common items as 

linking items, a linear transformation is then estimated to place the item parameters for the new 

form group, group Q, onto the scale for the old form group, group P. The linear transformation 

can be estimated using a variety of linking methods (e.g., see Marco, 1977; Loyd & Hoover, 

1980; Haebara. 1980; and Stocking & Lord, 1983). Both concurrent and separate calibrations 

were implemented using BILOG-MG. And, the Stocking and Lord characteristic curve method 

for parameter linking was used in this study.
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In FIPC, items are again calibrated in two separate runs but, unlike with separate 

calibration, there is no linking step. Instead, in the new form group calibration run, items are 

calibrated with the item parameters for the common items fixed at their separately estimated (old 

form) values so that the parameters for the new items are placed on the same scale as that for the 

old operational items. Kim (2006) compared five FIPC procedures that differ from one another 

according to (1) how many times they update the prior ability distribution and (2) how many EM 

(Expectation-Maximization) cycles they use. Kim recommended updating the prior ability 

distribution multiple times and the use of multiple EM cycles during the calibration process [that 

is, the multiple weights updating and multiple EM cycles (MWU-MEM) method] because only 

this approach worked well regardless of the different ability distributions used for the target 

group in his study. Kim’s recommended FIPC procedure is used in this study.

For the purpose o f comparison, another FIPC approach without the prior update is also 

considered in this study. In this procedure, the prior ability distribution is not updated after each 

M step in the EM cycles, which may result in the mean and standard deviation of the newly 

estimated item parameters tending to shrink toward the N(0,1) scale rather than following the 

metric of the fixed item parameters.

The fixed parameter calibration procedure was implemented using both BILOG-MG and 

PARSCALE because the procedure is carried out differently by the two programs. The goal of 

FIPC is to put the newly estimated item parameters on the scale of the common items that were 

“fixed” during calibration. Both BILOG-MG and PARSCALE use multiple EM cycles. But in 

BILOG-MG, use of the EMPIRICAL command which enables updating of the prior ability 

distribution overrides use of the NOADJUST command which prevents rescaling of parameters. 

Given it is more important during FIPC to not rescale parameters than to update the prior ability
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distribution, BILOG-MG was implemented using only the NOADJUST command which 

prevents any rescaling toward mean=0 and SD=1. This problem does not occur with use of 

PARSALE. In PARSCALE, the NOADJUST command which prevents rescaling can be used 

along with the POSTERIOR command which enables updating of the prior ability distribution 

multiple times as recommended by Kim (2006). Table 1 provides a concise description o f FIPC 

as implemented by BILOG-MG and PARSCALE. Examples of the BILOG-MG and 

PARSCALE control cards used for FIPC calibration are given in the Appendix.
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TABLE 1

7

Fixed Item Parameter Calibration (FIPC)

Goal of FIPC The newly estimated item parameters for unique items in form B should be 
on the scale of the fixed or common items in form A.

Two Essential 
Elements of the 
MMLE-EM 
Approach for 
FIPC

No Rescaling:
For FIPC, do not solve the 
indeterminacy problem in the IRT 
analysis by rescaling the mean and 
standard deviation of the posterior 
ability distribution to be 0 and 1, 
respectively.

Update the Ability Prior after each 
M Step through the EM Algorithm:
By updating the prior ability 
distribution after each M step 
through the EM algorithm, the 
prior scale will gradually become 
closer to that of the fixed items in 
form A.

Related 
Options in 
BILOG-MG

NOADJUST in the CALIB command 
prevents any rescaling.

EMPIRICAL in the CALIB 
command enables use of the 
empirical/posterior distribution 
after each M step as the prior for 
the next EM cycle.

Unfortunately, in the CALIB command o f BILOG-MG, NOADJUST and 
EMPRICAL cannot be used together. As Kim (2006) indicated, when 
EMPIRICAL is used with NOADJUST, the latter becomes invalid. If only 
NOADJUST is used, automatically, the prior does not change during the 
EM cycles.

Related 
Options in 
PARSCALE

FREE=(N0 ADJUST, NOADJUST) in 
the CALIB command prevents any 
rescaling.

POSTERIOR in the CALIB 
command enables use of the 
empirical/posterior distribution 
after each M step as the prior for 
the next EM cycle.

In the CALIB command of PARSCALE, FREE=(NOADJUST, 
NOADJUST) and POSTERIOR can be used together.

