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Abstract

The purpose of this study was to compare and evaluate three online pretest item 

calibration/scaling methods in terms o f item parameter recovery when the item responses to the 

pretest items in the pool would be sparse. The three methods considered were the marginal 

maximum likelihood estimate with one EM cycle (OEM) method, the marginal maximum 

likelihood estimate with multiple EM cycles (MEM) method, and Stocking’s Method B. The 

three methods were evaluated using simulations o f data from computerized adaptive tests (CAT).

The MEM method produced the smallest average total error in recovering the 240 pretest 

item characteristic curves. Stocking’s Method B yielded the second smallest average total error 

in parameter estimation. The OEM method yielded a large average total error in parameter 

estimation. In terms of scale maintenance, the MEM method and Stocking’s Method B 

performed well in keeping the scale o f the pretest items on the same scale as that o f the true 

parameters. With the OEM method, the scale of the pretest item parameter estimates deviated 

from that o f the true parameters.





Data Sparseness and Online Pretest Item 
Calibration/Scaling Methods in CAT

Calibrating pretest items is a necessary part of a large computerized adaptive testing 

(CAT) program. Collecting online pretest item responses and calibrating the pretest items based 

on those responses are a way o f replenishing an item pool. Online pretest item calibration refers 

to estimating the parameters of the pretest items that are presented to examinees along with 

operational items under CAT or computer based testing (CBT). Several studies have proposed 

online pretest item calibration methods (Ban, Hanson, Wang, Yi, & Harris, 2000; Stocking, 

1988; Wainer & Mislevy, 1990) using parametric item response functions in which pretest item 

characteristic curves are estimated through a specific mathematical model such as a three- 

parameter logistic (3-PL) item response theory (ERT) model.

When pretest items are administered with operational items, item responses on the pretest 

items as well as the operational items are, typically, sparse. That is, not all examinees respond to 

all items. The sparse item response data is one o f the challenges to accurately calibrating pretest 

item parameters (Ban et al., 2000; Haynie & Way, 1995; Hsu, Thompson, & Chen, 1998; 

Stocking, 1988). Hsu et al. (1998) compared the precision of item parameter estimates obtained 

under the sparse matrix to that o f estimates calibrated under the item-examinee full matrix. They 

showed that using a pretest item calibration method, the sparse data lowers the precision o f item 

parameter estimates.

In realistic settings, sparse data may exist for both the pretest item responses and the 

operational item responses. When there is a pretest item pool, each examinee may take only a 

subset of the pretest items in the pool. If the examinees were administered different sets of 

pretest items, the item responses to the pretest items in the pool would be sparse. Due to the 

nature o f a CAT, operational item responses are also sparse.



Ban et al. (2000) compared and evaluated five pretest item calibration methods with 

different sample sizes in terms o f item parameter recovery when there was sparse data only on 

operational items: the marginal maximum likelihood estimate with one EM cycle (OEM) method 

(Wainer & Mislevy, 1990), the marginal maximum likelihood estimate with multiple EM cycles 

(MEM) method (Ban et al., 2000), BILOG with Strong Priors (Ban et ah, 2000), Stocking’s 

Method A (Stocking, 1988), and Stocking’s Method B (Stocking, 1988). They reported that the 

MEM method and Stocking’s Method B worked very well, and the OEM method might perform 

well in some situations.

This study is an extension o f the Ban et al. (2000) study, which evaluates how the three 

online calibration methods (the OEM method, the MEM method, and Stocking’s Method B) 

behave with sparse item response data on both pretest items and operational items. The purpose 

of this study was to continue to compare and evaluate three online pretest item 

calibration/scaling methods for sparse pretest item response data in terms o f item parameter 

recovery.

A Brief Review of Pretest Item Calibration Methods

The OEM Method

Wainer and Mislevy (1990, pp. 90-91) described the marginal maximum likelihood 

estimate with one EM cycle approach for calibrating online pretest items. The OEM method 

takes just one E-step using the posterior distribution of ability, which is estimated based on item 

responses only from the operational CAT items, and just one M-step to estimate the pretest item 

parameters, involving response data from only the pretest items (Wainer & Mislevy, 1990). 

With this approach, the item parameter estimates of the pretest items would only be updated once 

because only one M-Step o f the EM cycle is computed. One advantage o f this method is that no



pretest item can contaminate other pretest items because this method calibrates the pretest items 

through only one E-M cycle. The pretest item parameters are in theory on the same scale as the 

operational item parameters because the single E-step uses a posterior distribution o f ability 

based only on operational items.

