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Abstract

Item pools supporting computer-based tests are not always completely calibrated. 

Occasionally, only a small subset of the items in the pool may have actual calibrations, while the 

remainder of the items may only have classical item statistics, (e.g., p-values, point-biserial 

correlation coefficients, or biserial correlation coefficients). Transformations can be applied to 

the classical statistics to obtain rough estimates of the item parameters from a 3-parameter 

logistic IRT model. These estimates, in turn, can be improved by linking them to items with 

actual calibrations from a program such as BILOG. The resulting item-parameter estimates can 

then be used in a computerized classification test (CCT). An evaluation of the results of using 

such estimated parameters in simulated CCTs is presented in this paper.





Estimating Item Parameters from Classical Indices for Item Pool Development with a

Computerized Classification Test1

Moving a testing program from paper/pencil to computerized testing may require that an 

item pool replace some set of fixed test forms. For many types of computer-based tests (CBTs), 

an item pool that has been calibrated and scaled to a latent metric is desired. In practice, 

however, having a complete set of item responses for calibration purposes on all items in the 

pool may be an unreachable goal for some testing programs. Only one or two recently 

administered paper-pencil test forms might be calibrated and the rest of the item pool may just 

consist of classical item parameters such as p-values and biserial correlation coefficients for each 

single item. If these testing programs only require a simple classification decision to be made 

(e.g., pass/fail), it may be possible to use some methods of approximation when calibrating the 

item pool and still achieve valid classification results. The purpose of this paper is to describe a 

procedure which links IRT-calibrated items based on a small portion of an item pool to the 

remainder of a classically based item pool. The major research question of this study was, “Do 

these pseudo-calibrations perform as well as actual IRT calibrations obtained from programs 

such as BILOG  in one particular CBT application, namely that of a computerized classification 

test (CCT)?”

1 Portions of this paper were presented at the 1999 annual meeting of the Psychometric Society in Lawrence, KS. 
The co-authors of the paper are listed alphabetically.



Description of the Problem

Assume that a 360-item pool for a computerized classification test (CCT) consists of 60 

calibrated items from one previously administered paper/pencil test. This set of items will be 

referred to as the standard reference set or SRS. The remainder of the items in the item pool 

possess their classical item statistics, p-values and either point-biserial or biserial correlation 

coefficients (pPbS and pbS, respectively, or abbreviated as r and R). The research question to be 

answered is, “Can item-parameter estimates be obtained on the 300 items that only have classical 

statistics, and then can these estimates, along with the calibrated SRS, be used to administer a 

CCT using the sequential probability ratio test (or SPRT) method?” Because the methods 

described by Urry (1974) and Schmidt (1977) were used to transform an item ’s classical 

statistics into estimates of the a- and /^-parameters from the three parameter logistic model (3- 

PLM), it is helpful to review those procedures.

The Urry-Schmidt Transformations

Urry (1974) proposed that the transformations first described by Bimbaum in Lord and 

Novick (1968, chapter 16), be corrected for guessing by incorporating a lower bound for the 

probability of a correct response. Schmidt (1977) refined this method by adjusting for the 

unreliability of the estimate of the latent trait, 0, in the estimation of R.

Under the assumption that 0 ~N(0,1), and the free response (i.e., no guessing) items on a 

test of length n measure the unidimensional trait, 0, and the response functions of those items can 

each be described by the usual normal ogive response function, P, or

Y,
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where yj is the point of cut on the continuous and normal distribution underlying the binary item, 

then the discrimination parameter, ax, can be estimated by

The difficulty parameter, b\, is estimated by

When the items are in a multiple-choice format, the effects of guessing must be 

incorporated into the estimates given above. Urry (1974) suggested that if c is the usual guessing 

parameter, so that P* = a  + (1-cJ Piy then R\ must be corrected for guessing before the 

expressions given by equations (2) or (3) above can be used. Urry showed that

(2)

r (4)

where Q* = 1 - P*, and rj * is the point-biserial coefficient after correcting for guessing. Then, 

solving for R, gives



the estimates for a, and bt can then be obtained from equations (2) and (3). The value of c, can be

Schmidt (1977) suggested that the Urry estimates could be improved by first noting that 

the procedure tended to systematically underestimate a, and overestimate /?, He suggested that 

the problem lay in the unreliability o f the total test score, usually used as an estimate of the latent 

trait parameter, 0. Schmidt then suggested that the equation for Rl be modified to correct for this 

unreliability (i.e., correct for attenuation). This gave

where rxxrepresented the KR-20 reliability (pp. 615-616).

