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Abstract

Automated test assembly is a technology for producing multiple, equivalent test forms 

from an item pool. An important consideration for test security in automated test assembly is the 

inclusion of the same items on these multiple forms. Although it is possible to use item selection 

as a formal constraint in assembling forms, the number o f constraints is often so large to begin 

with that imposing additional constraints may produce unsatisfactory results. In this paper we 

propose an alternative method for controlling item allocation that is based on randomization. An 

example from an actual item pool is presented to illustrate the method.





Controlling Item Allocation in the Automated Assembly of 
Multiple Test Forms

The automated assembly o f multiple test forms for online delivery offers an alternative to 

a single, computer-administered, fixed test form or even a computerized-adaptive test. The 

constructed forms are usually assembled according to a set of content and psychometric 

specifications obtained from a reference test (i.e., a test form that has been administered 

previously and has exhibited acceptable results in terms o f form difficulty, variability, reliability, 

passing rate or other psychometric considerations). If the constructed tests all meet these 

reference specifications, by making some assumptions concerning the operating characteristics 

o f the items, the test forms can be thought o f as equivalent in some sense. For example, if the 

psychometric specifications refer to the first and second moments o f target difficulty and 

variability for each individual examinee, the constructed test forms would be parallel if  all o f  the 

psychometric specifications were met across all o f the test forms. The result is that a single 

passing standard or score could be used across forms, eliminating the need for post­

administration equating or the establishment of separate passing scores for each form.

The multiple forms may or may not consist o f unique test items. Frequently, item pools 

from which the forms are constructed are small relative to the length and the number o f forms 

required. Consequently, individual items may appear on more than one form. For example, if 

we were assembling five forms o f the same test from a pool o f items, each item within the pool 

would appear on either 0, 1,2, 3, 4, or 5 forms. The number o f items, nm, that appear on 

m = 0, 1, 2, 3, 4, 5 forms represents the allocation o f items across the five test forms. We refer to 

the appearance o f items across multiply constructed test forms as item allocation.

If enough items appear frequently on many forms, the security o f the items and the 

validity o f the test results could be in question. One o f the goals o f the test assembly or



construction process should be to minimize test-overlap rate, defined as the proportion o f items 

shared between any two forms. One way to do this is to include item usage as a constraint or 

target in the solution o f the assembly problem. However, this may be unnecessary, especially if 

the form-assembly problem is burdened with numerous other constraints such as multiple levels 

o f content categories and key balancing requirements, in addition to the psychometric 

requirements o f the test forms. And any constraint that forces items onto a test form may end up 

doing so at the expense of other constraint goals. It may be more efficient to implement a 

simpler process to control the allocation o f items across multiple forms. The purpose o f this 

paper is to illustrate, by example, a simple randomization process that controls item allocation by 

minimizing the average test-overlap rate between pairs o f test forms while producing tests that 

meet content and psychometric assembly constraints.

Ideal Item Allocation across Multiple Test Forms 

What is the most ideal distribution or allocation o f test items across multiple, equivalent 

test forms constructed from the same item pool? Obviously, the most desirable distribution or 

allocation from a test security standpoint is one in which there are no shared items across the 

forms. However, the item pool would have to be quite large relative to the length o f each test 

form and the number o f forms required to achieve this ideal. In addition, the pool would have to 

consist o f enough “good” items so that all o f the psychometric constraints could be met. And 

obviously if there were content constraints as well, there would have to be a sufficient number of 

items within each content category to satisfy the assembly goals.

If such an ideal allocation cannot occur, one might ask what is “next-best”? From a test 

security perspective, we want to minimize the number o f times that an item appears on every 

constructed form or nearly every constructed form. And from a test development perspective, we
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do not want the situation where a large proportion o f available items in the pool never appears on 

a single form. The latter situation would appear to be a waste o f development time and money. 

To accomplish this goal, we present a method of controlling item appearances on multiple test 

forms that is derived from random sampling without replacement. This method can be 

implemented with any automated test-assembly procedure. It is based on the idea that if one 

could guarantee that the psychometric constraints would be met, the best way to safeguard 

overexposure of items would be to select them from the pool or each content category at random 

without replacement. If  this were possible, the resulting allocation of items across forms would 

be defined as optimal, in the sense that it minimizes average test overlap o f the constructed test 

forms. This claim is substantiated later in this paper.

Traditional Method of Controlling Item Exposure in CAT 

Because the method o f controlling item inclusion on assembled test forms is very similar 

to the traditional tactic used to manage computerized adaptive testing (CAT) programs, it is 

helpful to review that approach. The typical method o f controlling for item exposure in CAT 

situations is to use a conditional approach first suggested by Sympson and Hetter (1985). For this 

procedure, a maximum expected item-exposure rate, r, is first established. The goal is to find a 

set of item-exposure-control parameters that govern the administration o f items in a CAT item 

pool in such a way that no single item is ever administered more than rl00%  of the time, where 

0 < r <  1.