The MEMMethod

As a variation o f the OEM method, Ban et al. (2000) increased the number o f EM cycles 

until a convergence criterion was met. The MEM method is similar mathematically to the OEM 

method. The first EM cycle with the MEM method is the same as the OEM method. The MEM 

method computes the posterior distribution using the operational item responses and estimates 

the pretest item parameters through the first M-step. However, from the second E-step, the 

MEM method uses item responses on both the operational items and pretest items to get the 

posterior distribution. For each M-step iteration, the item parameter estimates for the operational 

items are fixed, whereas parameter estimates for the pretest items are updated until the pretest 

item parameter estimates converge. One reason for fixing the operational item parameters during 

the EM cycles is to prevent the possible contamination o f the operational item parameter 

estimates by the pretest items. Through the EM cycles, however, the pretest items may affect 

each other’s parameter estimation. With this method, the pretest items are on the same scale as 

the operational items because the operational item parameters are fixed in the M-steps.

In implementing the MEM and OEM methods in practice, a Bayesian modal estimation 

approach may be used by multiplying the marginal maximum likelihood equations by a prior 

distribution for the pretest item parameters in order to prevent the extreme values o f item 

parameter estimates.
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Stocking 5 Method B

Stocking’s Method B (1988) involves two steps: the first step is to calibrate pretest item 

parameters and the second step is to rescale the parameter estimates using anchor items. Each 

examinee is administered some operational items, pretest items, and anchor items. The 

alternative design is that each simulee takes either pretest items or anchor items, which requires 

more simulees (Stocking, p. 21, 1988). Stocking’s Method B estimates examinees’ ability using 

the operational item responses. The estimated abilities are, then, fixed in order to calibrate both 

the pretest items and anchor items. The two sets o f item parameter estimates for the anchor 

items, the original item parameters and the re-estimated parameters, are used to compute a scale 

transformation to minimize the difference between the two test characteristic curves (Stocking & 

Lord, 1983). This scale transformation is then used to place the parameter estimates for the 

pretest items onto the same scale as the operational item pool. The pretest item parameter 

estimates are in theory on the same scale as the operational item parameter estimates due to the 

scale transformation.

Method

Instrument and Data

This study used sixteen 60-item paper-and-pencil ACT Mathematics test forms (ACT, 

1997) consisting o f six content categories: Pre-Algebra (PA), Elementary Algebra (EA), 

Intermediate Algebra (IA), Coordinate Algebra (CA), Plane Geometry (PG), and Trigonometry 

(TG). The computer program BILOG (Mislevy & Bock, 1990) was used to estimate item 

parameters for all items assuming a three-parameter logistic IRT model. The estimated item 

parameters were treated as true parameters for CAT simulations.
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Of the 960 available items, 940 items were allocated as follows: 240 pretest items (pretest 

item pool), 100 anchor items (anchor item pool), and 600 CAT items (operational item pool). 

(The remaining 20 items were not used in this study.) Descriptive statistics for the true item 

parameters of the operational items, pretest items, and anchor items are provided in Table 1.

TABLE 1
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Descriptive Statistics for True Item Parameters of the Operational Items, 
Pretest Items, and Anchor Items

Item Pool Name #of
Items

a b c
Mean SD Mean SD Mean SD

Operational Items 600 1.0445 0.3465 0.0844 1.0842 0.1881 0.0827
Pretest Items 240 1.0566 0.3655 -0.0051 1.1671 0.1810 0.0758
Anchor Set 1 10 1.0584 0.3287 0.0097 1.3457 0.1554 0.0904
Anchor Set 2 10 0.9587 0.2466 -0.0026 1.2307 0.2253 0.1000
Anchor Set 3 10 1.1130 0.4187 -0.0262 1.4753 0.1605 0.0774
Anchor Set 4 10 0.9551 0.3277 0.1654 0.9284 0.2132 0.1219
Anchor Set 5 10 1.0581 0.3942 0.0867 0.6662 0.2331 0.0819
Anchor Set 6 10 1.0677 0.3409 0.2278 0.7010 0.2134 0.1308
Anchor Set 7 10 0.9808 0.1962 0.1246 0.5671 0.1867 0.0612
Anchor Set 8 10 1.1126 0.3696 0.0634 0.6294 0.1323 0.0538
Anchor Set 9 10 1.2101 0.4953 0.2178 1.2401 0.1616 0.0481
Anchor Set 10 10 1.1439 0.3894 0.1247 1.7633 0.1727 0.0555