Evaluation Criteria

The accuracy or performance of the four IRT linking procedures used in this study was 

evaluated, first, in terms of recovery of the underlying ability distributions (i.e., the true mean 

and SD of the target group’s ability distribution). Also, the ability of the four procedures to 

recover the item parameters was evaluated using the item characteristic curve (ICC) criterion



based on Hanson and Beguin (2002) and the test characteristic curve (TCC) criterion shown in 

Equation 1. The latter is similar to the former except it uses TCC curves instead of ICC curves. 

In this paper, when the ICC criterion was calculated for each linking method and each condition, 

only non-common items were used. But, for the TCC criterion, all 50 items (both common and 

unique items) were used. The ICC criterion was used to evaluate the ability of the procedures to 

recover the item parameters rather than a comparison of the parameter values from the various 

procedures as different sets of a-, b-, and c-parameters can produce comparable ICCs.

The TCC criterion evaluates how close the estimated TCCs are to the true TCC for the 

new form. The TCC criterion for each condition is given by 

Equation 1:

1 100
— Z D r(*> -',(*> ]2/ ( * * * =

i 100f [r(e)-m}1mde+—X
J-w 100 7^*^

where r is the true TCC using the generating item parameters, t r is the TCC using the estimated

1 ^item parameters from replication r , t{6) = -----2_,tr{0),  and f {9)  is the N(0,l) density for
100 r=1

ability 0 . The left-hand term of Equation 1 is the mean squared error (MSE) of the estimated 

TCCs for a condition, which can be decomposed into the squared bias (SB) and variance (VAR) 

as shown on the right-hand side of the equation. A Monte Carlo integration algorithm was used 

to evaluate the integrals in Equation 1.

Results

For each group P and Q, 100 data sets were generated for each of the 18 conditions 

simulated in this study, and the four different linking procedures were applied to them. When
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the sample size was 500, sometimes the PARSCALE calibration runs for FIPC did not converge 

successfully with 3,000 EM cycles. For example, in the condition with 10 fixed or common 

items, 500 examinees, and a true N(0,1) ability distribution for group Q, 11 of the initial 100 

replications did not converge. When calibration runs were not successful, problematic 

replications were discarded and other data sets were generated until 100 replications per 

condition without any convergence error were obtained. In the case of BILOG-MG, all 

calibration runs converged without any run-time error.

Table 2 and Figure 2 contain the results for how well the target groups’ true distributions 

were recovered by each of the four linking procedures. When the target group (group Q in 

Figure 1) and the base group (group P) both had a N(0,1) ability distribution, all four linking 

procedures showed good and comparable recovery results and the results tended to improve 

slightly as the sample size increased: For sample size N=500, the average means and SDs for the 

target group across all the linking procedures ranged between -.02 and .03 and between .95 and 

1.07, respectively. And for N=2,000, the average means and SDs ranged between -.01 and .01 

and between .97 and 1.00, respectively.
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TABLE 2

Average Means and Standard Deviations of the Estimated Ability Distributions for the Target Group

10

#Fixed or Sep. calibration Concurrent FIPC FIPC
Samp Common TrueTarSet with linking calibration (BILOG-MG) (PARSCALE)

Size , Distribution --------------------- --------------------------- r r ------------------------ i t ------------------------ rsize
Items

