
A C T  R e se a rc h  R e p o rt S e rie s  2 0 0 7 - 1

An Investigation of the Performance 
of the Generalized S-X2 Item-Fit 
Index for Polytomous IRT Models

Taehoon Kang 

Troy T. Chen

ACT June 2007



For additional copies write: 
ACT Research Report Series 
P.O. Box 168
Iowa City, Iowa 52243-0168

© 2007 by ACT, Inc. All rights reserved.



An Investigation of the Performance of 
the Generalized S-X2 Item-Fit Index for Polytomous IRT

Models

Taehoon Kang 
Troy T. Chen





Abstract

Orlando and Thissen (2000, 2003) proposed an item-fit index, S-X2, for dichotomous 

item response theory (IRT) models, which has performed better than traditional item-fit 

statistics such as Yen’s (1981) (2/and McKinley and Mill’s (1985) G2. This study extends 

the utility o f S-X2 to polytomous IRT models, including the generalized partial credit model 

(GPCM: Muraki, 1992), partial credit model (PCM: Masters, 1982), and rating scale model 

(RSM: Andrich, 1978). The performance o f the generalized S-X2 in assessing item-model 

fit was studied in terms o f empirical Type I error rates and power as compared to results 

obtained for G2 provided by the computer program PARSCALE (Muraki & Bock, 1997). 

The results show that the generalized S-X2 is a promising item-fit index for polytomous items 

in educational and psychological testing programs.
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An Investigation of the Performance of 
the Generalized S-X2 Item-Fit Index for Polytomous IRT Models

Introduction

Ever since Lawley (1943) and Lord (1952) established the basic concepts o f  item 

response theory (IRT), many IRT models have been developed and applied to various fields 

o f study such as psychological scaling and educational measurement. Unless an appropriate 

IRT model for a given data set is used, however, the benefits o f  IRT for applications such as 

test development, item banking, differential item functioning (DIF), computerized adaptive 

testing (CAT), and test equating might not be attained. In brief, the success o f IRT 

applications requires satisfactory fit between the model and the data. The most critical 

problem caused by model-data misfit may be that the hallmark feature o f IRT, parameter 

invariance, no longer applies (Shepard, Camilli & Williams, 1984; Bolt, 2002; Rupp & 

Zumbo, 2004).

Numerous statistical procedures have been developed to evaluate item fit under an 

IRT model, and goodness-of-fit studies have been conducted and reported in the voluminous 

IRT literature (see Bock, 1972; Douglas & Cohen, 2001; Glas & Suarez-Falcon, 2003; Liang 

& Wells, 2007; McKinley & Mills, 1985; Orlando & Thissen, 2000, 2003; Sinharay, 2003, 

2005; Stone, 2000; Stone & Zhang, 2003; Suarez-Falcon & Glas, 2003; Wells, 2004; Yen, 

1981). Among them, several Chi-square based item-level goodness-of-fit indices using 

significance tests such as Yen’s (1981) Qx for dichotomous items, the traditional log-

Jikelihood Chi-square, G 2, for both dichotomous and polytomous items (McKinley & Mills, 

1985), and Orlando and Thissen’s (2000, 2003) S-X2 for dichotomous items have been 

utilized for IRT applications. Type I error rates for these goodness-of-fit indices have been 

investigated and reported.



A shortcoming o f the item-fit tests based on and G2 is their sensitivity to test 

length and sample size. For instance, on a short test o f 10 dichotomous items, these 

traditional statistics exhibited inflated empirical Type 1 error rates as high as 0.96 and 0.97, 

respectively, for a given nominal rejection rate o f a  = 0.05 (Orlando & Thissen, 2000). 

DeMars’ (2005) simulation studies with a sample size o f 1,000 used PARSCALE’s (Muraki 

& Bock, 1997) fit index which is similar to McKinley and Mill’s (1985) G 2, and discovered 

empirical Type I error rates o f 0.142 under the partial credit model (PCM: Masters, 1982) and 

0.304 under the graded response model (GRM: Samejima, 1969) on a 10 polytomous item 

test. Stone and Hansen (2000) found that an item-fit test using G 2 for a 32 polytomous item 

test under the GRM showed inflated empirical Type I error rates between 0.142 and 0.181 for 

cases with 1,000 examinees, and between 0.229 and 0.396 for cases with 2,000 examinees, 

even though the true item parameter values were used in calculating predicted proportions.

