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Abstract

This study examined the usefulness of applying the Rasch rating scale model (Andrich, 1978) to 

high school grade data. ACT Assessment test scores (English, Mathematics, Reading, and Science) 

were used as “common items” to adjust for different grading standards in individual high school courses 

both within and across schools. This scaling approach yielded an ACT Assessment-adjusted high school 

grade point average (AA-HSGPA) that was comparable across schools, cohorts, and among students 

within the same school and cohort who take different courses. The AA-HSGPA was constructed for all 

ACT-tested students (N=36,652) in 50 selected high schools. First-year college grades at a large public 

university were available for approximately 1,500 of these students. AA-HSGPA was a better predictor 

of first-year college grade point average (CGPA) than the regular high school grade point average 

(HSGPA). As expected, the regression o f CGPA on HSGPA for high schools grouped by difficulty with 

regard to grading policy (easy or hard) differed, but the regressions of CGPA on AA-HSGPA and the 

ACT Composite score (ACTC) did not. The best model for predicting CGPA included both the ACT 

Composite score and AA-HSGPA.





Constructing a Universal Scale of High School Course Difficulty

As a measure of academic achievement, the grade point average (GPA) is limited by the 

extraneous effects of schools and courses. The problem of school effects was first to be 

recognized. Linn (1966) noted that variation in grading practices among high schools made the 

high school GPA (HSGPA) a sub-optimal predictor o f achievement in college. The problem of 

course effects has received attention more recently. Students can earn a higher grade point 

average simply by taking easier courses. These problems fuel grade inflation at the high school 

level (Ziomek and Svec, 1995), and create incentives for students to avoid courses in difficult 

subjects such as mathematics and science (Johnson, 1997).

In an effort to improve the prediction of college GPA (CGPA) by HSGPA, a number of 

earlier studies attempted to adjust both the predictor and criterion grades (Bashaw, 1965; Bloom 

and Peters, 1961; Lindquist, 1963; Potthoff, 1964; Tucker, 1963). This approach, called "central 

prediction systems,” was an attempt to control for school effects. Disappointment with this 

approach centered largely on the practical difficulties of its implementation. It was difficult to 

find enough students from a given high school within a given college to estimate coefficients in 

nested regression equations. Data for one or more variables in the equations were frequently 

missing for many o f the students who could be found. Linn (1966) noted that the accuracy of 

central prediction systems often was not so much better than that o f simply using a standardized 

test, such as the ACT Assessment, in conjunction with HSGPA, to predict college achievement 

as to justify the cost and expense o f these systems.

In an attempt to construct more reliable, predictable measures o f college achievement, 

scaling models have been used to control for the effects o f college courses (Johnson, 1997; 

Young, 1990). These models have been applied only to college course grade data, possibly



because course-taking patterns differ more among college students than among high school 

students. Scale-adjusted CGPA measures, like CGPA, represent student achievement on a single 

(uni-dimensional) scale and are constructed entirely from course grade data.

These scaling procedures have shown promise. Compared to raw CGPA, scale-adjusted 

CGPA is more predictable by pre-admissions variables such as HSGPA and standardized test 

scores (Caulkins, Larkey, & Wei, 1996; Johnson, 1997; Young, 1990;). Scale-adjusted CGPA is 

also better able to predict which of two students received the higher grade if both students took 

the same college course (Johnson, 1997).

The question to be addressed by the present study is whether a scaling approach might be 

effective in controlling for both school and course effects on HSGPA. With regard to controlling 

for course effects within a high school, the motivation and procedures are similar to those in 

studies with college course grade data. For example, within any given high school, some 

college-bound students take core college-preparatory courses, while others don't. These 

differences reduce the ability o f HSGPA to predict college achievement. A scale-adjusted 

HSGPA can be constructed from data within a high school because courses taken by the same 

students are "common items", and students who take the same courses are "common persons" in 

scaling terminology.