uistriDunon
mean SD mean SD mean SD mean SD

N=500 #FI=10 N(0.0,1-0) 0.03 0.96 0.02 0.96 0.01 0.95 0.00 1.04

N (.25 ,l.l2) 0.23 1.03 0.26 1.08 0.18 1.00 0.25 1.15

N(.50,1.22) 0.51 1.11 0.52 1.16 0.37 1.04 0.54 1.27

#FI=20 N(0.0,1.0) 0.02 0.99 0.02 1.01 0.01 0.98 -0.02 1.07

N{.25,1.12) 0.26 1.08 0.26 1.12 0.21 1.05 0.26 1.13

N{.50,1.22) 0.53 1.21 0.54 1.27 0.43 1.11 0.52 1.26

#FI=40 N{0.0,1.0) 0.01 0.98 0.03 1.01 0.01 0.97 0.01 1.00

N (.25 ,l.l2) 0.26 1.05 0.26 1.12 0.23 1.07 0.23 1.16

N{.50,1.22) 0.49 1.15 0.53 1.22 0.44 1.11 0.47 1.22

N=2,000 #FI=10 N{0.0,1.0) 0.00 0.99 0.00 0.97 0.00 0.97 -0.01 0.98

N (.25 ,l.l2) 0.22 1.10 0.24 1.13 0.16 1.04 0.23 1.14

N(.50,1.22) 0.49 1.20 0.50 1.21 0.34 1.05 0.49 1.22

#FI=20 N(0.0,1.0) 0.00 1.00 0.01 1.00 0.01 0.99 0.00 1.00

N(.25 ,l.l2) 0.25 1.11 0.25 1.11 0.21 1.07 0.24 1.11

N(.50,1.22) 0.47 1.18 0.49 1.23 0.41 1.12 0.48 1.23

#FI=40 N(0.0,1.0) 0.00 0.97 0.01 0.97 0.00 0.98 0.00 1.00

N (.25 ,l.l2) 0.25 1.07 0.25 1.10 0.22 1.07 0.24 1.12

N(.50,1.22) 0.51 1.15 0.50 1.18 0.44 1.12 0.47 1.19
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FIGURE 2. Average means and standard deviations of estimated ability distributions for target group
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Figure 2 presents a summary of the results for when the true ability distribution of target 

group Q was either N (.25 ,l.l2) or N(.5,1.22). First of all, FIPC without prior update as 

conducted by BILOG-MG (FIPC-BMG) consistently underestimated the true means and SDs 

across every condition, even though FEPC-BMG appeared to provide better recovery as the 

number of fixed or common items (#FI) increased from 10 to 40. In other words, the means and 

SDs estimated by FIPC-BMG were closer to 0 and 1, respectively, than those estimated by the 

other linking procedures. And, the degree of underestimation appeared much more severe when 

the true ability distribution was N(.5,1.2 ) than when it was N (.25,l.l ).

From Table 2 and Figure 2 it can be seen that the three other linking procedures— 

separate calibration with linking, concurrent calibration, and PARSCALE FIPC (FIPC-PSL)— all 

showed good recovery results for all conditions. They had negligible differences in true mean 

recovery; and, for the recovery of true SDs, these three procedures produced fairly similar results 

that became even more similar as sample size increased. Even for sample size N=500 and target 

distribution of N(.5,1.22), the average target group means and SDs across these three linking 

procedures only ranged between .47 and .54 and between 1.11 and 1.27, respectively.

Figures 3 and 4 (see pages 14 and 15) summarize the MSEs, SBs, and VARs obtained 

using the ICC criterion. In these figures, the total length o f the bar represents MSE, the shaded 

portion represents the SB, and the clear portion represents the VAR. First, FIPC-BMG 

performed poorly as expected: The less similar in ability the base and target groups were, the 

worse the performance. The large SB values found in Figures 3(c) and 4(c) indicate that FIPC- 

BMG had some systematic problem compared to the other linking procedures such as FIPC with 

prior update conducted by FIPC-PSL. The SB values for FIPC-BMG tended to increase as the 

number of fixed items decreased and as the ability distribution departed from N(0,1). Second, as

12



the sample size increased from 500 to 2,000, the accuracy of every linking method improved. In 

other words, the lengths of the bars were much shorter in Figure 4 than in Figure 3. This trend 

was expected because the larger sample size would result in more stable parameter calibration. 

Third, the performance of FIPC-PSL was similar to that for separate calibration with linking and 

concurrent calibration in almost every condition. That is, FIPC-PSL linked item parameters 

successfully regardless of the distribution difference between the base and target groups. For 

these three procedures, no clear pattern or improvement in accuracy was found related to the 

change in the number of common items (#FI = 10, 20 or 40).

Figures 5 and 6 (see pages 16 and 17) present MSEs, SBs, and VARs calculated using the

TCC criterion. The overall findings were similar to those found with the ICC criterion. 