Besides studies on Qt andG 2, there have been noteworthy studies on S-X2 by 

Orlando and Thissen (2000, 2003). In their simulation studies using test lengths o f 10, 40, 

and 80 dichotomous items and a sample size o f 1,000, they showed that S-X adequately 

controlled Type 1 error rates (Orlando & Thissen, 2000). Under the 1-, 2-, and 3-parameter 

logistic models (1PLM, 2PLM, and 3PLM, respectively), the empirical Type I error rates for 

tests based on S-X2 were found to be between 0.04 and 0.07 with nominal a  o f 0.05. 

Additionally, the empirical power o f S-X improved as sample size increased from 500 to 

2,000 (Orlando & Thissen, 2003).

The S-X index could also be generalized and applied to the goodness-of-fit test for 

polytomous items (Roberts, in press). The main purpose o f this study is to assess the 

performances o f the generalized S-X2 under the polytomous IRT models including the 

generalized partial credit model (GPCM: Muraki, 1992), PCM, and the rating scale model 

(RSM: Andrich, 1978) for different combinations o f test length and sample size. The paper
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begins with a review o f Q,, G 2, and S-X2 statistics followed by a discussion on the 

generalization o f S-X2 for polytomous items. Finally, the performances o f the generalized 

S-X2 and PARSCALE’s G 2 are compared through a simulation study.

C hi-Square Based Item Fit Indices 

According to Hambleton, Swaminathan and Rogers (1991), and Stone (2000), a 

common strategy for assessing item-fit o f an IRT model can be summarized as follows: (I) 

estimate the item and ability parameters under the chosen model, (2) classify examinees into 

K homogeneous groups in terms o f their ability estimates, (3) calculate observed response 

proportions in each group for the item under investigation, (4) derive predicted response 

proportions in each group using the item and ability parameter estimates under the IRT model 

o f interest, and (5) compute Chi-square based statistics by comparing the observed and 

predicted values.

The Traditional Chi-Square Based Fit Indices

Both Qx and G 2 are considered to be traditional Chi-square based fit indices. 

Yen’s (1981) Q, for a dichotomous item i can be expressed as follows:

where z indicates the item score, k represents the number o f groups o f examinees, N k is the 

number o f examines in group k, and Ojki (= l-O ,A0) and Eiki (= 1-£,A0) are, respectively, the 

observed and predicted proportions o f correct responses for group k. To compute Qt, the 

item and ability parameter estimates are first obtained under the chosen IRT model, and the 

total number o f groups (K) is set to 10 with each group having approximately an equal 

number o f examinees. The predicted proportions o f correct responses, Elk], is computed as the 

mean predicted proportion o f each group. Since K = 10, the degrees o f freedom (<df)
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associated with Q] equal 10 -  m where m is the number o f item parameters estimated.

For assessing model-item fit for both dichotomous and polytomous items, 

PARSCALE provides G 2 as the goodness-of-fit index. Given an item denoted i, G 2 can be 

computed as follows:

where z indicates item scores ranging from zero to the highest item score o f Zn k represents 

the number o f groups o f examinees, rjk. equals the observed number o f examinees scoring 

z in group k ,  is total number o f examinees in group k, and P,,{9k) is the response 

function for item score z  evaluated at the mean ability o f examinees in group k .

The total number o f groups Kf could however vary across items because

neighboring groups can be collapsed to avoid expected values,N ikPt (&k) ,  less than 5. In 

general, the d f  o f G,2 for dichotomous items equals Ki which is different from that o f 

Yen’s Qx as no adjustment for the number o f estimated parameters m is made for G,2. 

Mislevy and Bock (1990) argued that m is not considered in determining the d f  for G 2 

because the parameter estimation procedure has nothing to do with minimizing G 2.

Orlando and Thissen s S-X2 Index fo r  Dichotomous Items

Though Orlando and Thissen’s (2000) S-X procedure follows much the same pattern 

as the Qx procedure, it has a notable advantage over Qx and G 2. For both Q{ and G 2, 

the grouping procedure relies on sample- and model- dependent cut scores, whereas S-X2 is 

based on test scores (i.e., number-correct scores).

Using the same notation defined earlier, S-X2 for a dichotomous item / on an /-item 

test is given by:

(2)
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k=I ,̂kzk=I

(3)

The summation over the test score k in equation (3) excludes k = 0 and k -  /, since the 

proportion o f examinees who respond to an item correctly and have a test score o f zero is 

always zero, and it is always I for those having a perfect test score o f / .