In order to control for school effects in a scaling procedure, however, one needs one or 

more common items between the schools. Linn (1966) suggested that an external variable, such 

as a standardized test, could be used in this fashion. In this study, we will use ACT Assessment 

test scores as "common items." The ACT Assessment tests (English, Mathematics, Reading, and 

Science) are curriculum-based achievement tests (ACT, 1997). ACT test scores have strong 

relationships to high school course loads and to self-reported grades in high school (Noble &



McNabb, 1989). Scores on these tests are comparable across high schools and over time (ACT, 

1997). The ACT Assessment is taken by over one million high school juniors and seniors in 

thousands of high schools (ACT, 2002). With these characteristics, ACT Assessment tests are 

ideal "common items" for constructing a universal scale o f high school course difficulty. The 

scale-adjusted HSGPA in our study is called "AA-HSGPA" because it is adjusted for school 

effects by the ACT Assessment tests.

A potential advantage of a scaling approach over a central prediction system concerns the 

sample size and data requirements for estimating prediction equations. An AA-HSGPA can be 

constructed for any student in a high school in which a sufficient number of students take the 

ACT Assessment. With some scaling models, as few as thirty students may be needed to 

estimate the difficulty of a course on the universal scale. These data can be collected over time, 

including more than one year, as long as the grading practices for the courses or school remain 

approximately the same. The AA-HSGPA can be used to predict achievement at any college. 

Within a college, AA-HSGPA can be used to predict achievement o f students from different high 

schools. There does not have to be a minimum number o f students from a given high school 

who enrolled in a particular college to incorporate school effects in CGPA predictions.

Source of Data
j

ACT Assessment scores include four subject-area scores—English, Mathematics, 

Reading, and Science—on a 1 to 36 point scale, plus a Composite score. The Composite score is 

the rounded average of the four subject area scores. The mean Composite score among ACT- 

tested students nationally is 20.8 (ACT, 2002).

Self-reported high school grades came from the Course Grade Information Section 

(CGIS) of the Student Profile component o f the ACT Assessment. This component is completed
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voluntarily by students when they register for the ACT Assessment. Students are asked to report 

grades in standard college preparatory courses such as English 9 to English 12, Algebra, 

Geometry, etc. Course grades are reported on the A to F scale. Previous research shows that 

self-reported grades are highly comparable to actual grades received (Sawyer, Laing & Houston, 

1988). For all analyses high school course grades were numerically coded as A -4, B=3, 0=2, 

D =l, and F=0. All analyses used self-reported grades in the 23 college preparatory high school 

courses included in the CGIS whose contents are represented by ACT Assessment tests (Table

1). Self-reported grades on non-core courses such as art and language were not included.

Data for this study included different samples, as explained below. Figures 1 and 2 

depict the relationship among the different samples.

Sample A

This sample consisted o f all o f the high schools represented in four freshman cohorts 

from a public university (referred to as Midwest University or MU). There were 390,179 

students from over 1,300 high schools. These students were in the high school graduating 

classes o f 1996, 1997, 1998, or 1999, had self-reported high school grades and ACT Assessment 

scores, and were attending a high school that had one or more graduates who attended the 

Midwest University between 1997 and 2000 inclusively. In short, Sample A represents ACT- 

tested students in high schools that send students to Midwest University.

Sample B

Fifty schools were selected that were representative o f the distribution of ’difficulty’ of 

the 1300 plus high schools and had ten or more graduates who attended the Midwest University 

between 1997 and 2000 inclusively. The selection o f these fifty schools was done in the 

following manner. The mean ACT Composite score (ACTC) and mean high school GPA, based
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on self-reported grades, was computed for each o f the 1300-plus schools (for 390,179 students). 

Mean HSGPA was regressed on mean ACTC. Fifty schools were selected so the weighted mean 

and variance of the residuals from the 50 schools matched the weighted mean and variance of the 

residuals from the 1300 plus schools. These residuals were weighted by the number o f students 

within each school who attended Midwest University. This sample included all ACT-tested 

students who graduated from the fifty selected high schools from 1996 to 1999. There were 

36,652 students in this sample.

Sample C

This sample included all Sample B students who earned at least one grade at the Midwest 

University in the two semesters of the year following their high school graduation. There were 

1,505 of these students. The number of students per school (50 schools) in this sample ranged 

from 8  to 131 (for any given school, Sample C is a subset of Sample B and may contain fewer 

than 1 0  students).

