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Abstract

In two-stage course placement systems, students first take a screening test.
Students who score at or above the screening test cutoff score K enroll directly in a
standard college course, whereas those who score below K take a placement test.
Students who subsequently score at or above the placement test cutoff K* also enroll in
the standard course. Consequently, students in the standard course will not have
placement test scores below K'. Moreover, placement test scores are somewhat truncated
above K', because students who carned scores above K on the screening test did not have
to take the placement test. Hence, their placement test scores, which likely would have
equaled or exceeded K', wre “missing.”

Previous research has only examined truncation in one-stage placement systems,
in which it occurs below, but not above, the cuioff score. In this study, the effccts of
truncation on estimated optimal cutoffs, accuracy rates, and success rates under different
combinations of logistic regression curve, test score distribution shape, and samplc size
were examined for two-stage placement systems. [t is shown that even when data are
moderately truncated in such systems (e.g., baseline truncation below K' and 80%
truncation above K'), validity statistics and optimal cutoffs can be estimated with

reasonable accuracy.
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Validating Two-Stage Course Placement Systems When Data Are Truncated

Postsecondary institutions often use standardized test scores when deciding into
which courses students ought to be placed. After selecting a cutoff score, institutional
staff will permit students scoring at or above it to be placed into a standard course (e.g.,
pre-calculus).  Students scoring below the cutoff will be placed into a lower-level,
remedial course (e.g., college algebra). For the benefit of their institutions and students,
institutional staff want to make correct placerﬁcnt decisions, of which there arc (wo types:
I) students placed into a standard course have the necessary skills and knowledge to
uftimately succeed in the course, and 2) students placed into a remedial course would not
have succeeded in the standard course had they instead been placed into 1t.  Incorrect
placement decisions may negatively affect both students and institutions. For example, a
student with better-than-average mathematical skills who is incorrectly placed into a
remedial mathematics course may become frustrated by the expense and time required to
complete an additional course, and may consider transferring to another institution.

If students, parents, or others perceive placement systems as being unfair or
hastily developed, then these systems may be criticized, By establishing statistical
validity evidence that relates standardized test scores or other variables to successful
performance in standard courses, institutions can strengthen their respective rationales for
using certain placement procedures, tests, and cutoff scores. In this way, institutions are
better prepared to respond to potential criticism of their placement systems.

One method for providing course placement validity evidence uses logistic
regression and decision theory to describe relationships between outcomes in standard

college courses and test scores, estimate proportions of correct decisions given particular
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cutoff scores, and identify optimal cutoffs (ACT, 1994; Noble & Sawyer, 1997; Sawyer,
1989; Sawyer, 1996). In evaluating course placement systems. logistic regression can be
used to estimate the conditional probability of success P in a standard course, given test

score (or other predictor variables). Estimated probabilities can then be used with the

marginal distribution of test scores to estimate other course placement validity statistics,
such as the accuracy rate A, which is the estimated proportion of correct placement

decisions.  The optimal cutoff score is the cutoff score at which A s maximized.

~

Another validity statistic, the success rate §. is the estimated proportion of students
succceding in the standard course, among all students who could have been placed in that
course.

Because students who score below the cutoff typically do not enroll in the
standard course and do not have course outcome data (e.g., grades), the diata of course
placcment systems are truncated below the cutoff. This presents certain difficulties in
estimating statistics, regardless of the method used to evaluate a placement system. For
example, a logistic regression function. which 1s computed from the data of students who

completed the standard course, must be extrapolated to test scores below the cutoff in

A ~ -~

order to estimate P, A, and S over the entire range of placement test scores. Thus, the
statistics will be usetul only to the cxtent that their accuracy 1s not adversely affected by
truncation,

In general, as truncation increascs, the accuracy of validity statistics decreases
(Houston, 1993; Schicl & Noble, 1992; Schiel, 1998. Schiel & King, 1999). Moreover,
hard truncation, a condition in which data are unavailable for all students below the

cutoft, gencrally results in less accurate validity statistics than does sofr truncation, where




data are available for some, but not all, students (Schiel, 1998; Schiel & King, 1999).
Onc instance in which soft truncation occurs i1s when an institution does not strictly
enforce a cutoff, but permits students who score below it to enroll in a standard course.
For example, students with low placement test scores may be confident that they can
succeed in the standard course, or thcy may furnish to the institution additional
information that suggests they are likely to succeed (e.g., a score on an ancillary, local
placement test). Whatever their reasons for enrolling in the standard course, some of the
students with scores below the cutoff will have standard course outcome data that can be
included with the data of students scoring above the cutoff, thereby augmenting the
sample used to estimate validity statistics.