Also, in equation (3), the expected proportion o f examinees in x = k group who got 

item i right, £/*/, could be calculated using the following formula:

where f ( k \ 0 )  is the conditional predicted test score ( x -  k ) distribution given 0, 

f * ‘{k\0)  represents the conditional predicted test score distribution without item / , and

the help o f the recursive algorithm developed by Lord and Wingersky (1984).

Similar to G 2 , neighboring groups could be collapsed to maintain a minimum

studies o f Larntz (1978) and Orlando and Thissen’s (2000). If it is not necessary to collapse 

groups, then the d f  equals I  -  1 -  m where m is the number o f item parameters estimated; 

otherwise an adjustment for the number o f groups being collapsed is needed.

polytomous items. For a polytomous item denoted i on a test o f /polytom ous items with each

\ p n( 9 ) f ‘( k - \ \ 9 ) m d e  

\ f ( k  19 ) m e e
(4)

$(0)  is the population distribution o f 9 .  f { k \ 6 )  and f* ‘(k 16) could be computed with

expected cell frequency o f  5. For S-X2, the minimum value is set to 1 according to the

The Generalized S-X2 Index fo r Polytomous Items

The current study extends the application o f S-X2 to the assessment o f item fit for

having Z t +1 scoring categories (i.e., category score 2 = 0, I, ..., Z, ), the generalized S-X2

can, using notation defined earlier, be expressed as follows:



where z indicates category scores, Z, is the highest score o f item i, and F  is a perfect test

i
score (i.e., F  = ^ Z . ). The expected category proportions, Eikz, in equation (5), can be 

/

computed using the following formula:

\pf( z \ 0 ) f * ‘{ k - z \ 0 ) # ( 0 ) d 0
E ib  = --------- ?--------------------------------- • (6)

\ f ( k \ 0 ) m 5 6

To compute f ( z  j0 Ja n d  f * ' ( z \ 0 ) \ n  equation (6), the generalized recursive algorithm 

developed by Thissen, Pommerich, Billeaud and Williams (1995) can be used.

Similar to that for dichotomous items, the computation for the generalized S-X2 

procedure excludes groups with a test score o f zero (i.e., k — 0) or perfect test score (i.e., k = 

F). Also, in equation (5), the summation for k is from Zi through F - Z r  This is because 

within some groups with extremely low or high test scores, the expected proportions of 

examinees ( E iks) for some categories are always zero. For instance, for the group with k = 

38 on a test o f 10 polytomous items with each having 5 categories (i.e., z = 0, 1, 2, 3, 4) in 

Table I, the observed and predicted proportions o f examinees for the z = 0 and z = 1 

categories are always zero. Similarly, for the group with k = 2, they will always be zero for 

the z = 3 and z = 4 categories. For the generalized S-X2 procedure, such groups are 

collapsed to the groups with k = Z, or k = F-  Zi. For example, the groups with k = I, 2 and 3 

for the illustrative item in Table 1 will be combined with the k -  4 group, and the groups with 

k = 37, 38, and 39 will be merged with the k -  36 group. Hence, for an item w ithZ ( +1



scoring categories, the total number o f groups included in the generalized S-X procedure is

equal to K, = F ~ 2 Z ,  + \=  £ z ,  - 2 Z , .+ 1.
\  i
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The Observed and Expected Cell Frequencies o f an Illustrative Item

TABLE 1

Test 
Score 

G roup k

Observed Frequencies ( N kO ikz) Expected Frequencics( N k E ■*=>

Item Category Score Item Category Score

0 1 2 3 4 0 1 2 3 4

i 0 0 # u tt 0 0 tt u tt

2 4 0 0 u tt 3.34 .65 .01 tt tt

3_____ __ 6 1 0 0 tt 5.20 1.76 .05 * tt

4 4 1 0 0 0 3.24 t .68 .07 * *
5 8 9 1 0 0 10.05 7,44 .50 .01 *

6 10 5 1 0 0 7.57 7.68 .73 .02 *
7 7 5 1 0 0 5.14 6,92 .90 .03 *

8 4 7 3 0 0 4.58 7.99 1.37 .06 *
9 6 15 1 0 0 5.87 13,07 2.88 .18 *
10 7 18 10 1 0 7.75 21.69 6.07 .48 *