In the present experiment, six test forms of previously calibrated sets, with each form 

containing 60 items, were used in the experiments to follow. It was assumed, for the purposes of 

these experiments, that the first 60-item test was the SRS in the item pool, and that the remaining 

300 items were not calibrated.

Standard Reference Item Set

The SRS set of item parameters were assumed to be the known or true set and used to 

generate 0/1 responses for 2000 simulated examinees with 0~N(O,1). The Urry transformations, 

given above, were then used to obtain estimates of the item parameters; it was assumed that c = 

.20 for all items. The SRS parameters were also calibrated using the traditional BILOG  approach

obtained by using the reciprocal of the number of alternatives in the multiple-choice item format.

(6)

The Dataset
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for purposes of comparison. These parameter estimates have been plotted against the true a and 

b values in Figures 1 and 2, respectively, from BILOG  as well as from the Urry transformations. 

The magnitude and direction of bias in the Urry transformations are obvious from these two 

plots.

FIGURE 1: The Comparison of Estimated BILOG  a and Urry a Parameters

True a Parameters

True a Parameters
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FIGURE 2: The Comparison of Estimated BILOG  b and Urry b Parameters

True b Parameters

T rue b Param eters

As predicted, the ^-parameter estimates were systematically smaller than the true a- 

parameters, while the 6-parameter estimates slightly overestimated the true difficulty values. By 

applying the Schmidt correction for unreliability, the amount of bias in the ^-parameter estimates 

was somewhat mitigated (see Figure 3). However, there was little effect on the estimation of bs, 

(see Figure 4). Because the Schmidt correction appeared to improve the estimates overall, the 

Urry estimates with the Schmidt correction for attenuated reliability were used for the remainder 

of this work. These will be known as the Urry-Schmidt (US) estimates.
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FIGURE 3: The Urry-Schmidt Estimated a Parameters

True a Parameters

FIGURE 4: The Urry-Schmidt Estimated b Parameters

True b Parameters

Defining a Linking Transformation

Recall that it was assumed that the item responses to the SRS items existed and could be 

calibrated. By submitting the generated 0/1 responses to the 60-item SRS from 2000 simulated 

examinees to the computer program, BILOG, it was possible to obtain item parameter estimates 

for these items (as plotted above in Figures 1 and 2). The item-parameter estimates obtained
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from the Urry-Schmidt procedure (i.e., corrected for guessing and for unreliability) were then 

linked to those obtained from the BILOG  program.

Four well known linking procedures were considered: (1) mean-mean (MM); (2) mean- 

sigma (MS); (3) Haebara (HAE); and (4) Stocking and Lord (SL). Each of these linking 

techniques produced a linear transformation from a 02 scale to a 0j scale of the general type 

(Kolen & Brennan, 1995), 0j = A02 + B , where item parameters, a and b, are related by

b{ = Ab2 + B , (8)

and

c'i =  c2 . (9 )

Recall that the MM method requires that A = \i(ci2)i M-( ;̂) and B = |x(b/) - A\x(b2)y while 

the MS has A = o(bj)/ c?(/?2) and B = \x(b{) - An(&2)- The HAE and SL methods fall under the 

general category of characteristic curve procedures. The HAE method finds A and B values 

which minimize the sum of the squared difference of each item characteristic function on the two 

scales, while the SL procedure finds the values of A and B which minimize the squared 

difference of the test characteristic functions of the two scales. All procedures are, of course, 

based on common items (i.e., the SRS of 60 items).

Table 1 shows the results of the four procedures, in terms of the linear transformation 

coefficients, A and B, that linked the item-parameter estimates from the Urry-Schmidt 

transformations to the parameter estimate scale produced by BILOG.



TABLE 1: Linear Transformation Coefficients
Linking M ethod A B

MM .764 .206

MS .714 .244

HAH .878 .044

SL .860 .108

When each of the linking transformations given in Table 1 was applied to the Urry- 

Schmidt item-parameter estimates, new estimates were produced. Each of the linking procedures 

reduced the bias in the ^/-parameter estimates over the Urry-Schmidt estimates. Of the four 

linking procedures, the two characteristic curve methods produced the lowest root mean square 

errors, as seen in Table 2 below. Both the MM and MS methods produced ^-parameter bias that 

was about the same as that observed from BILOG  with smaller root mean squared errors than the 

two characteristic curve methods. The Urry-Schmidt estimates on the SRS are included in Table

2, as a point of comparison.