The 240 pretest items were divided into 24 pretest item sets, each set consisting o f 10 

pretest items. The pretest item sets were constructed to include items from six content categories 

(PA, EA, LA, CG, PG, and TG), if  possible. The 100 anchor items were also divided into 10 sets 

of anchor items. Each set o f anchor items were constructed to be, as close as possible, 

representative of the operational item pool in terms o f item difficulty and content. It was nearly 

impossible for all anchor sets, each only consisting o f 10 items, to be exactly representative in 

terms of difficulty and content simultaneously. Table 2 shows percentages o f items in each 

content category for the operation item pool and each anchor item set. The anchor item sets 

contain 2 (20%) or 3 (30%) items in the PA and PG content categories alternatively. It can be 

seen that there was some discrepancy in the percentages of items in the content categories for



each anchor item set, compared to the operational item pool, due to the anchor item sets each 

having only ten items.

TABLE 2
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Percentages of Items in Each Content Category

Item Pool or Item Set #of Content Categories
Items PA EA IA CG PG TG

Operational Items 600 23.5 16.7 14.8 15 23.5 6.7
Each Anchor Item Set 10 20(30) 20 10 10 30(20) 10

CA T Simulation Procedures

Since true item parameters are never known in the real world, this study used true item 

parameters only for generating item responses and for evaluating the performance o f the item 

calibration methods. The item parameters for the 600 operational items were estimated from a 

full item-simulee response matrix generated using the true parameters and 3,000 randomly 

selected simulees from a standard normal distribution. We call these estimated item parameters 

“baseline” parameter estimates. We used the baseline parameter estimates for item selection and 

ability estimation in the CAT simulations.

We simulated the operational item responses to a 30-item-fixed-length adaptive tests for 

12,000 randomly selected simulees from the standard normal ability distribution. We derived the 

ability estimates using expected a posteriori Bayesian estimation (EAP; Bock & Mislevy, 1982) 

during the CATs. The initial prior distribution for EAP ability estimates was assumed to be 

normal with a mean o f 0.0 and a standard deviation o f 1.0. At the end o f the 30-item-fixed- 

length tests, ability estimates were computed using maximum likelihood estimation (MLE) 

procedures. The simulated CAT began with an initial estimate o f ability o f 0.0. A random 

number from a uniform distribution U(0,1) was drawn to decide which content category to select.



Since the proportions o f operational items in the six content categories were known, the random 

number was used to select content categories from which to administer items so the proportion of 

items administered from each content category was approximately equal to the target values. 

With this procedure, items to be administered were selected in a balanced way so that as nearly 

as possible, each simulee takes items proportional to the proportions of operational items in the 

six content categories. Table 3 shows observed percentages of operational items administered in 

each content category for one replication (with 12,000 simulees). It can be seen from comparing 

Tables 2 and 3 that the observed percentages of items in the six content categories are close to 

those in operational item pool. Similar results were observed for other replications.

TABLE 3
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Observed Percentages of Operational Items Administered 
in Each Content Category for Replication 1

Item Pool Content Categories
PA EA IA CG PG TG

Observed Percentages 23.3 17 14.3 14.6 24.1 6.8

The matched difficulty method (Urry, 1970) was modified and used as the item selection 

criterion. The matched difficulty method typically selects an item that has a difficulty closest to 

the current ability estimate. However, in this study, once a content category was selected, 

absolute differences were computed between the provisional ability estimate for the simulee and 

the b parameters for all unadministered items to the simulee within the content category. Two 

items having the smallest and second smallest absolute differences were candidates for selection. 

Again, a random number from a uniform distribution U(0,1) was drawn. If the random number 

was less than or equal to 0.5, then the item having the smallest absolute difference was 

administered; otherwise, the item having the second smallest absolute difference was



administered. This randomization of two items was to protect against overexposure o f items 

having the minimum absolute difference.

For item exposure control, we set the upper limit o f the item exposure rate to 0.15, which 

resulted in the maximum item exposure of 1,800 for some items. The modified matched 

difficulty method with the upper limit of item exposure performed well in terms o f item usage 

rate. Figure 1 shows that frequencies of administration for the 600 operational items for one 

replication of 12,000 simulated examinees. No item exceeded the upper limit (1,800) o f item 

exposures. Also, there were no unused items, although positive frequencies may not discernible 

for some items in the figure. Similar results were observed for other replications.