11 3 20 5 0 0 4.80 16,73 5.87 .59 .01
12 2 30 7 0 0 5.26 22.63 9.86 1.23 .02
13 5 28 8 0 0 4.28 22.64 12.16 1.89 .03
14 3 19 18 3 0 3,41 22.12 14.60 2.80 .06
15 0 14 9 6 0 1.72 13,61 11.01 2.59 .07
16 3 16 18 5 0 1.82 17.60 17.39 5.02 .17
17 1 12 23 9 1 1.43 16.82 20.29 7.17 .30
18 1 15 17 10 1 .95 13.72 20.18 8,70 .44
19 1 14 21 15 0 .76 13.26 23.74 12.47 .77
20 2 6 19 9 1 .37 7.84 17.07 10.90 .82
21 0 9 20 14 3 .30 7.77 20,54 15.93 1.46
22 0 6 21 18 2 .20 6,19 19.87 18.68 2.07
23 1 3 15 18 2 .10 3.92 15.27 17.38 2.33
24 0 3 13 18 3 .06 2.78 13.13 18,09 2.93
25 0 2 19 20 2 .04 2.37 13.56 22.60 4.42
26 0 2 11 23 6 .02 1.66 11.55 23,27 5.50
27 0 1 6 21 5 .01 .92 7.75 18.92 5.40
28 0 1 9 13 6 .01 .55 5.71 16,90 5.82
29 0 0 3 19 3 ★ .32 4.04 14,56 6,07
30 0 1 1 12 8 * .18 2.86 12.58 6.38
31 0 0 2 16 10 * .15 2.84 15.43 9,58
32 0 0 4 8 6 * .06 1.38 9.37 7.19
33 0 0 0 11 8 * .03 1,06 9.12 8.79
34 0 0 0 2 6 * .01 .31 3.44 4,25
35 0 0 0 2 4 * * .14 2,22 3.63

____36_____ ____ 0 ____ 0_ 0 1 5 * * .08 1.82 4.10
37 tt 0 0 1 7 H * .05 1.85 6. tO
38 tt tt 0 1 5 tt .01 .93 5.06
39 tt tt 0 2 tt it tt .16 1.84

# indicates that the cell has a value of zero always.
* indicates that the expected value is less than 0.005 but larger than 0.



In light o f Orlando and Thissen (2000), neighboring test score groups need to be 

collapsed to maintain a minimum expected category frequency ( N kEikz) o f 1. However, this

collapsing method could be infeasible for the case o f polytomous items. For example, if 

Orlando and Thissen’s cell collapsing approach is applied to the illustrative item in Table I, 

only two groups with k = 18 and 19 would remain, and too much information would be lost. 

An even worse scenario would be that only one group remains.

Thus, instead o f collapsing test score groups, the current study suggests, if  needed, 

collapsing adjacent cells o f item score categories for a given group k to ensure a minimum 

expected category frequency o f 1. For instance, in the group with k = 11 o f the illustrative 

item in Table 1, the z -  3 and z = 4 categories could be combined with the z = 2 category. 

Pett (1997) mentioned that cell-collapsing should be undertaken carefully so that the 

combined cells make intuitive sense. Since the item score categories are ordered, the 

suggested method is considered reasonable. Also, Muraki (1996) used this approach for 

combining response categories. With this collapsing algorithm, the generalized S-X2 has d f  

o f K,Zi -  m -  Ci where m is the number o f item parameters estimated, and C, indicates the 

total number o f item score categories being collapsed. For the illustrative item with 5 

scoring categories in Table 1, the d f = 3 3 * 4 - 5 - 6 1 = 6 6  under the GPCM. Also, the 

generalized S-X2 for this item was found to be 62.11 (p-value = 0.61). So, the GPCM 

appeared to fit the item adequately.

Method

Design o f  Simulation Study

•y
To assess the performance o f the generalized S-X index, a simulation study varying 

polytomous IRT models, test lengths, and sample sizes was conducted. The index selected 

for comparison was PARSCALE’s G2 because it appears to be the most frequently 

employed index in applied settings. Three commonly used polytomous IRT models (RSM,

9
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PCM and GPCM) were explored in this study. Under the GPCM, the probability that an 

examinee j  scores z with z = 0, I , ..., Z, on item / with Z( +1 response categories is modeled 

by the following:

where a, is the discrimination o f item /, /?, denotes the difficulty o f item /, and rci 

represents the location parameter for a category on item i. Equation (7) needs to set r 0/ = 0,

The three polytomous IRT models considered in this study are hierarchically related. 

If a , in equation (7) is fixed at 1 across items, equation (7) reduces to the PCM. Moreover,

if the r values for each category are, respectively, the same across items, equation (7) further 

reduces to the RSM. Consequently, RSM is nested within PCM, while PCM is nested 

within GPCM.