TABLE 2: Bias and Root Mean Square Error of Estimates: SRS
Estim ation M ethod Bias(a) Bias (b) RMSEfa) RM SE (b)

BILOG .023 .056 .124 .204

US -.166 .033 .290 .502

MM .023 .056 .273 .367

MS .080 .056 .296 .355

HAE -.081 -.017 .264 .416

SL -.067 .033 .263 .407

The Item Pool

The remaining 300 items in the item pool were characterized by their p-values and 

biserial correlation coefficients calculated from 0/1 data responses on 60-item tests that were 

assumed to be parallel to the 60-item SRS. The 0/1 data were generated from simulated 

populations of 2000 examinees with 0~N(0,1). The classical statistics were transformed to their

9



Urry-Schmidt item parameter estimates and then linked to the scale from the calibrated items in 

the pool (i.e., the 60-item SRS) by way of the four linking procedures described above. This 

yielded four additional item pools that consisted of 360 items; 60 items that had been calibrated 

using BILOG  plus 300 items whose classical statistics had been transformed and then linked to 

the calibrated SRS. The average bias and root mean squared error for all of these item pools are 

provided in Table 3 below.

TABLE 3: Bias and Root Mean Square Error of Estimates: 360-Item Pool
Estim ation M ethod Bias(fl) Bias(£) RM SE(a)) RM SE(^)

BILOG .006 .037 .125 .162

US -.172 .109 .335 .471

MM .028 .133 .300 .318

MS .078 .133 .319 .309

HAE -.065 .072 .294 .344

SL -.052 .113 .292 .346

All of the linking procedures improved upon the estimation of the item pool parameters 

over the Urry-Schmidt procedure alone. However, the performance of these estimates in an 

actual CCT simulation was yet to be determined. The next step was to use these different item 

pools in CCT simulations and compare the results, in terms of classification error rates and test 

length, to those of a true (i.e., known) pool and those in which the entire pool had been calibrated 

using BILOG.

CCT Simulations

ACT uses the sequential probability ratio test or SPRT procedure to make classification 

decisions within the framework of a computerized test. The procedure requires the computation 

of a likelihood ratio of two distinct events (e.g., pass or fail) following the administration of an

10



item from the pool. When the likelihood ratio becomes greater than some criterion value or less 

than some other criterion value, testing ceases and the examinee is classified into the appropriate 

category. In order to compute the likelihood ratio after each item administration, the probability 

of a correct response (or an incorrect response), given that the examinee has the ability to pass or 

fail, must be computed.

Item parameter estimates are used to make these calculations from the appropriate IRT 

model. The item parameter estimates are also used to calculate item information; items are 

selected for administration based on the amount of information an item has at the passing score. 

In general, the more informative an item is at the passing score, the greater will be its chances for 

selection. Item parameter estimates are also used to determine the passing score of the CCT. 

The process for determining the passing score from an item pool is described below.

Determining the Latent Passing Score

Item parameter estimates are used in the SPRT CCT to determine the latent value 

associated with the passing score for the test. This passing value is usually denoted as 0p, where 

0p is the solution to the equation,

p  is the passing score in terms of proportion-correct, Ui is the response to item i, and n is the 

number of items in the reference set used to determine the passing score. If the item parameter 

estimates are poor, the test may increase either false positive or false negative error rates because 

of the imprecision in determining the passing point, 0p.

(10)
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In the current study, the true latent passing scores were known and corresponded to either 

66 % correct when 0P = 1.0, or 46 % correct, when 0p = 0.0. Depending upon the item parameter 

estimates in the pool, the value of 0P may have been different from these true values. A 

description of each of the pools used in the simulations is provided below, and a table containing 

the 0P value for each pool appears in Table 4. Note that the 0P values for the four linking 

procedures corresponded to the 0p used for the BILOG  item pool. This was due to the fact that 

the 5/LOG-calibrated SRS was used as the reference or benchmark set for all of the item pools 

for determining the passing scores.

TABLE 4: Values of the Latent Passing Score
Item  Pool T rue 0P = 0.0 T rue 0p = 1.0

BILOG 0.06 1.04

US -0.12 1.09
MM 0.06 1.04

MS 0.06 1.04

HAE 0.06 1.04

SL 0.06 1.04
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Item Pools Used in Simulations

The item pools used in the CCT simulations were as follows:

1. Known Item Pool (360 items with known item parameters).

2. BILOG  Item Pool (360 items with calibrated item parameter estimates).

3. US Item Pool (360 items with US transformed item parameter estimates).

4. MM Item Pool (60 items calibrated with BILOG  and linked to the 300 item

parameter estimates from US transformations using the MM method).