However, the number of fixed items seems to have more impact on the linking performance as 

shown in Figures 5(c), 5(f), and 5(i). As the number of fixed items increased from 10 to 40, the

MSEs for every linking method dramatically decreased.
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FIGURE 3. Average Mean Squared Error (^Squared Bias + Variance) across Items for the ICC Criterion (N=500)
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FIGURE 4. Average Mean Squared Error (“ Squared Bias + Variance) across Items for the ICC Criterion (N=2,000)

(g) #FI = 40j N(0,1) (h )#F I=40, N(0.25,l.l2) (i) #FI = 40, N(0.50,1.22)
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FIGURE 5. Average Mean Squared Error (=Squared Bias + Variance) across Items for the TCC Criterion (N=500)

(d) tfFI -  20, N(0,1) (e) #FI = 20, N(0.25,l.l2) (f) #Ft = 20, N(0.50,1.22)
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FIGURE 6. Average Mean Squared Error (^Squared Bias + Variance) across Items for the TCC Criterion (N-2,000)
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Discussion and Conclusion

As expected, FIPC-BMG showed poor performance in item parameter linking when the 

base and target groups had nonequivalent ability distributions. When the true ability distribution 

of the target group was different from N(0,1), the estimated means and SDs tended to be pulled 

toward the mean (=0) and SD (-1) of the unchanged prior during the EM cycles. Also, for both 

the ICC and TCC criteria, the MSEs and SBs often were much larger than those obtained for the 

other linking procedures included in this study. When the base and target groups had the same 

ability distribution [N(0,1)], however, the MSEs from all four linking procedures were small and 

very similar in magnitude.

The effect of sample size for the base and target groups on the linking results was clearly 

observed through Figures 3 and 4 and Figures 5 and 6. When the sample size increased from 

500 to 2,000, both ICC and TCC criterion values decreased remarkably. The sample size effect 

found in this study was consistent with that found by Hanson and Beguin (2002). In their study 

as the sample size increased from 1.000 to 3.000, the MSE values became smaller.

With respect to the effect of the number of common or fixed items on item parameter

linking, the TCC criteria in Figures 5 and 6 showed that linking performance clearly improved at

the whole test level as the number of fixed items (#FI) increased. For example, in the conditions

• * 2with 2,000 examinees and a true target group ability distribution o f N(.5,1.2 ), the MSEs for 

FIPC-PSL were 0.669, 0.608, and 0.191 for #FI=10, 20, and 40. respectively. The ICC criteria 

in Figures 3 and 4 do not reflect clear improvement in linking performance as the number of 

common items increases. This result may be because the ICC criterion in this paper was 

calculated using only the unique (non-common) items and, thus as the number o f fixed items 

increases, there are fewer unique items to compare. This result also might imply that use of at
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least 20% common items (i.e., #FI= 10 out of total 50 test items) in a test is enough for reliable 

linking of unique form B item parameters to the scale of form A items (see Figure 1).

This study compared the three standard methods of item calibration: concurrent 

calibration, separate calibration with linking, and fixed item parameter calibration (FIPC). Two 

different procedures for implementing FIPC were evaluated: one uses multiple EM cycles and 

updates the prior ability distribution multiple times during calibration and the other uses multiple 

EM cycles but does not update the prior ability distribution during calibration. Even though 

operational use of FIPC is increasing, as Paek and Young (2005) and Kim (2006) pointed out, 

only a few studies have compared FIPC to the concurrent and separate calibration with linking 

procedures that have been shown to work well in practice. Furthermore, no previous study has 

compared these three calibration methods while clearly identifying potential problems with FIPC 

and showing how to deal with these problems through the appropriate use of commercial IRT 

software (see Table 1 and the Appendix). Through the use of a simulation study based on actual 

testing program data, this paper demonstrates that concurrent calibration and separate calibration 

with linking produce fully acceptable results and that the correct implementation of FIPC can 

produce results fully comparable in accuracy to both of these procedures while other 

implementations of FIPC may produce severely biased results.

In summary, the FIPC procedure implemented with PARSCALE using the control cards 

in the Appendix works well enough to be used for contracts requiring use o f FIPC. However, as 

this study has demonstrated, not all implementations of FIPC yield satisfactory results. Because 

SB and VAR in Equation 1 represent systematic and random error, respectively, the large SB 

values found in Figures 3, 4, 5, and 6 for FIPC-BMG indicate that this FIPC procedure failed to 

follow guidelines for proper application.
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Additional studies could further improve our understanding of the FIPC procedure. First, 

future work could include more commercial IRT software with options available for fixing item 

parameters such as MULTILOG (Thissen, 1991) and WINSTEPS (Linacre, 2003). Second, the 

performance o f these linking procedures needs to be compared when the set of common items 

consists of either polytomous items or mixed-format items. Finally, more conditions and 

simulation factors could be considered. For example, it would be interesting to include other 

true target ability distributions such as a skewed one. Also, inclusion of some misfitting items 

among the common or unique items could be considered to make the generated data sets even 

more realistic. And, a simulation study could be conducted in the context of a computerized 

adaptive testing program.