In addition to the three generating models (RSM, PCM, and GPCM), this simulation 

study employed three test lengths ( /=  5, 10, and 20 items), and four sample sizes (N = 500, 

1,000, 2,000, and 5,000 examinees). The three test lengths mimic tests having small, 

moderate and large numbers o f polytomously scored items. The four sample sizes represent 

small, moderate, large and very large samples.

Data Generation

A standard method was employed for item response generation for this study. The 

steps for data generation include: (1) generate item and ability parameters, (2) under the 

chosen IRT model, calculate the probability, P(z\  6 j , a {, p t ,Tci)^ for the responses using the

(7)

X To = ® anc* K  ~(P> ~ xa )}~ 1 f°r m°del identification.
c= l



generated item and ability parameters, and then the cumulative probability denoted 

P* ( z \Oj , a j ,fij ,Td )  = '£j P ( x \ 6 j ,ccj ,fij ,Ta ) ,  and (3) with a random number denoted u
jr=0

drawn from the uniform distribution, U(0,1), assign a response o f 0 if  u< P '{0), or z  if 

P * (z -1 )  < u < P* (z) for z = 1,2, ..., or Z,.

For this study, the item parameters used for simulating response data under the GPCM 

were obtained as follows. The discrimination parameters (a/) were randomly sampled from 

a lognormal (0, ,52) distribution. For each item, four item step parameters (i.e., 

SCI = /?, - T ci where c = 1, 2, 3, or 4) were randomly drawn from four normal distributions 

with a common standard deviation o f 0.5 and means o f -1.5, -0.5, 0.5, and 1.5, respectively. 

The mean of these four step parameters is then used as the item difficulty parameter ( $ ) ,  and

the difference between p. and Sci is taken as rct . This item-parameter generating

procedure was repeated for all /  items. The values for the 0 parameter were randomly drawn 

from the standard normal distribution, N(0,1). With these item and ability parameters, a 

response dataset under the GPCM was generated. The generating procedure for datasets 

under the PCM is the same as that for the GPCM except that the parameters were fixed 

at I. For generating the dataset under the RSM, only one random sample o f each step 

parameters ( r n ) was generated and used for all items, while the discrimination parameters for

each item were also fixed at 1.

Finally, there were a total o f 36 different conditions simulated in this study (3 

generating models x 3 test lengths x 4 sample sizes). One hundred replications were 

generated for each condition, and each condition mimicked 100 different /-item tests from the 

same item pool administered to 100 equivalent groups o f n examinees, respectively.

11



Item Parameter Calibration

The item and ability parameters in each simulated dataset were calibrated using the 

computer program PARSCALE (Muraki & Bock, 1997). Examples o f the PARSCALE 

codes used for GPCM, PCM, and RSM calibration are given in Appendix A. Paralleling 

Orlando and Thissen’s (2000) study, the number o f item parameters o f the calibration model 

(CM) was always fewer than or equal to that o f the generating model (GM). As shown in 

Table 2, when the CM and GM were the same, results were used to evaluate the empirical 

Type I error rates o f the generalized S-X2 and PARSC ALE’s G 2. And, when the CM was a 

simpler model than the GM, results were used to calculate the empirical power o f the item-fit 

indices.

TABLE 2

12

Model Calibration Design in the Simulation Study

Calibrating Model 

(CM)

Generating Model (GM)

RSM PCM GPCM

RSM Type 1 Error Rate Power Power

PCM - Type 1 Error Rate Power

GPCM - - Type 1 Error Rate

This study used a nominal a  o f 0.05. An item was flagged for misfit if the 

significance level (i.e., p-value) for the observed fit index under investigation was less than 

0.05. Under each condition, the simulated Type I error rates or power for the fit indices 

were obtained by dividing the number o f flagged items by 100 x /  upon the completion o f the 

100 replications.



Results

When the CM was same as the GM, the PARSCALE calibrations ran properly and 

converged successfully for all study conditions. However, when the CM is a simpler model 

than the GM, the calibration runs did not converge successfully for some conditions with 100 

EM cycles. The worst situation occurred for the condition with 20 items and 2,000 

examinees under CM = PCM and GM = GPCM. For this condition, 24 out o f 100 data sets 

were not successfully calibrated. In the current study, the problematic cases were excluded 

from the calculations o f empirical power.

The proportions o f items wrongly flagged for misfit are shown in Table 3 for each 

condition. At a glance, the simulated Type I error rates o f the generalized S-X2 did not 

change much across conditions, while the values for the PARSCALE’s G2 differed 

drastically. In the short (5-item) and medium (10-item) test length conditions, the Type 1 

error rates o f G 2 appeared to be severely inflated in most cases. This is not surprising 

because it is a well-known problem for the traditional item-fit indices as mentioned earlier. 