Using computer-generated data to estimate conditional probabilities of success,
Schiel (1998) found that fairly accurate estimates of P could be obtained under
simulated soft truncation when the logistic regression curve was steep. In addition,
distributions that were initially negatively skewed with respect to the predictor (test
score) variable tended to be more resistant to the influence of truncation than did
symmetrical distributions.

When examining estimated optimal cutoff scores, Schiel noted that data with
steep logistic curves tended to produce rcasonably accurate estimates (i.e.. accurate to
within 1 ACT Asscssment scale score point), even with what was termed “40%" soft
truncation. In general, the slope of the logistic curve and the skewness of the marginal
test score distribution appeared to have little to do with the relative accuracy ol the

validity statistics unless soft truncation exceeded 40%.




Schiel and King (1999) studied a somewhat different definition of soft truncauon.
They used a chance-level score below which all student data were deleted (not to be
confused with the cutoft scorc). Moreover, the authors specified that observations that
were below the cutoff score, but nearcr to it, would have a higher probability of being
retained than would those that were nearer to the chance-level score. The rationale for
this was that the nearer a low-scoring student was to the cutoff score, the greater was his
or her likelihood of enrolling in the standard course.

- .With. some exceptions, Schiel and King observed that reasonably accurate

estimates of P could be obtained under varied levels of soft truncation. Although

~

increased degrees of soft truncation were associated with decreased accuracy in P and

A

A, the decrease was not unacceptably large. In addition, reasonably accurate optimal
cutofl scores could often be obtained under 40% soft truncation. In some instances, the
accuracy of cutolf scores was reasonable under soft truncation as high as 80%.
Truncation in a Two-Stage Placement Systent

Previous research has only examined truncation as it occurs below a given cutofl
score in one-stage placement systems. There are. however, situations in which truncation
is present both below and above the cutoff. For example, in two-stage placcment
systems, students are required to take a screening test and, in some instances, a placement

test as well. Such a system is illustrated in Figure 1.
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FIGURE 1. Placement Using Screening and Placement Tests '
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In this placement system, all incoming students are tested with the ACT
Asscssment (screening test), a curriculum-based test used in college admissions and
placement. ACT Mathematics scores are used, for example, as an initial indicator of
whether to place students into either a standard or remedial mathematics course.  As
shown in Panel A of Figure 1. all students scoring at or above the screening test cutoff
score K are placed directly into the standard course. Those scoring below K must instead
take the COMPASS Algebra test (placement test). COMPASS is a computer adaptive
testing system that measures students’ academic skills and knowledge in mathematics,
reading, and writing.

Panel B of Figure 1 illustrates that of those students who must take the placement
test, only students scoring at or above the cutoff score K’ on this test can enroll in the
standard course.  Consequently, both hard and soft truncation of the conditional
placement test score distribution (Region 2) for standard course participants may be
present, as shown in Panel C. Hard truncation occurs below K’, whereas soft truncation
occurs above K'. The dashed curve in Panel C illustrates a nontruncated condition above
K'. Note that soft truncation can also occur below K’, depending on an institution’s
enforcement of cutoff scores.

Soft truncation (as depicted in Panel C) occurs because students who carned high
scores (i.c., 2 K) on the screening test did not have to take the placement test. Hence,
their placement test scores, which likely would have ecqualed or exceeded K', are
“missing.”” Note that the relationship between the scores on the screening test and those
on the placement test is imperfect. For example, most students who earn low scores on

the screening test (i.e., < K) will also earn low scores on the placement test, but some will



carn high placement test scores. If the screening test and placement test were perfectly
correlated, then hard truncation would occur above K’ and there would be no nced for the
placement test.

This study investigated the effects of truncation on the accuracy of validity
statistics for two-stage placement systems.  As described in the following section, the
extent of simulated truncation both below and above K’ was adjusted. [t was expected
that as truncation was increased to the point where it was relatively severe (e.g.. hard
truncation below K' paired with 80% soft truncation above K'), the accuracy of estimated
validity statistics would decrease.  However, given that truncation In a two-stage
placement system differs from that in a one-stage system, it was possible that
relationships between truncation severity and validity statistic accuracy would differ in
the two systems.