5. MS Item Pool (60 items calibrated with BILOG  and linked to the 300 item

parameter estimates from US transformations using the MS method).

6. HAE Item Pool (60 items calibrated with BILOG  and linked to the 300 item

parameter estimates from US transformations using the HAE method).

7. SL Item Pool (60 items calibrated with BILOG  and linked to the 300 item

parameters estimates from US transformations using the SL method.).

SPRT CTT Simulation Parameters

The CCT simulations were run using the SPRT procedure which requires certain test 

parameters or conditions to be established. These parameters plus additional information on the 

simulations included, the following: (1) Examinees (i.e., 0) were randomly selected from a

N (0,1). There were 100,000 examinees or replications of the SPRT CCT for each set of 

conditions. (2) There were seven item pools (see descriptions, above) and two passing criteria 

(0p = 1.0; 0p = 0.0). (3) For these simulations, one of four possible content codes was arbitrarily 

assigned to every 4th item (i.e., in other words, the first item = A; second item = B; third item = 

C; 4th item = D; 5th item = A, and so on). (4) The size of the indifference region around each
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passing score was set at ± .40. (5) The nominal error rates for the test, a  and (3, were set at .05 

each. (6) Test length minimum and maximum were 40 and 60, respectively. (7) The target item 

exposure control was set at .20, using unconditional Sympson-Hetter. (8) Items were selected 

based on maximum item information at the passing score.

Simulation Results

The results from the CCT simulations have been summarized in terms of outcomes. The 

outcomes considered important for evaluation in a CCT include passing and failing rates, false 

positive and false negative error rates of classification, total classification error rate, average test 

length and variability of the test length. The results for each of the seven item pools and each of 

two passing scores have been summarized below in Tables 5 and 6.

TABLE 5: CCT Summary for Qp = 1.0
Outcome Known BILOG US MM

u p
MS HAE SL

Passing rate .161 .157 .165 .160 .156 .154 .164

Failing rate .839 .843 .835 .840 .844 .846 .836

False (+) rate .022 .020 .025 .024 .021 .021 .025

False (-) rate .020 .022 .020 .020 .022 .024 .020

Total error .042 .042 .045 .044 .043 .045 .045

Ave length 41.5 41.5 42.2 41.5 41.4 41.8 41.8

SD length 5.0 5.0 6.0 5.0 4.8 5.4 5.4

The Known columns of both tables established the sampling error in these simulations 

because it was known that the expected passing rates for a 0 ~ N(0,1) with 0p = 1.0 and 0P = 0.0 

should be .159 and .500, respectively. Thus, we could state that the sampling error was between 

.002 and .005 for simulated error rates.
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For the more difficult passing standard of 0P = 1.0 it was difficult to really detect 

noticeable differences between the different methods in terms of test length, passing rates, and 

overall classification errors. The MS and HAE methods underestimated the passing rate, but so 

did the pool based solely on BILOG  calibrations. For the easier passing standard of 0p = 0.0, the 

results were a bit clearer. The SL method was obviously superior to the other procedures in 

every outcome category. See Table 6, below.

TABLE 6: CCT Summary for Qp = 0.0
Outcome Known BILOG US MM MS HAE SL

Passing rate .495 .479 .524 .534 .556 .471 .496

Failing rate .505 .521 .476 .466 .444 .529 .504

False (+) rate .046 .040 .064 .071 .083 .037 .047

False (-) rale .052 .059 .040 .036 .028 .063 .052

Total error .098 .099 .103 .107 .111 .101 .099

Ave length 45.3 45.2 46.1 44.8 44.6 44.8 44.9

SD length 8.4 8.3 8.8 8.1 8.0 8.1 8.2

E ffect o f  a Sm aller Sam ple Size

The above results were based on fairly large samples of examinees. Recall that for all 

data generation, 2,000 values of 9 were generated. When the sample size was reduced to 500 

and the entire study replicated, the results were as follows.

2 The sample size of 500 was used only to generate the 0/1 response data to compute the classical statistics. The 
BILOG sample on which the original calibrations were obtained remained at 2,000.