Also, even though the test length is as long as 20 items, G2 had inflated Type 1 error rates in 

the 5,000 examinee conditions (0.213 for the RSM, 0.118 for the PCM, and 0.074 for the 

GPCM). In contrast to the poor performance o f G 2, the generalized S-X2 did not seem to 

be affected by test length, and had empirical Type I error rates ranging from 0.040 and 0.065 

for all study conditions except those with long (20-item) test length and small sample size o f 

500 examinees. In the long (20-item) test conditions, the performance o f S-X2 appeared to 

improve consistently as the sample size increased from 500 to 2,000, but this pattern was not 

observed for G 2.

13
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TABLE 3

Type I Error Rates: Proportions o f Indices with Significance Level Greater Than .05,
Under GM = CM

Test Length and 
Sample Size

Generalized S-X2 PARSCALE G2
RSM PCM GPCM RSM PCM GPCM

5

500 0.048 0.050 0.058 0.432 0.310 0.350
1,000 0.044 0.048 0.046 0.816 0.762 0.676
2,000 0.050 0.052 0.052 0.998 1.000 0.930
5,000 0.064 0.060 0.040 1.000 1.000 0.994

10

500 0.048 0.048 0.065 0.085 0.048 0.034
1,000 0.063 0.056 0.058 0.177 0.103 0.100
2,000 0.061 0.056 0.042 0.424 0.280 0.290
5.000 0.047 0.046 0.052 0.926 0.875 0.654

20

500 0.095 0.098 0.126 0.055 0.024 0.015
1,000 0.065 0.064 0.054 0.061 0.027 0.015
2,000 0.057 0.054 0.049 0.088 0.051 0.025
5,000 0.046 0.055 0.053 0.213 0.118 0.074

Table 4 shows the empirical power o f the generalized S-X and G when the GM is 

more complex than the CM. As expected, the greater the difference that exists between GM 

and CM, the higher the power is. When CM was RSM, the generalized S-X2 was found to 

be more sensitive in detecting misfit with GM = GPCM than with GM = PCM. Similarly, 

for the conditions with GM = GPCM, the conditions with CM = RSM yield higher power 

than those with CM = PCM. For all combinations o f test length and sample size, the highest 

power was found when GM = GPCM and CM -  RSM. These findings reflect the nested 

structure o f the three IRT models. Although both the generalized S-X2 and G 2 showed 

better power as the sample size increased, the power values for G 2 were not very useful 

because o f the inflated Type 1 error rates o f this index under most study conditions.
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TABLE 4

Empirical Power: Proportions of Indices with Significance Level Greater Than .05,
Under GM > CM

Test Length nnd 
Sample Size

Generalized S-X2 PARSCALE G2

PCM > 
RSM

GPCM  > 
RSM

GPCM  > 
PCM

PCM > 
RSM

GPCM  > 
RSM

GPCM  > 
PCM

5

500 0.368 0.615 0.252 0.756 0.731 0.389
1,000 0.606 0.829 0.415 0.966 0.896 0.672
2,000 0.808 0.941 0.625 1.000 0.982 0.848
5,000 0.942 0.981 0.755 1.000 0.998 0.979

10

500 0.289 0.565 0.293 0.562 0.755 0.432
1,000 0.536 0.793 0.459 0.802 0.889 0.565
2,000 0.734 0.918 0.609 0.949 0.973 0.754
5,000 0.929 0.980 0.733 0.998 0993 0.877

20

500 0.302 0.571 0.341 0.494 0.805 0.480
1,000 0.471 0.740 0.406 0.751 0.926 0.630
2,000 0.673 0.888 0.550 0.897 0.970 0.755
5,000 0.889 0.973 0.714 0.971 0.996 0.896

Discussion

As the empirical Type I error rates o f G 2 were found to be inappropriately inflated, 

its performance is not discussed further in this section. The discussion presented here focuses 

on issues related to the generalized S-X2 index. This section begins with a scrutiny on the d f  

adjustment for the number o f estimated item parameters followed by the discussion on the 

performance o f the generalized S-X2.