Computation o f College GPA (CGPA). The college GPA was the unweighted average of 

the grades reported for the first two semesters. Grades included pluses (+) and minuses (-). 

These were numerically coded as A=4, B~3, C=2, D =l, F=0 with 0.33 added or subtracted for a 

plus or minus (there were no F- grades). A CGPA was computed for all students in Sample C. 

The number o f students for whom a CGPA was computed, by cohort, was 348 for 1996, 370 for 

1997, 397 for 1998, and 390 for 1999. The number o f grades per student ranged from 2 to 18. 

Over eighty-five percent o f these students had 7, 8 , or 9 grades. The mean CGPA, by cohort, 

was 2.72 for 1996 and 1997, 2.74 for 1998, and 2.80 for 1999.
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Sample D (Students from Easy High Schools) and Sample E (Students from  Hard High Schools)

Two or more schools were selected from each end o f the ordered residuals from the 

regression of mean ACT Composite on mean HSGPA to represent easy and hard high schools 

with regard to grading policy o f the fifty high schools. Easy and hard high schools were selected 

in an attempt to show that HSGPA is influenced by school effects, whereas, ACTC and AA- 

HSGPA are not. Note that negative residuals correspond to schools with strict grading policies 

(hard high schools), whereas positive residuals correspond to schools with lenient grading 

policies (easy high schools). Out o f the 1,505 students included in this study who attended 

Midwest University, easy and hard high schools represented a total o f 166 and 169 students, 

respectively.

Methods

Scaling Analyses

All scaling analyses were performed with the Bigsteps computer program, Version 2.27 

(Wright & Linacre, 1990). Bigsteps estimates the parameters of a number o f Rasch models 

including the Rating Scale Model (RSM) (Andrich, 1978) and the Partial Credit Model (PCM) 

(Masters, 1982). In a comparison study that involved a cross-validity component (Lei, Bassiri, & 

Schulz, 2003), the RSM and PCM performed well on course grade data in comparison to the 

other models including linear models (Caulkins, et al. 1996), the Graded Response Model 

(Samajima, 1969), and the Generalized Partial Credit Model (Muraki, 1992).

For J+l distinct grades numerically coded F=0, D=1, . . A=4,  (J+l = 5) the RSM is:



In is the natural log function,

P nij is the probability that student n earns grade j in course i,

Pnij-i is the probability that student n earns grade j -1  in course i,

/?n is the AA-HSGPA of student n,

$  is the difficulty of course i,

z] is the "step threshold"—the difficulty of earning grade j or higher given the student 

earned at least grade j - 1 .

In the RSM, courses share a common set o f step thresholds ( 73, j - 0 , . . ,,J). Course-specific 

step thresholds are incorporated into the PCM by the use of a parameter in place of <$-Tj in 

Equation (1). In both models, the parameter value corresponding to j=0 is 0. The RSM was used 

for course grade data because the number of students per course within a high school was too 

small to yield reliable course-specific step threshold estimates.

To construct AA-HSGPA measures, we performed three basic series o f Bigsteps 

analyses. Each series o f analyses used Sample B—all ACT-tested students from 50 selected high 

schools. In these analyses, we recoded ACT test scores, which normally range from 1 to 36, into 

a smaller number o f ordered categories, similar to course grade data. The ACT scale scores were 

re-coded as follows: [0,16]=0, [17,19]=1, [20,22]=2, [23,25]=3, [26,36]=4. This coding yielded 

the same number o f levels as course grades (five), with approximately equal numbers of students 

per level. It was reasoned that the uniform relative frequency of the levels would maximize the 

collective reliability o f the threshold parameter estimates and that more or fewer than five levels 

would give, respectively, too much or too little weight to the ACT tests in determining the 

characteristics o f the common scale. Moderate departures from this coding scheme, such as the
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use of four or six levels, or coding that produce lower frequencies at the extremes, were not 

expected to substantially affect the results of the study.