The approach is called conditional because it is formulated within the context o f a 

conditional probability statement. If P,(S) is the probability that item i is selected for a CAT 

administration, and P,{S,A) is the probability that item i is selected and administered (i.e., 

exposed), then an item’s exposure control parameter is simply P,(A|S), the probability of
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administering an item, given that it has been selected, or P,(A|S) = P,(S,A) -r P/(S). The purpose 

o f this conditional probability is to allow the item to be administered only if  the conditional 

probability is satisfied, thus controlling for the exposure o f that item.

If P,(S,A) is replaced by the target-exposure rate, r, CAT simulations and an iterative 

procedure are used to obtain a value o f P,(A|S) for each item in the pool. Simulated examinees, 

similar in number and ability distribution to the intended CAT examinee population, are 

administered items selected from the CAT item pool. The values o f P,(S) are usually all set to 1.0 

at the beginning o f a set o f simulations. The items are then selected on their ability to satisfy 

whatever constraints are required (e.g., maximum information at ability estimates, content 

specifications). However, they are only administered if  a uniform random deviate is less than or 

equal to P,(S). If it is not, the items are temporarily set aside until all other items have been 

administered to a particular examinee or the pool has been exhausted. After all N  simulated 

examinees have taken the CAT, and the number o f times each item has been selected, S has been 

counted, P,(S) is replaced by (5, -r N) and the process begins again. P,(S) continues to be refined 

until such time that the proportion o f times that an item has been selected and administered across 

all examinees, or (At N), is close to the target value r. The number o f iterations o f P/(S) 

required before {Ai 4- AO approaches r is usually fairly small (Sympson & Hetter, 1985). The 

result is that P,(A|S) stabilizes, subsequently to be used in real CAT administrations to control 

item usage or exposure at a rate < r across the examinee population. Obtaining P,(A|S) for each 

item in the pool is thus the goal o f the simulation and iteration process for CAT.

The number o f times that an item has been administered or exposed, A{, can be assumed 

to be a binomial random variable with parameters P,(S,A), abbreviated as simply Z3,, and N t or 

Ai~  Bin(/>,-, N). The variance o f {Ai + N), is small for large N, and therefore (A, -r N) approaches
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Pi. However, the binomial distribution o f At changes throughout the simulation and iteration 

process. The use o f P,(A|S) to control when items are administered during the simulations causes 

Pi to approach r iteratively for the most popular items (i.e., those that have desirable 

psychometric, content, and other required characteristics), while remaining less than r (i.e., 

approaching a value less than r) for less desirable items.

How fast and which items converge1 to r (or a value less than r) somewhat depends on 

the value of r and its relation to the observed, average item-exposure rate, {£[/*,] + n). Chen, 

Ankenmann, and Spray (1999) showed that, regardless of the pool size, n and fixed CAT test 

length, k, the average item-exposure rate o f any fixed-length CAT is equal to (k -f- n). Because the 

target rate, r> is considered to be a maximum allowable rate for any single item, it is obvious that r 

must be chosen so that r > { k jr n). Chen, et al. (1999) further showed that the average test-overlap 

rate, T , is a function of P,-. Specifically,

Ar£ w 2 ,
r  =  — T — ;-------------• ( i )k ( N - l )  N - \

By completing the square in equation (1) above, they then showed that

T  =

ft

h  - - )

2
+ 2P,*-

k 2
2

(=i [V n) n n

k { N - \ )  ( W - l )
(2 )

N Y \ P: —iTrV n
, Tk 2 

+ N —  
nThis simplifies to T  = — L-!- i— ;— —  -------“— -—-—- (3)

k ( N - l )  ( N - \ )  V ^

1 We note that the term, convergence, as used in this paper, describes the iterative process whereby the rates with
which items in the pool are administered change after each iteration. Because the sum of these rates must always 
equal the length of the test, k, only variance of these rates can change; it decreases iteratively until it stabilizes. 
Thus, the term does not connote a statistical convergence, say in distribution or probability.
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or

T = ------------------- (4)
n ( N - l )

which is equivalent to

(5)

n N

Because the Chen, et al. (1999) paper was concerned with CAT where N  is typically very large, 

they used a large-sample approximation for average test-overlap rate or

The average item exposure, (k -r- ri)y is also the probability o f drawing k  items from an item pool 

o f size n randomly without replacement (see Appendix). In fact Chen, et al. (1999) showed that 

when Pi = { k jr «), for all i, T  reaches its minimum value o f (k  -r n) (i.e., when the variance o f Pj 

is zero, the minimum value o f T  occurs). This suggests that perhaps the target rate, r, could be 

set to (k ± n) to minimize test overlap. However, because items are selected based on their 

psychometric and other characteristics and are not actually drawn at random, r  = (k -s- n) is not a 

realistic target (Chen, et al., 1999). Still, a target value slightly higher than (k + n) might be quite 

realistic and would produce a lower test overlap if this target could be reached by a majority o f 

the items during the simulation-iteration process described earlier.