TABLE 7: CCT Summary for 9P = 1.0 with a Sample Size = 500
Outcome Known BILOG US MM MS HAE SL

Passing rate .161 .157 .165 .162 .159 .155 .163

Failing rate .839 .843 .835 .838 .841 .845 .837

False (+) rate .022 .020 .025 .025 .022 .021 .026

False (-) rate .020 .022 .020 .022 .023 .023 .021

Total error .042 .042 .045 .047 .045 .044 .047

Ave length 41.5 41.5 42.2 41.6 41.5 41.8 41.8

SD length 5.0 5.0 6.0 5.1 4.9 5.4 5.5

TABLE 8: CCT Summary for 8P = 0.0 with a Sample Size = 500
Outcome Known BILOG US MM MS HAE SL

Passing rate .495 .479 .523 .536 .556 .473 .494

Failing rate .505 .521 A l l .464 .444 .527 .506

False (+) rate .046 • .040 .064 .070 .084 .037 .049

False (-) rate .052 .059 .041 .036 .030 .063 .052

Total error .098 .099 .105 .106 .114 .100 .101

Ave length 45.3 45.2 46.3 44.9 44.8 44.9 45.1

SD length 8.4 8.3 8.8 8.1 8.1 8.1 8.3

These results were almost identical to those achieved on the large sample size and spoke 

to the stability of the transformations and the linking process.

Effect o f  the Change o f  c-Parameters

Because the c-parameter estimate in the US transformations is an artificial value, usually 

defined as 1/ (the number of alternatives), it is interesting to know whether using the average c- 

parameter estimate from the calibrated SRS would improve the US approximations and 

positively affect the outcome of the CCT simulation. To examine this effect, the average c- 

parameter estimate of .242 was used as the ovalue in the US transformation.
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TABLE 9: CCT Summary for 6P = 0,0 when c= .242
Outcome Known BILOG US MM MS HAE SL

Passing rate .495 .479 .537 .464 .511 .482 .514

Failing rate .505 .521 .463 .536 .489 .518 .486

False (+) rate .046 .040 .077 .034 .056 .039 .059

False (-)  rate .052 .059 .033 .070 .045 .062 .045

Total error .098 .099 .109 .103 .102 .101 .103

Ave length 45.3 45.2 46.6 44.6 44.3 44.9 45.0

SD length 8.4 8.3 9.0 8.0 7.8 8.2 8.2

Table 9 presents the CCT simulation results for passing standard of 0P = 0.0 when c = 

.242. Using the average oparam eter estimate in the US transformations did not show evidence 

of improved CCT results over the use of a fixed constant. However, the linking procedures did 

provide improvement over the US approximations alone.

Conclusions

As mentioned previously, there are three occasions in CCT where the quality of the item 

parameter estimates might affect the results of the test: (1) in the determination of the latent 

passing score for the test; (2) in the selection of items to be administered to each examinee; and 

(3) in the scoring of the test. Table 4 showed how the errors in parameter estimation lead to 

different passing score values of 0p. All methods overestimated the difficulty of the passing 

standard except for the Urry-Schmidt transformations when 0p = 0.0. In general a more difficult 

passing score or standard should result in fewer examinees passing the test.

Item Selection

In terms of item selection, it was of interest to examine how the items within a pool 

ranked, in terms of their item information, at the passing score. Recall that for CCT, the most
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informative items at the passing score are selected for possible administration (dependent, of 

course, on content specifications and item exposure rates). All of the items in each pool were 

rank-ordered on this criterion and the ranks were then correlated with those from the Known 

pool.

The results for 0p = 1.0 showed that, not unexpectedly, the BILOG  item ranks were 

highly correlated with the item ranks from the Known pool while the initial Urry-Schmidt 

transformations produced a lower correlation. See Table 10 below. The four linking methods, 

MM, MS, HAE, and SL, produced somewhat higher correlations, and therefore, would have 

been expected to perform better than the Urry-Schmidt method alone when compared to the 

Known pool.

For Op = 0.0, the BILOG -item ranks again correlated highly with the item ranks from the 

Known pool. Interestingly, the initial Urry-Schmidt transformations produced a correlation of 

.82 with the item ranks from the Known pool, while the four linking methods did not consistently 

increase this value. Under either passing standard, the five approximation methods (Urry- 

Schmidt plus the four linking procedures) basically ranked pool items at the passing score about 

the same. The inter-method correlations on item ranks ranged from .938 to .999 (see Tables 10 

and 11 below for the 0p = 1.0 and 0p = 0.0 conditions, respectively).