In the analyses described below, the PCM was used for the recoded ACT test scores 

because, as common items, sample sizes for these items were large enough to estimate item- 

specific step threshold parameters:

Step 1. Calibration o f  ACT tests. The purpose of this analysis was to bring the ACT tests 

onto a scale that represents high school course grades. This was done by jointly calibrating 

(estimating the parameters of) ACT tests and high school courses. A single Bigsteps analysis 

was performed using all the Sample B data. We did not consider it necessary at this point for the 

high school course parameters to be school-specific, so only twenty-seven items were defined for 

the analysis. The Partial Credit model was used for the 4 ACT tests and the Rating Scale model 

was used for the 23 high school courses. The overall estimate of the difficulty o f each course 

provided by this analysis was used for purposes o f general comparison (see Table 1), but not for 

any other purpose.

Step 2. Calibration o f courses. School-specific analyses were performed in order to 

allow courses to have school-specific locations on the common scale. In each analysis, 

parameters of the four ACT test "items" were anchored (fixed) to the estimates obtained for them 

in Step 1, while Rating Scale model parameters o f the 23 courses (and step parameters) were 

estimated. These analyses treated the ACT tests as common items across schools and treated 

courses with the same title, such as Algebra, in different schools as distinct courses. Each school 

had its own Rating Scale model step structure. Differences in course parameters reflect main 

effects o f schools, courses, and their interaction. We refer to these effects loosely as between- 

school and within-school course effects.
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Step 3. Estimating student measures. The person statistics output from the Step 2 

analyses were not used because they were based on a combination o f ACT test scores and high 

school grades. We preferred to work with measures that separated these two sources of 

information. In order to obtain a measure on the common scale based exclusively on course 

grades (except for the use o f the ACT tests to create the common scale), analyses were 

performed again separately by school. Each analysis involved just the twenty-three courses. The 

course parameters were anchored at the estimates obtained in Step 2. The person measures

obtained from these analyses (i.e., the f in) were AA-HSGPA measures. It should be noted that

these measures are on a logit (log-odds) scale whose origin (zero) is the average item difficulty 

from the Step 1 analysis, and have a theoretical range o f minus to plus infinity.

Regression Analyses

Regression analyses were performed on data from Samples C, D (easy) and E (hard) as 

follows:

M idwest University prediction analyses. In order to compare and contrast the ability of 

HSGPA and AA-HSGPA with or without ACTC in predicting CGPA, five prediction analyses 

(using proc REG in SAS) were performed on Sample C data.

1) CGPA = ACTC

2) CGPA = HSGPA

3) CGPA = ACTC, HSGPA

4) CGPA = AA-HSGPA

5) CGPA = ACTC, AA-HSGPA

D ummy variable regression. In an attempt to show that HSGPA is influenced by school 

effects, whereas, ACTC and AA-HSGPA are not, nine regression analyses (using proc GLM in
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SAS) were performed on the Samples D (easy high schools) and E (hard high schools), where 

high school type (HS-type), easy or hard, was dummy coded as [hard =1] and [easy=0]. For the 

ACTC the regression formulas were

1) Common Intercept & Slope (Model I)

CGPA = ACTC

2) Separate Intercept & Common Slope (Model II)

CGPA = ACTC, HS-type

3) Separate Intercept & Slope (Model III)

CGPA = ACTC, HS-type, ACTC * HS-type 

The same models as above were applied to the other two predictors (HSGPA and 

AA-HSGPA), replacing ACTC in the equations. Note also that each predictor was centered 

around its respective mean. This was done by subtracting a constant of 24.16, 3.41, or 2.57 from 

each student’s ACTC score, HSGPA score, or AA-HSGPA score, respectively.

Results

Summary Statistics

Table 2 shows means and standard deviations for ACTC, HSGPA, AA-HSGPA and 

CGPA for Samples C, D, and E. Notice that easy and hard high schools are very similar in terms 

of ACTC, AA-HSGPA and CGPA, but different with respect to HSGPA (3.67 vs 3.16). Also 

note that AA-HSGPA is not on the same scale as HSGPA (i.e., not on a 0 to 4 scale).

Overall Difficulty o f  Courses

The overall difficulty o f each course, obtained from Step 1 o f the Scaling Analysis, is 

represented in Table 1 and plotted in Figure 3. Numbers on the overall curve in Figure 3 

correspond to the high school course sequence number as shown in Table 1. Notice that
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Computer Science (#12), English 11 (#3) and Beginning Calculus (#10) are ranked as easiest, 

moderate, and hardest overall, respectively.