The d f  Adjustment fo r  the Number o f  Estimated Item Parameters

For the applications o f item-fit indices, controversies over the d f  adjustment for the 

number o f estimated item parameters have been found in the IRT literature. For instance, 

the d f  o f  Yen’s Qi is adjusted for the number o f estimated item parameters, while the d f  o f 

PARSCALE’s G 2 is not adjusted. DeMars (2005) explained that the disagreement comes 

from the difference in item parameter estimation methods. Yen’s Qi is designed for item-fit 

analysis when the joint maximum likelihood (JML) method is used. In contrast, 

PARSCALE employs the marginal maximum likelihood (MML). Mislevy and Bock (1990) 

mentioned, for the MML approach, “the residuals are not under linear constraints and there is



no loss o f degrees o f freedom due to the fitting o f the item parameters (p. 1 -11).”

Even though Orlando and Thissen (2000, 2003) used the MML method with the 

computer program MULTILOG (Thissen, 1991), they applied the ^ad justm ent. An argument 

for using the d f  adjustment was given by Stone and Zhang (2003): Regardless o f item

parameter estimation approach, the d f  adjustment should be used “to account for the fact that 

expected frequencies are based on estimated item parameters (p. 347).” Applying the d f  

adjustment to their studies on S-X2 for dichotomous items, both Orlando and Thissen (2000) 

and Stone and Zhang (2003) found empirical Type I error rates to be close to the nominal 

rates.

Based upon these discussions, a preliminary investigation was conducted to compare 

the applications o f the generalized S*X2 with and without the d f  adjustment. The results 

showed no dramatic difference in the simulated Type I error rates and power even though the 

cases without the d f  adjustment were slightly more conservative. Additionally, since the 

generalized S-X2 was derived on the basis o f Orlando and Thissen’s S-X2, the d f  adjustment 

was utilized for the current study.

Performance o f  the Generalized S-X2

Similar to Orlando and Thissen’s (2000) study on S-X2 for dichotomous items, the 

current study found that the generalized S-X2 exhibited empirical Type I error rates ranging 

from 0.040 to 0.065 for all study conditions except that with test length o f 20 items and 

number o f examinees equal to 500. For this condition, the Type I error rates o f the 

generalized S-X2 appeared to be inflated as high as 0.095 for the RSM, 0.098 for the PCM, 

and 0.126 the GPCM, as shown in Table 3. This could be explained by the inevitable 

sparseness in expected frequencies. Given that there are more score categories and hence 

more total score groups on an I  polytomous item test than on an I  dichotomous item test, the 

applications o f generalized S-X2 would encounter more sparseness in expected frequencies
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for conditions with long tests (e.g., 20 items) and small sample sizes (e.g., 500).

Another issue related to control o f Type I errors is how close the sampling distribution 

o f the item-fit statistics under the null hypothesis is to the theoretical distribution. To study 

the extent to which the null distribution o f the S-X2 index followed a Chi-square distribution, 

Orlando and Thissen (2000) examined the first two moments o f the index. For a Chi-square 

distribution, the mean and variance equal the d f  and 2 * d f  respectively. Also, Stone (2000) 

used the technique o f Q-Q plots to compare the empirical distribution o f the fit statistics o f 

G 2 to the expected Chi-square distribution with an estimated df. These two methods were 

employed for examining the empirical distribution o f the generalized S-X2 index.

It is believed that the generalized S-X has approximately a Chi-square distribution. 

However, for a given test length and a chosen IRT model, the d f  would vary due to the total 

number o f cells being collapsed. For example, the observed d f  ranged from 25 to 47 for the 

100 replicates under the condition with test length o f 5 items and sample size o f 5,000 in the 

Type I error rate analysis under the GPCM. From the 500 simulated items (5 items x 100 

replicates) under this condition, the observed mode o f the d f  was 42 with a frequency count 

o f 65. The mean and variance o f these 65 empirical S-X2 values were found to be 41.00 and 

82.99, respectively. For other conditions, the two moments were also found to be close to 

their expected values. In addition, Figure 1 presents the Q-Q plot to compare the empirical 

distribution o f the 65 S-X2 observations to a theoretical Chi-square distribution with df=  42. 

The plot has a slope and intercept close to 1 and 0, respectively.
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FIGURE 1. Q-Q Plot o f Empirical S-X2 Distribution Compared to a Chi-Square Distribution
with d f = 42

Observed Value

The results o f power analysis in a simulation study for item-fit statistics are closely 

related to how to generate misfitting items under the non-null cases. As shown in Table 4, 

the more different the GM and CM were, the better the observed power analysis results. 