FIGURE 1. Frequency of item exposure for 
Replication 1

c 2400
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Item Number

The same simulees who took a fixed-length CAT were simulated to take 10 pretest items 

in the following way: the first 250 simulees took the pretest items 1 to 10, the next 250 simulees 

took the pretest items 6 to 15, and so forth. The last 250 of the 12,000 simulees were simulated 

to take the pretest items 1 to 5 and 235 to 240. Therefore, each block o f 250 simulees took 10 

pretest items in common, while two consecutive examinee blocks had 5 pretest items in 

common. For example, the first 250 simulees (Block 1) who took pretest items 1 to 10 and the



next 250 simulees (Block 2) who took pretest items 5 to 15 had common pretest items 5 to 10. 

There was a total of 48 blocks (= 12,000 / 250). In effect, the simulees took 10 o f the total 

pretest items, and each pretest item was administered to 500 simulees (there were 500 responses 

to each item). This way of administering pretest items resulted in sparseness in the pretest item 

data matrix.

The 100 anchor items were administered to the same simulees in the following way: the 

first 250 simulees took anchor item Set 1, the next 250 simulees took anchor item Set 2, and so 

on. Since each set of anchor items was constructed to be representative o f the operational item 

pool in terms of item difficulty and content, it was designed for each simulee to take the anchor 

items as a set. Unlike pretest item administration, different blocks of examinees did not have any 

common anchor items. The data matrix o f item responses on the anchor items was also sparse. 

Pretest Item Calibration Procedures

The computer simulations were performed using programs written in Visual Basic and 

C++. An open-source C++ toolkit for IRT parameter estimation (Hanson, 2000a) was used to 

implement the item parameter estimation. The OEM and MEM methods were implemented with 

the same procedures as the EPDIRM computer program (Hanson, 2000b) uses. Section 2.4 of 

the EPDIRM manual describes how to use the program to estimate pretest items using the MEM 

method.

When implementing Stocking’s Method B, both pretest and anchor item parameters were 

first calibrated such that the simulees’ abilities were estimated using the item responses on the 

adaptively administered operational items and the ability estimates were treated as true in order 

to estimate item parameters. A Stocking-Lord scale transformation function (Stocking & Lord, 

1983) was computed using the two sets o f item parameter estimates for the 100 anchor items, the



original item parameters and the re-estimated parameters. The pretest item parameter estimates 

were then transformed using the Stocking-Lord scale transformation function, which resulted in 

the Stocking’s Method B item parameter estimates.

The following priors were used for both pretest and anchor item parameters: a ~ 

lognormal (0, 0.5), b ~ Beta4 (1.01, 1.01, -6, 6), and c ~ Beta (5, 17). The same priors were used 

for the three pretest item calibration methods. Note that the prior distribution for the 6-parameter 

is a four parameter beta that ranged from -6 to 6 almost uniformly. The prior distributions for 

the item parameters were used to prevent extreme values o f the item parameter estimates. 

Analyses

The simulations were replicated 100 times. The three methods were used to estimate 

pretest item parameters for each of the 100 data sets. This produced 100 item parameter 

estimates for each of the 240 pretest items for each method.

The first analysis evaluated how well the three methods maintained the scale of the true 

parameters. In theory, the three methods should put the estimated parameters o f pretest items on 

the same scale as operational items. It is important to empirically examine how well the methods 

maintained the scale. Since the true pretest item parameters were on the same scale as the true 

operational item parameters, a Stocking-Lord scale transformation function (Stocking & Lord, 

1983) using a standard normal distribution o f ability as a weight function was computed for each 

replication between the estimated pretest item parameters for each method and true pretest item 

parameters. The average slope and intercept o f the scale transformation functions are computed 

for each method. The information will show how well the methods produce estimates in the 

scale of the true item parameters.
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The second analysis examined the extent to which the true item characteristic curves of 

the pretest items were recovered. Let P(0 \a k,bk,ck) be the true item characteristic curve for 

the 3-PL logistic item response model, where a*, 6*, and c* are the true item parameters for 

pretest item k. Let P{0 \ ) be the estimated item characteristic curve for item k on

squared difference between the true item characteristic curve and the estimated item 

characteristic curve, which is called the weighted mean squared error (WMSE), for pretest item k 

is

where w(0) is a weight function based on a N{0, 1) distribution. The integral is approximated 

using evenly spaced discrete 0 points on the finite interval (-6, 6) at increments o f 0.1. Each 

finite 0 point was weighted based on a normal distribution.