VariPJ + t j
n (6)k

n
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Controlling Item Allocation across a Small Number of Test Forms

In the CAT situation, N  represents the number o f tests that are to be given, or in this case, 

the examinee-population size. However, when multiple test forms are constructed for 

administration via computer at a later time, N  represents the number o f forms to be assembled. 

In this situation, N m ay be fairly small. This difference in definition and, hence, size, results in a 

slightly different interpretation o f the goal o f the Sympson-Hetter procedure. Because N  is 

small, (Ai -r N)  will not converge to Pi. However, the behavior o f At can only be described by its 

probability density function or pdf, Ai ~ Bin(P;, N), or

Likewise, each P{ will not converge closely to the target rate, r, when N  is small. With only 

N +  1 possible values for the estimates o f Pi to assume, it is even difficult to obtain a large degree 

o f stability o f the estimates. However, the variance o f the estimates o f P, will stabilize, even 

after a small number o f iterations.

In theory, if  we set r = (k+ ri) we should get the item allocation that one would achieve 

with the random sampling o f k items from a pool o f n items without replacement. This would 

also lead to the minimum average test-overlap rate, T  , as in the CAT situation. However, once 

again, achieving the minimum test-overlap rate while meeting test-assembly specifications may 

not be possible, and a target that is slightly higher than (k * n) will probably need to be used.

Prob(A, = m,) = N  | / f  (l - />  f ' " '  ,m, = 0,1,..., N  .
[ m.  t

(7)

The allocation o f  n items across N  form s  is the sum o f these pdfs or

Z [ p r o b ( 4  =m,.)] = ;
1=1

(8)



Except for the size o f N, the iterative process for CAT and for the assembly o f multiple 

test forms is the same. A good stopping rule for the CAT iterations is to stop the process when 

the maximum exposure rate observed in the CAT item pool is “nearly” r, where “nearly” must be 

defined. For the multiple forms assembly, T  can be used to stop the process. We select the item 

allocation that results when T  is a minimum and all assembly constraints have been satisfied. 

Therefore, a number o f iterations are specified arbitrarily and the chosen item allocation across 

forms is the one that produces the minimum value o f T  from these iterations while meeting all 

assembly requirements or constraints. Usually only a few iterations are necessary, as in the CAT 

situation.

Example

We have illustrated this procedure using a sample pool containing 247 items. Tests w'ere 

constructed to be 75 items in length, and eight test forms were assembled to have the same 

average difficulty level (in terms o f number-correct score) and variability (in terms o f the 

standard deviation o f observed test scores) as a reference form. We used the heuristic procedure 

developed by Swanson and Stocking (1993) using their weighted deviations model or WDM. 

When assembled without item-exposure control2, the observed test-overlap rate for the 

construction of eight forms was .41. This meant that, on average, 41% of the items on each form 

were also on another form. The allocation o f items without exposure control is given in Table 1 

in the second column.

If 75 items were drawn completely at random without replacement from the pool with 

probability (75 4- 247) to create eight forms without regard to psychometric requirements, the

2 In order to assemble multiple forms without item-exposure control, the first item included on a form is selected 
randomly. Thereafter, items are selected for inclusion based on the WDM criteria. Without random selection for 
the first item, all eight forms would be identical.



item allocation across the eight forms can be obtained from equation (8) using Pt = (k + n) =.30. 

Note that this is also the value o f T . These results appear in the fourth column o f Table 1. 

Although unattainable in practice, we used this ideal allocation as a baseline against which to 

compare the item allocation that we achieved following the Sympson-Hetter iterations.

In this example, we increased the value o f r on successive computer runs until a value of 

r = .36 produced eight forms that met all psychometric constraints and yielded a minimum value 

for T  . These results are given in the third column o f Table 1. Thus, our results fell somewhere 

between the item allocation observed with no exposure control (the second column) and the 

random or ideal allocation (the fourth column). The use o f the Sympson-Hetter procedure to find 

the item allocation with the smallest average test-overlap rate, T , with all psychometric 

constraints or requirements satisfied reduced the value o f T from .41 to .31. The number of 

items that appeared on all eight forms was reduced from 13 to 0, while the number of items that 

never appeared on a single form was reduced from 25 to 14.