School-specific Course Difficulty

Also, in Figure 3, the difficulty of the high school courses within two schools (denoted 

School A and School B) are plotted against overall average course difficulty. These schools 

were selected because they had the most extreme average course difficulty as measured by the 

courses’ school-specific parameter estimates in Step 2 of the Scaling Analyses. School A ’s 

average course difficulty was -2.54 and school B’s was 0.90. Overall average course difficulty 

was - 0 .2 2 .

Step Difficulties for 50 high schools are depicted in Figure 4. Recall that the 23 high 

school courses were constrained to have a common set of step parameters within a school, but 

the step parameters were allowed to vary across schools. As shown in Figure 4, step thresholds 

get progressively higher as we move from step 1 to step 4.

Figure 5 shows the difficulty distribution of three selected courses across high schools. 

The selected courses were the easiest (Computer Science, #12) and hardest (Beginning Calculus, 

#10) overall according to Table 1, and also included a course of moderate overall difficulty 

(English 11, #3). The reliability o f the school effect on these courses' difficulty varied from 

substantial (0.99 for English 11) to moderate (0.70 for Computer Science) to low (0.17 for 

Beginning Calculus). The reliability reflects differences in the across-school variance and in the 

percentage of students taking the course (the higher the percentage the higher the reliability for a 

given level o f variance). The across-school variance was 1.14, .81, and .87 for, respectively, 

Computer Science, English 11, and Beginning Calculus. The percentage o f students taking the 

course was, respectively, 8 %, 8 6 %, and 4% (see Table 1). Taken together, these results indicate
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that grades are not generally comparable across high schools even for courses o f the same title, 

and that grades in some courses, e.g., Computer Science, may be less comparable than grades in 

other courses, such as Beginning Calculus.

Midwest University Prediction Analyses

2 'The proportion o f variance (R ) explained by each o f the five prediction models was

significant at the .01 level (see Table 3 for R2 and p values). However, the AA-HSGPA was a

better predictor than the HSGPA (0.25 versus 0.17). These R values were improved (to 0.27 vs

0.22, respectively) by the addition o f the ACT Composite as a predictor.

Dummy Variable Regression

Table 4 reports R and the F-ratio for the difference between the three models I, II, and III

regarding whether separate regression lines are needed for easy versus hard high schools. As

expected there was a significant difference between hard and easy high schools regarding

unadjusted high school GPA (HSGPA). This inference is based on the significant F-ratio for the

difference between models II and I (5.49) and between models III and I (7.50). These results

indicate that there is a significant main effect regarding high school type (easy or hard).

However, in the presence o f a significant F-ratio of 9.37 (at .01 level) for the difference between

models III and II, we can conclude that separate intercept and slope is the appropriate model to

be considered for predicting CGPA from HSGPA from high schools o f different grading

difficulty.

As expected there were no significant differences between easy and hard high schools in 

the regression coefficients for ACTC and AA-HSGPA. Neither main effects nor interaction 

effects were significant. This is apparent from Table 4, as none o f the F-ratios for the difference 

between models were significant for the two predictors.
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Once again the proportion o f variance accounted for by each o f the three predictors was 

significant at the .01 level. There was an increase in predictability measured by R when the 

predictor variable was AA-HSGPA rather than raw high school GPA (HSGPA). This is apparent 

from Table 4 under R , when we compare the third and second rows.

Schematically the above inferences may be drawn from Figures 6 , 7, and 8 . As there is 

only significant high school type effect when predicting CGPA from HSGPA (see Figure 7) and 

no significant difference between easy and hard high schools when ACTC or AA-HSGPA are 

considered (see Figures 6  and 8 , respectively). As expected this predicts that a student from a 

hard high school will have a higher CGPA than a student from an easy high school with an 

identical HSGPA. However, in the presence of interaction this difference becomes less and less 

apparent as we move to the high end of HSGPA. Note that the three points on each regression 

line corresponds to the mean, fifth percentile, and ninety-fifth percentile values of the respective 

predictor variable.