TABLE 10: Pool Correlations on Item Ranks for 6P = 1.0
Known BILOG US MM MS HAE

BILOG .956

US .688 .724

MM .734 .775 .944

MS .736 .776 .941 .997

HAE .742 .784 .938 .989 .978

SL .731 .773 .941 .993 .982 .999
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TABLE 11: Pool Correlations on item Ranks for 9P = 0.0
Known BILOG US MM MS HAE

BILOG .959

US .817 .850

MM .798 .834 .968

MS .111 .805 .957 .997

HAE .864 .902 .969 .981 .966

SL .847 .884 .975 .990 .979 .998

Recall that the item pool size was 360. With a 40-item minimum, mean test lengths of 

42-45, and a target item exposure rate of .20, it was estimated that only the best (i.e., most 

informative at the passing score) 200 items in the pool were being administered on average. In 

order to study the difficulty level of the tests that were most likely administered, the best 200 

items were selected from the Known item pool, based on their true item information values at the 

true 0p of 0.0. Then the total characteristic function of the items that were actually selected for 

administration were plotted relative to the total characteristic function of the 200 best items. 

These plots can be seen in Figure 5 below and indicate that, except for the BILOG  pool, the set 

of 200 items that were actually selected for administration were generally easier than those that 

should have been selected under the Known condition.
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Scoring

A third source of error from the item parameter estimates affected the length of the tests 

in a subtle way. To understand the source of this type of error, another traceline was introduced 

on Figure 6. This traceline represented the scored total characteristic function or the impact of 

the estimated item parameters on the way in which the test was scored. In the SPRT, a 

likelihood ratio of the form,

where 7i0 is the binomial probability that the item will be answered given that 0 = 0o and Tti, 

given that 0 = 0j, is calculated after each item response3. The item-parameter estimates are used 

to calculate the probabilities and, hence, a third source of error is introduced after each item is 

administered. If the error had little effect, it was expected that the scored traceline and the 

traceline of the items actually selected would have been almost identical.

3 Here we assume that 0 ( > 0o and that the distance between these two points is the indifference region.
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FIGURE 6. Characteristic Functions for Best 200 Items in 6 Pools

- 2 - 1 0  1 2
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A steeper slope between these two points on the total characteristic functions at 0O and 0i 

implied that, when the test was scored, more credit or points would be added to the likelihood 

ratio and the examinee would be classified sooner. Conversely, a more shallow slope implied



that the test would have been scored lower than expected, adding to the length of the test. Table 

12, below, provides estimates of the Known ratio between endpoints of the indifference region, 

representing the average amount by which the likelihood ratio was updated following a correct 

response. Endpoints of the indifference regions were computed at ± .40 around 0p. The 

expected ratio was around 1.41. Ratios higher than this would suggest that the procedure scored 

the test more quickly; those under 1.41, more slowly. This was borne out from observing the 

average test lengths. The Urry-Schmidt procedure took, on average, 1 to 1.5 items more to 

complete.

In addition to influencing the length of the test, the ratios in Table 12 also offer an 

explanation as to why the false positive error rates for the MM and MS methods were 

inflated. As with all examinees, those near the true passing score were administered easier items 

than expected and were scored with this higher ratio on average, thus passing at a higher level. 

See Table 6 for the inflated false positive rates for MM and MS procedures. On the other hand, 

for HAE and SL, the scoring ratio applied to the examinees was similar in magnitude to what 

was expected, and inflated false positive error rates were not observed.

TABLE 12: Likelihood Ratio of Correct Responses in 6 Pools
M ethod Known Scored

BILOG 1.414 1.415

US 1.409 1.363

MM 1.414 1.517

MS 1.414 1.513

HAE 1.414 1.421

SL 1.414 1.428
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Summary

The Urry-Schmidt transformations followed by one of the characteristic curve linking or 

scaling techniques produced item-parameter estimates that, when used in several CCT situations, 

resulted in testing outcomes quite close to those expected when the entire pool had been 

calibrated with a 3-PL model. Although the procedure tended to produce an easier set of items 

for administration, this bias was somewhat mitigated or offset by a higher-than-expected, 

estimated passing score.

It is suggested that when considering the use of such augmented parameter estimates as 

those produced by the linking procedures discussed in this paper, consideration be given to the 

three sources of possible error and their effects on the outcomes of the test. In addition to 

augmenting an existing item pool, these techniques may offer initial solutions to the calibration 

of CBT pretest items as well.
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