WMSE may be decomposed into the weighted squared bias (WSBias) and the weighted 

variance (WVariance):

replication r, where u ^ ,b kr,ckr are estimated pretest item parameters. The weighted mean

( 1)

where
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and WSBias and WVariance are the first and second terms on the right side of Equation 2. 

Means and standard deviations of the WVariance, the WSBias, and the WMSE across the 240 

pretest items are examined.

The third analysis evaluated how well the a, 6, and c parameters were separately 

recovered through Bias, standard error (SE), and root mean square error (RMSE).

of pretest item k on replication r. Here, means and standard deviations o f the Bias, the SE, and 

the RMSE across the 240 pretest items are examined.

Scale Maintenance

Table 4 provides the average slopes and intercepts of the scale transformation functions 

between the estimated and true pretest item parameters for different methods, where the average 

is taken over the 100 replications. If the scale o f estimated parameters were on the same scale as 

the true parameters, the intercept and slope should be 0 and 1, respectively. In Table 4, the 

average intercepts and slopes were close to 0 and 1 for the MEM method and Stocking’s Method 

B. The slope o f the OEM method was farthest from 1. In effect, Table 4 shows that the 

parameter estimates based on the MEM method and Stocking’s Method B appear to be on the

1 100

Bias(Pk) = - S 0 b - p k), 
1UU r„t

(3)

(4 )

(5)

where P k is a true parameter a, b, or c o f pretest item k , is an estimated parameter a, 6, or c

Results
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same scale as the true parameters. The OEM method appears somewhat different from the scale 

o f the true parameters.

TABLE 4 

Average Scale Transformation Function 
Using Stocking-Lord Method

Estimation Method Intercept Slope
OEM 0.0080 (0.0078) 0.9038 (0.0078)
MEM 0.0048 (0.0081) 0.9938 (0.0088)
Stocking’s Method B 0.0246 (0.0094) 0.9952 (0.0117)
( )  Standard Deviation over Replications

Average WSBias, Average WVariance, and Average WMSE

For each pretest item, WSBias, WVariance, and WMSE were computed. Table 5 

presents average WSBias, average WVariance, and average WMSE, where the average is taken 

over the 240 pretest items. The MEM method produced the smallest average WSBias. 

Stocking’s Method B produced the second smallest average WSBias. The OEM method 

produced the largest average WSBias in this study. It appears that the MEM method 

outperformed the other methods in terms of the systematic error value (i.e., WSBias). These 

results were consistent with the results in Ban et al. (2000).

In terms o f average WVariance, the OEM method yielded the smallest value, Stocking’s 

Method B produced the next smallest, and the MEM method produced the largest average 

WVariance. However, the difference in the average WVariance between Stocking’s Method B 

and the MEM method was very small.

The average WMSE is a sum of the average WSBias and average WVariance. The MEM 

method produced the smallest average WMSE, Stocking’s Method B followed next, and the



OEM method produced the largest average WMSE, which was consistent with the results in Ban 

et al. (2000).

In sum, with the item characteristic curve difference criterion, the MEM method appeared 

to perform best, Stocking Method B was second best, and the OEM method performed worst in 

this study.
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TABLES

Average WSBias, Average WVariance, and Average WMSE

Estimation Method WSBias WVariance WMSE
OEM
MEM
Stocking’s Method B

0.4287 (0.3290) 
0.0926 (0.1111) 
0.1562 (0.1374)

0.6720 (0.1431) 
0.7670 (0.1718) 
0.7523 (0.1702)

1.1007 (0.3814) 
0.8596 (0.2250) 
0.9085 (0.2462)

( ) Standard Deviation over Pretest Items

Average Bias, Average Standard Error, and Average Root Mean Square Error o f  Item 
parameters

Bias, SE, and RMSE were computed for each parameter of each item. Table 6 shows 

average Bias, average SE, and average RMSE for each item parameter and for each method, 

where average is taken over the 240 pretest items. Table 6 presents how well the three methods 

recovered a particular item parameter. Performance of the methods differed for different item 

parameters and error indices. For simplicity, the descriptions here focus on average RMSE (total 

error). For the ^-parameter, Stocking’s Method B and the MEM method produced the smallest 

average RMSEs. The OEM method yielded a larger RMSE for the a-parameter. For the b- 

parameter, the MEM method produced the smallest average RMSE followed Stocking’s Method 

B. For the c-parameter, the MEM method produced the smallest average RMSE and the OEM 

method yielded the second smallest average RMSE. Stocking’s Method B produced a larger 

average RMSE for the c-parameter.