Conclusion

The results o f this study reveal the problems with using the high school grade point 

average alone to predict achievement in college. As shown in Figure 7, HSGPA has a different 

relationship to college achievement, depending on the grading standards o f the high school. This 

is the basic phenomenon that led early researchers to consider using high school and college- 

specific regressions in “central prediction systems” to improve information for college 

admissions decisions (Lindquist, 1963; Linn, 1966).

Our results also show and confirm the notion that a standardized test such as the ACT 

Assessment is a common yardstick for comparing academic achievement o f students across 

schools. In Figure 6 , the regression lines for easy vs. hard high schools are similar. In Table 4,
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the parameters allowing separate intercept and slopes for easy versus hard high schools are not 

statistically significant.

The unique contribution o f this study, however, is that it presents an additional way to 

use the ACT Assessment as a common yardstick. The traditional use o f the ACT Assessment is 

to consider students’ test scores, along with other factors, such as HSGPA, to predict students' 

achievement in college and to make college admissions decisions. This use concerns differences 

among students. Another way is to use the ACT Assessment to control for school effects (by 

constructing AA-HSGPA). This use concerns differences among schools. There is no overlap or 

redundancy between these two uses.

The continued, traditional use o f ACT Assessment scores is consistent with the results o f 

this study. Although grade-based, high school achievement measures, such as HSGPA and class 

rank (which is based on HSGPA) typically slightly outperform standardized tests such as the 

SATI or ACT in predicting college GPA (Noble 1991; Willingham, Lewis, Morgan, & Ramist, 

1990; present study), such results have not been interpreted to suggest that college admissions 

decisions should be based on high school grades alone. One reason standardized tests continue 

to be used is that they improve the prediction o f college GPA. In the present study, for example, 

R2 values for predicting CGPA improved from 0.17 to 0.22 when ACTC was combined with 

HSGPA, and also improved from 0.25 to 0.27 when ACTC was combined with AA-HSGPA.

Another reason ACT Assessment tests should continue to be used traditionally is related 

to the nature o f course grades. Course grades can be based on many factors such as attendance, 

social conformity, willingness to please authority figures, and class participation. These factors 

do not represent cognitive academic achievement. Indeed, one possible explanation for the fact 

that grade-based measures from high school and college correlate slightly better with each other
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than with a standardized test is that they have more non-cognitive factors in common. Their 

widespread use as measures o f academic achievement is sometimes attributed to the convenience 

of obtaining them rather than to their validity as measures of academic achievement (Johnson, 

1997).

Finally, it seems to be common wisdom that no single variable can be relied upon for 

making admissions decisions or for representing academic achievement. Besides being 

comparable across schools, standardized tests are used in combination with grade data because 

they represent unique variables. As objective measures o f cognitive academic achievement, 

ACT Assessment scores are less influenced by the same, possibly extraneous, factors that 

influence course grades. Therefore, even if  high school grades could somehow be made 

comparable across schools, as with the AA-HSGPA, they would not represent the same variable 

as an ACT Assessment score. The consequence o f this point is illustrated in this study by the 

fact that the ACTC improved the prediction o f CGPA over that of AA-HSGPA alone.

The present study showed that scaling approaches to high school grade data could be 

useful. However, no adjustment was made on college grade data. Linn (1966) suggested using 

regression-adjusted GPA at both the high school and college levels in “central prediction 

systems.” A related question for future research, then, is how much improvement in predicting 

achievement in college from high school grade data can be gained when adjustment is made at 

both levels. We expect that the best model will consist o f AA-HSGPA and ACT Assessment 

scores predicting a scale-adjusted CGPA.
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TABLE 1

List of First Twenty-Three Courses in the CGIS and Percent Course Taken 
and Course Difficulty from 50 High Schools

Course number Course title % taken
Rating scale model 

difficulty
1 English 9 94 -0.36

2 English 10 94 -0.39

3 English 11 8 6 -0.23

4 English 12 13 -0.77

5 Speech 35 -0 . 6 6

6 Algebra I 90 -0.18

7 Algebra II 79 0.16

8 Geometry 89 0.15

9 Trigonometry 33 0.29

1 0 Beginning Calculus 4 0.47

11 Other Advanced Math 16 0.27

12 Computer Science 8 -1.08

13 General Science 55 -0.60

14 Biology 92 -0.06

15 Chemistry 74 0.23

16 Physics 33 0.34

17 U.S. History 8 8 -0.31

18 World History 6 8 -0 .2 1

19 Other History 19 -0.23

2 0 American Government 21 -0.39

21 Economics 19 -0.54

2 2 Geography 26 -0.65

23 Psychology 14 -0.42
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TABLE 2

Descriptive Statistics for Models Predicting CGPA using ACTC, HSGPA and AA-HSGPA 
as Predictors by Different Samples of High Schools