Method

Computer-generated data representing a two-stage placement system were used in
this study. The screening test was assumed to have the score scale and properties of an
ACT Assessment subject arca test (e.g., Mathematics). A cutoft score of 20 was selected
for the screening test because of its consistency with cutoffs identified in Houston (1993)
and in ACT’s course placement rescarch (ACT, internal memorandum, September 17,
1998). With certain assumptions concerning the shape of the test score distribution (e.g.,
negative skewness), this cutoft would place approximately 38% of ACT-tested
examinees into the standard course.

It was assumed 1n this study that hypothetical examinees scoring below 20 on the

ACT Mathematics test would take the COMPASS Algebra test. Those scoring at or




above a selected cutofl score on COMPASS Algebra would be placed directly into the
standard course. A target COMPASS cutoff of 32 was used for two rcasons. First, this
cutoff results in approximately the same percentage of examinees enrolling in the
standard course as does the ACT Mathematics cutoff score of 20. Second, the cutoff is
ncar the COMPASS cutoff used by a large state postsecondary system, which uses the
ACT Assessment as a screening test.  Duc to the initial screening based on ACT
Mathematics, this study assumed that conditional, truncated COMPASS distributions
were positively skewed, as tllustrated in Figure 1. Morcover, some of the placement
group (nontruncated) distributions were generated to have positive skew, to mimic that
cxhibited by the distribution of COMPASS Mathematics scores for students nationwide.

Throughout this paper, ACT Mulhmnutics and COMPASS Algebra scores are
used as examples to facilitate discussion, as well as to provide a rationale for selecting
cutoft scores.  However, the results of the study are not necessarily limited to
mathematics tests, or even to these two test batteries.
Generation of Placement Group Data

Nontruncated COMPASS score distributions were generated to form placement
groups. A placement group consists of all students for whom placement decisions must
be made and for whom placement test scores arc available. In this study, data for 11
placement groups were generated.  Placcment group distributions contained standard
course outcomes corresponding to the full range of COMPASS scores, including those
that would have been carned by high-scoring ACT Asscssment examinees had they taken
COMPASS. Validity statistics from these distributions were considered “true” values to

which validity statistics from truncated distributions were compared.



Placement groups were defined according to two sample sizes (100 and 500), two
logistic function slopes (steep and flat), and three levels of skewness of the marginal
distribution of COMPASS scores (approximately zero. medium positive, high positive).
Table 1 describes the characteristics of the 11 placement groups.

TABLE 1

Placement Group Characteristics

Estimated
Placement optimal Logistic model Skewness of marginal
group N cutoff Slope paramecter estimates  COMPASS distribution
1 500 32 Steep bg=-3.67.h,=.12 High pos. .70)
2 500 33 Steep bo=-3.53. b, =11 Medium pos. (.40)
3 500 32 Steep be=-371.b,=.12 Zero (.18)
4 500 27 Flat bg=-0.63.bH,= .02 High pos. (.66)
5 500 30 Flat bo=-1.16,5;=.04 Medium pos. .47)
6 500 39 Flait bho=-149 b, =.04 Zero ¢t
7 100 36 Steep bo=-4.84.h,=.14 High pos. (.70)
8 100 33 Steep bp=-6.36,b;=.19 Medium pos. (.20
9 100 32 Steep bp=-391.5,=.13 Zero (-.01)
10 100 34 Flat bg=-047.b;=.01 High pos. (.82)
11 100 35 Flat bo=-1.88,b,= .06 Zero (-.15)

Data were also generated for a twelfth placement group of size n=100 with a flat
slope and medium skewness. It was found, however, that the maximum A for this group
occurred at a COMPASS score of 16. Such a low optimal cutoff score would not likely
be used in actual placement systems. Moreover, the low optimal cutoff prevented the
development of score intervals for purposes of truncation simulation (see the following
section). For these reasons, data from this particular placement group were not analyzed.

The data generation process consisted of the following steps:

1Y COMPASS scores were generated using methods similar to those in Houston

(1993). Under the condition of high skewness, for example, random variables

X, and X; were drawn from gamma (1.5,4) and gamma (3,0) distributions,

respectively. The COMPASS score X was defined as X, / (X; + X3), and was
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distributed as a beta (1.5,3) random variable. Because X was continuous,
ranging from O to |, it was multiplied by 99 and rounded to the nearest integer
to obtain a COMPASS score. Table | shows the actual skewness for each
placement group.