TABLE 6

Average Bias, Average Standard Error, and Average Mean Square Error

Estimation
Method Bias

a
SE RMSE Bias

b
SE RMSE Bias

c
SE RMSE

OEM -0.1294 0.1301 0.1994 0.0367 0.1602 0.1977 0.0151 0.0289 0.0482
(0.1432) (0.0418) (0.1271) (0.1322) (0.0911) (0.1168) (0.0431) (0.0109) (0.0265)

MEM -0.0145 0.1655 0.1869 0.0193 0.1523 0.1798 0.0039 0.0300 0.0459
(0.1126) (0.0602) (0.0945) (0.1284) (0.0893) (0.1252) (0.0413) (0.0113) (0.0253)

Stocking’s -0.0143 0.1651 0.1853 0.0081 0.1579 0.1827' 0.0144 0.0342 0.0501
Method B (0.1082) (0.0587) (0.0907) (0.1212) (0.0912) (0.1208) (0.0404) (0.0118) (0.0251)
( )  Standard Deviation over Pretest Items

Conclusions and Discussion

The purpose o f this study was to compare and evaluate three online pretest item 

calibration/scaling methods (the OEM method, the MEM method, and Stocking’s Method B) in 

terms of item parameter recovery when the pretest item response data are sparse.

The MEM method produced the smallest average total error (i.e., average WMSE) in 

recovering the 240 pretest item characteristic curves. The MEM method performed well in 

keeping the scale o f the pretest items on the same scale as that of the true parameters. The MEM 

method also worked well in recovering individual item parameters (e.g., a b - y and c- 

parameters). Stocking’s Method B yielded the second smallest average WMSE and resulted in 

pretest item parameter estimates on the scale o f the true parameters. The OEM method yielded a 

large average WMSE. With the OEM method, the scale o f the pretest item parameter estimates 

deviated from that of the true parameters.

Most of the results in this study were consistent with the results in Ban et al. (2000). Ban 

et al. (2000) reported that the MEM method performed better than Stocking Method B for all



criteria and sample sizes studied. This study showed that the MEM method also outperformed 

Stocking Method B, except for the estimates of the a-parameter.

The MEM method appears to be the good choice as a pretest item calibration method. 

Compared to other methods in this study, the MEM method produced the smallest parameter 

estimation error without requiring any anchor items. Stocking’s Method B also worked well, but 

it requires anchor items to be seeded or larger sample sizes would be needed without anchor 

items (Stocking, p. 21, 1988). The OEM method, which also does not require any anchor items, 

produced larger error in parameter estimation than the other methods in this study.

The pretest item administration design in this study postulated that a pretest item pool 

exists and each examinee takes some of the pretest items where there are common pretest items 

administered to different blocks o f examinees. The pretest items were then calibrated 

concurrently, although several sets of pretest items could be calibrated separately set by set. 

Some studies (Hanson & Beguin, 1999; Wingersky, Cook, & Eignor, 1987) reported that the 

concurrent item calibration produces lower parameter estimation errors than the separate 

calibration.

As future research, performance o f the methods should be further evaluated when pretest 

items are poor or do not fit the 3PL model. The pretest items used in this study were operational 

items, so the quality o f the items was high. Since the MEM method uses item responses on both 

the operational items and pretest items to get the posterior distribution for iterations after the 

first, any poor pretest item could affect the parameter estimates o f other pretest items with the 

MEM method. Unlike the MEM method, the OEM method uses item responses only on the 

operational items to obtain the posterior distribution used for pretest item parameter estimation. 

For the OEM method, a bad pretest item would not impact the parameter estimation o f the a ’s,

16



b's, and c ’s o f the other items. Stocking’s Method B uses the operational item responses to

estimate examinees’ abilities and calibrates the pretest items by fixing the ability estimates, so

having a bad pretest item would only affect the parameter estimates o f that particular bad pretest 

item. It would be worthwhile to investigate the extent to which the methods produce errors in

parameter estimation when the poor pretest items exist.
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