Variable

Sample
D

Students from easy 
high schools

E
Students from hard 

high schools
D & E

combined C

ACTC 24.02 (3.44) 24.30 (3.09) 24.16(3.27) 24.42 (3.52)

HSGPA 3.67 (0.31) 3.16(0.41) 3.41 (0.36) 3.41 (0.46)

AA-HSGPA 2.68(1.40) 2.47(1.17) 2.57(1.29) 2.70(1.42)

CGPA 2.80 (0 .6 6 ) 2.72 (0.61) 2.76 (0.64) 2.74 (0.67)

Note 1. SDs are given in parentheses. Also, SDs for combined samples are based on square root 
of pooled within variances o f easy and hard high schools.
Note 2. AA-HSGPA is theoretically unbounded; ACTC is on 0 to 36 and HSGPA and CGPA 
both are on 0 to 4.
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TABLE 3

R2 Values for Models Predicting College GPA (CGPA) 
N =l, 505 from 50 High Schools

Predictor R2 P
ACTC 0 . 1 2 0.0001

HSGPA 0.17 0.0001

ACTC, HSGPA 0 . 2 2 0.0001

AA-HSGPA 0.25 0.0001

ACTC, AA-HSGPA 0.27 0.0001

Note: The R2 values in this table are somewhat lower than, or not strictly comparable to, those 
that are typically obtained or might be obtained. Typically, the R between CGPA and a 
standardized test battery is based on multiple predictors (e.g., all four ACT tests), and the CGPA 
is the credit-weighted average o f course grades. Likewise, in ACT’s prediction research 
services, high school grades are represented as multiple predictors consisting o f subject area 
GPA's in English, Mathematics, Social Studies, and Natural Sciences. In one recent ACT report 
(Maxey, 2001) the median correlation between the freshman CGPA and predictive indices based 
on either 1) ACT tests, 2) self-reported high school grades, or 3) their combination were, 
respectively, .423, .484, and .530. These translate to R2 values of .18, .23, and .28, respectively. 
These values were based on 291 colleges and the 1997-98 college freshman cohort.
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TABLE 4

Dummy Variable Regression for Easy and Hard High Schools

Predictor

R2 F-ratio for difference

Common 
intercept & 

slope
(I)

Separate 
intercept & 

common 
slope
(ID

Separate 
intercept & 

slope 
(HI) II vs I III vs I III vs II

ACTC 0.10** 0 . 11* * 0 . 11* * 2.40 1.30 0.22

HSGPA 0.08** 0.10** 0.12** 5.49* 7.50** 9.37**

AA-HSGPA 0.16** 0.16** 0.16** 0.43 0.64 0.86

** Significant at .01 level 
* Significant at .05 level
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FIGURE 1. ACT-Tested Samples (A & B)
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FIGURE 2. ACT-Tested, Midwest University Samples (C, D, & E)
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FIGURE 3. Course Difficulty Overall and Within Two High Schools
with Extreme Average Course Difficulty

Course Rank by Overall Difficulty



D
if

fi
cu

lt
y

FIGURE 4. Plot of Step Difficulties ( r y) for 50 High Schools
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FIGURE 5. Plot of Course Difficulties for 50 High Schools

{Conputer Science) (English 11) (Beginning Calculus)

Course Rank By Overall Difficulty
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FIGURE 6. Plot of Regression Line of CGPA on ACTC
for Hard and Easy High Schools
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FIGURE 7. Plot of Regression of CGPA on HSGPA
for Hard and Easy High Schools

HSGPA
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FIGURE 8. Plot of Regression Line of CGPA on AA-HSGPA
for Hard and Easy High Schools

AA-HSGPA










	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041