The results of this study are important for practitioners as it is demonstrated that some 

implementations of FIPC will yield acceptable calibration results comparable to those obtained 

with concurrent and separate calibration with linking and that other implementations will not 

yield acceptable calibration results. Knowing how to properly implement FIPC is very important 

in practice as contracts may require use of FIPC and it can be less time consuming to use FIPC 

than other calibration procedures.
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Appendix

1. Concurrent Calibration for both base and target groups (BILOG-MG)

>COMMENT

>GLOBAL DFNAME='BlMcom200.dat',NPARM=3,SAVE;

>SAVE PARM='BLMcom200.par’;

>LENGTH NITEMS=60;

>INPUT NTOT=60, NID=4, NGROUP=2, NFNAME='c:\FIPC\simu\keynot.txt’;

>ITEMS INUM={1(1)60),INAMES=(OL01(1)OL1C), C001(1)C040, NEOl(l)NElO);

>TEST TNAME=Math;

>GROUPl GNANE=’BASE', LENGTH=50, INUM=(1(1)50);

>GROUP2 GNANE=’TARGET', LENGTH=50, INUM=(21(1)60);

(4A1,1X,I1,1X,60A1)

>CALIB NQPT=11, cycles=3000, CRIT=0.001, REF=1, TPRIOR;

>SCORE NOPRINTS;

2. Separate Calibration for a target group (BILOG-MG)

>COMMENT

>GLOBAL DFNAME='new200.dat', NPARM=3,SAVE;

>SAVE PARM=’BLMnew200.par';

>LENGTH NITEMS=50;

>INPUT NTOT=50, NALT=5, NID=4;

>ITEMS INUM={ 1(1)50),INAMES=(C001(1)C040, NE01{1)NE10);

>TEST TNAME=Simulation;

(4A1,T1,50A1)

>CALIB NQPT=11, cycles=3000, CR!T=0.001, TPRIOR;

>SCORE NOPRINTS;
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3. Fixed Item Parameter Calibration for a target group (BILOG-MG)

>COMMENT

>GLOBALDFNAME=’new200.dat', PRNAME='BLMOLD200.PRM', NPARM=3, SAVE;

>SAVE PARM=’BLMfix200.par';

>LENGTH N!TEMS=50;

>INPUT NTOT=50, NALT=5, NID=4;

>ITEMS INUM=( 1(1)50),INAMES=(C001(1)C040, NEOl(l)NElO);

>TEST TNAME=Math, FIX=( 1(0)40,0(0) 10);

(4A1,T1,50A1)

>CALIB NQPT=11, cycles=3000, CRIT=0.001, TPRIOR, NOADJUST;

>SCORE NOPRINTS;

4. Fixed hem Parameter Calibration for a target group (PARSCALE)

>COMMENT

>FILE DFNAME='new200.dat', IFNAME='PSLold200.prm', SAVE;

>SAVE PARM='fix200.par';

>INPUT NIDCH=4, NTOTAL=50, NTEST=1, LENGTH=50, NFMT=1;

(4A1, T l, 50A1)

>TEST TNAME=Math, ITEM=(01( 1)50), NBLOCK=50,

INAMES=(

COOl, C002, C003, C004, COOS, C006, C007, C008, C009, C010,

C O ll,  C012, C013, C014, C015, C016, C017, C018, C019, C020,

C021, C022, C023, C024, C025, C026, C027, C028, C029, C030,

C031, C032, C033, C034, C035, C036, C037, C038, C039, C040,

NE01, NE02, NE03, NE04, NE05, NE06, NE07, NE08, NE09, NE10);

>BLOCKl BNAME=COMMON, NITEM=1, NCAT=2,

ORI=(0,1), MOD=(l,2), GPARM=0.2, GUESS=(2, EST), REP=40, SKIP;

>BL0CK2 BNAME=UNIQUE, NITEM=1, NCAT=2,

ORI=(0,1), MOD=(l,2), GPARM=0.2, GUESS=(2, EST), REP=10;

>CALIB PARTIAL, LOGISTIC, SCALE=1.7, NQPT=41, CYCLE=(3000,1,1,1,1),

FREE=(NOADJUST, NOADJUST), POSTERIOR, NEWTON=0( CRIT=0.001, ITEMFIT=10, SPRIOR, GPRIOR; 

>SC0RE ;
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