TABLE 1

Item Allocations from the Sample Item Pool

# o f Test Forms 

(m)

Without Item-Exposure 
Control

(# o f Items)

With Item- 
Exposure Control 

r = .36 
(# o f Items)

Random 
Distribution 
r = ( k+n)  

(# o f Items)
0 25 14 14
1 55 50 48
2 74 75 73
3 47 56 63
4 19 32 34
5 9 17 12
6 4 2 3
7 1 1 0
8 13 0 0

Test-Overlap Rate .41 .31 .30



Item Allocations and Test Assembly under Content Constraints

The previous discussion centered on a simple assembly problem in which only 

psychometric constraints had to be met. However, in most multiple-form assembly problems, 

additional conditions or constraints involving content requirements also must be satisfied. In this 

situation there are /  content categories, j  = 1, 2, ..., J, so that the item pool o f size n is stratified 

into «i, n2, ..., nj  mutually exclusive partitions. The test-assembly specifications require that k\, 

hi, kj items from each o f these content categories appear on each assembled form, in addition 

to psychometric constraints.

The average test-overlap rate increases with additional content constraints because the 

required number o f items must be drawn from smaller pools o f size nj rather than from n. 

Therefore, more overlap is expected, especially from those content categories where kj is large 

relative to nj. We can compute the minimal test-overlap rate, 7 ^ .  that would result if  each test 

form were assembled by drawing kj items randomly from categories o f size rij without 

replacement. Even though the average item-exposure rate will remain equal to (k + n), the 

random sampling would be stratified so that the value o f Pi would depend upon the content 

category for that item. For stratified random sampling without replacement, the probability o f an 

item being selected from content category j  is (kj -r nj). Thus, from equation (5), the variance of 

Pi would not be zero and T  would increase. However, the computation o f T  from equation (5) 

under stratified random sampling would still yield a baseline test-overlap rate to use as a 

reference, along with an expected item allocation from equations (7) and (8).

In our sample pool, items were categorized by one o f 37 mutually exclusive categories. 

One of the categories had only a single item represented in the pool. The test specifications 

called for exactly one item from this category; therefore, it was expected that this item had to
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appear on all eight forms. The expected item allocation across eight forms from stratified 

random sampling appears in Table 2 in the fourth column. The item allocation without exposure 

control appears in the second column of this table.

Using rj = (kj -s- nj) as the ideal target, we again experimented by adding a small constant, 

5, to the ideal and found the smallest value of 5 that would result in a minimal value o f T and 

still meet all assembly constraints, both psychometric and content3. This value was 5 = .05. The 

results showed that this reduced the value o f T  from .49 to .36.

TABLE 2

11

Item Allocations from the Sample Item Pool with Content Constraints

# o f Test Forms 

(« )

Without Item-Exposure 
Control

(# o f Items)

With Item- 
Exposure Control 
r/= (kj nj)+ .05 

(# o f Items)

Random
Distribution
r} = 0kj + nj) 
(# o f Items)

0 41 25 24
1 59 61 51
2 57 50 61
3 32 51 52
4 24 28 34
5 9 20 17
6 4 11 6
7 2 0 1
8 19 1 1

Test-Overlap Rate .49 .36 .35

3 There is probably an ideal constant, 5 for each content category, that would produce a slightly better allocation of 
items. The time required to fmd J  such values, however, may not justify the small benefit in this example. There 
may be other situations in which the determination of J  distinct values of 8 would be worthwhile.



Summary

Our results indicated that we could control the overall allocation of items across multiple 

test forms assembled via automated assembly methods using the same procedure that is used to 

control for item exposure in CAT situations. The iterative procedure was programmed directly 

into the form-assembly code. Thus, no “pre-assembly” work had to be done, as is done in CAT 

to obtain the values of P,(A|S) for later testing. In this case the iterations were a part o f the 

assembly process, and the goal was to produce the desired item allocation across forms, rather 

than to obtain exposure-control parameters for each item.
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Appendix

We desire the probability that one of k items will be drawn without replacement from an 

item pool containing n items. The easiest way to approach the problem is to compute the 

probability that an item will not be drawn, even after k attempts. Our desired probability is then 

the complement o f this probability.

The probability that an item will not be drawn on the first attempt is [(« -1 ) ^ n]. The 

probability that the item will not be drawn without replacement on the second attempt is [(/* -  2) 

+ (n ~ !)]■ For the third attempt, it is [(« -  3) -r- (n -  2)]. For the kth and last attempt, it is [(/z -  k) 

- 7 - ( w- f c + l ) ] .  Because these are independent draws, the probability that the item will not be 

drawn after all k attempts is their product, or

(n — l) (>i — 2) (n -  3) (n - k ) ^  ( n - i )
n ( n - \ ) ( n - 2 )  ( « - £  + l) —/ + l ) ’

which, after cancellation, simplifies to (n -  k) -r rt. Therefore, the probability that an item will be

selected without replacement is 1 - ( n -  k) + nor  ( k±  n).
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