Therefore, the generalized S-X2 had the highest power when the model fit o f  the RSM was 

investigated for the data simulated under the GPCM. Also, for these conditions, a moderate 

sample size o f 1,000 would yield adequate power. When the GPCM was the GM and the 

PCM was the CM, however, a very large sample size (e.g., 5,000 examinees) was required to 

yield acceptable power higher than 0.7 regardless o f the test length. Similarly, when the 

PCM was the GM and the RSM was the CM, sample sizes o f 2,000 or higher are needed for 

the generalized S-X2 index to produce satisfactory power.



Conclusion

Similar to the findings reported in the literature, the results o f the current study 

showed that the performance o f G 2 appeared to be poor in most conditions with short and 

moderate test lengths or very large sample sizes (e.g., 5,000 examinees). In contrast, for 

such tests with 5 or 10 polytomous items, the generalized S-X2 showed superior performance 

in terms o f Type 1 error rate control and power. Similar performance pattern o f the index 

was also found for the cases with very large sample sizes regardless o f test length. 

Consequently, the generalized S-X2 is a promising index for investigating item-fit in 

educational and psychological assessments.

To gain a better understanding o f this promising item-fit index, additional studies 

need to be conducted. First, with the design o f this simulation study, all generated items 

were considered misfit for the power study. Following Orlando and Thissen’s (2003) study, 

the sensitivity o f the generalized S-X2 in detecting different percentages o f misfit items on a 

test form needs to be further studied. Second, the number o f test score groups and hence the 

d f  are determined by the test length and the numbers o f item score categories. All o f the 

simulated items in the current study had a fixed number o f score categories. Thus, studies 

on the impact due to different numbers o f item score categories could provide some insight 

on the behavior o f the index. Third, it is not rare for ability distributions to be non-normal 

for an educational or psychological assessment (Micceri, 1989). The performance o f the 

generalized S-X2 needs to be investigated under conditions where the ability distribution is 

not normal (e.g., uniform or skewed). Finally, noteworthy behavior o f S-X has been found 

for dichotomous and polytomous items separately, yet it might behave differently for mixed 

format tests because o f format effect or multidimensionality. So, further studies on the S-X2 

index for mixed format test data are required.
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Appendix A

Examples of the PARSCALE Codes Used for GPCM, PCM and RSM Calibration
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< A-1: GPCM >

>FILE DFNAME='ca001.dat\ SAVE;
>SAVE PARM='gpgp22ca001.par';
>INPUT NIDW=3, NTOTAL=10, NTEST=1, LENGTH{10), NFMT=1;
(3A1,T1.10A1)
>TEST1 TNAME=gp22ca001, ITEM=(1 (1) 10), NBLOCK=10;
>BLOCK BNAME=SBLOCK1, NITEMS=1, NCAT=5, SCORING=(1,2,31415)1 REPEAT = 10; 
>CALIB PARTIAL, LOGISTIC, CYCLES=(100,1,1,1), SCALE=1.0, NQPTS=40, ITEMFIT=10; 
>SCORE NOSCORE;

< A-2: PCM >

>FILE DFNAME='ca001.dat', SAVE;
>SAVE PARM='pgp22ca001.par';
>INPUT NIDW=3, NTOTAL=10, NTEST=1, LENGTH(10), NFMT=1;
(3A1 ,T1,10A1)
>TEST1 TNAME=gp22ca001, ITEM=(1(1)10), NBLOCK=10;
>BLOCK BNAME=SBLOCK1, NITEMS=1( NCAT=5, SCORING=(1,2,3,4,5), REPEAT = 10; 
>CALIB PARTIAL, LOGISTIC, CYCLES=(100,1,1,1), SCALE=1.0, NQPTS=40, 
ITEMFIT=10,SPRIOR, PRIORREAD;
>PRIORS SMU=(1(0)10), SSIGMA=(0.0000001 (0)10);
>SCORE NOSCORE;

< A-3: RSM >

>FILE DFNAME=’ca001.dat\ SAVE;
>SAVE PARM='rgp22ca001.par’;
>INPUT NIDW=3, NTOTAL^IO, NTEST=1, LENGTH{10), NFMT=1; 
(3A1,T1,10A1)
>TEST 1 TNAME=gp22ca001, ITEM=(1{1)10), NBLOCK=1;
>BLOCK BNAME=SBLOCK1, NITEMS=10, NCAT=5, SCORING=(1,2,3,4,5); 
>CALIB PARTIAL, LOGISTIC, CYCLES=(100,1,1,1), SCALE=1.0, NQPTS=40, 
ITEMFIT=10,SPRIOR, PRIORREAD;
>PRIORS SMU=(1(0)10), SSIGMA=(0.0000001 (0) 10);
>SCORE NOSCORE;
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