A logistic regression function was used to calculate P using the obtained
COMPASS score (X). The “slope” parameters (f;) were sclected to be
representative of those obscrved for the data of institutions participating in
ACT’s Course Placement Service. These parameters were fixed to be .12 and
.03, respectively, for the steep and flat slope conditions. The “intercept”
parameters were then found by solving for f in the logistic function
7=[l+exp(=F, — 4, X)|”", with z=.5 and X =32. These parameters were
fixed to be —=3.84 and -.96, respectively, for the steep and flat slope conditions.
Using these slope and intercept parameters to generate data ensured that when
logistic curves were subsequently fitted to the data, their inflection points
(corresponding to the optimal cutoff scores) would occur near a COMPASS
score of 32. Table | contains the (fitted) logistic parameter cstimates.

Using the probability calculated in Step 2, a random variable ¥ was selected
from a Bernoulli distribution with Pr(Y =1) = P, for each value of X. Course
success was represented by Y =1; failure by Y =0.

Steps 1 through 3 were repeated 1000 times. Placement groups of size n=500
or n=100 werc randomly selected from the “population™ of 1000 gencrated
obscrvations consisting of COMPASS score/course outcome (x,y) pairs. The

population was intended to represent the entire freshman class at an institution
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from which a placement group is sclected. More than 1000 observations were
generated initially to replace those that were eliminated because they were
below 16 (chance level).

After the data were generated and placement groups selected, P, A.,S, and an
optimal cutoff score were calculated for each placement group by first fitting logistic
curves to the generated data. Note that most optimal cutoffs varied from the target cutoff
of 32 due to random error (seec Table ).

Truncation Simulation

Truncation below K'. For the portion of the conditional COMPASS distribution
below K’, two truncation conditions were used. First, a baseline truncation condition was
defined similar to that in Schicl and King (1999), where 0%, 25%, 50%, and 75% of
obscrvations were removed from 4 respective score intervals that were progressively
more distant from K’. Conditions utilizing the baseline condition paired with cach level
of truncation above K’ arc illustrated in Panel A of Figure 2. The second truncation

condition used was hard truncation, in which all observations below K’ werce deleted (see

Pancl B of Figure 2).



FIGURE 2. Score Distributions Under Seven Truncation Conditions

A: Baseline Truncation Below K Paired With Truncation Conditions Above K’
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Score intervals were defined using cmpirical data consisting of 26,635
observations from examinees who took both the ACT Assessment and COMPASS, and
who scored below 20 on ACT Mathematics. Each of the four intervals below K’ for the
cmpirical data encompassed an approximately equal proportion of observations falling
between the chance-level score and K’. The intervals were: 16-18, 19-22, 23-26, and 27-
3). Intervals below K’ for the generated (placement group) data varied somewhat from
these, due to the slightly different shapes of the respective distributions, but were

similarly intended to encompass approximately equal proportions of obscrvations.
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Truncation above K'. Above K', five truncation conditions were paired with the
baseline condition below K, as illustrated in Panel A of Figure 2. The COMPASS score
intervals were defined by examining a percentage polygon of the empirical COMPASS
data described above. Endpoints of the intervals corresponded to slight fluctuations in
the otherwise smooth curve of the polygon. The intervals were: 32-39, 40-48, 49-61, and
62-99, and they contained 46%, 32%, 14%, and 8%, respectively, of the obscrvations
above K'. Intervals for placement groups were defined so that they had widths similar to
those of the empirical distribution.  For placement groups with estimated optimal cutoft
scores other than 32, widths for the first 3 intervals were maintained, although the
locations of the intervals changed as a functton of K'.

The empirical data used to define the four intervals above K' were considered to
represent an “intermediate” or “typical” truncation condition, which we called a “60%”
truncation condition, It seems reasonable (o assume that this degree of truncation would
occur above the cutoff in many two-stage placement systems. Of course, truncation
could be more or less severe than this. We wanted the intervals in the (simulated)
mtermediate truncation condition to contain percentages of observations as noted above
(46%, 32%. 14%, and 8%). In addition, we wanted truncation to proceed in 20%
increments starting from a bascline truncation condition. For example, 20% of the
observations from the baseline condition would be randomly selected and then removed
to create a “20%" truncation condition. Twenty percent of the observations from the
20% condition would then be removed to create a “40%™ condition, and so on. In order
to accomplish these goals, we defined the bascline condition above K’ such that 10%,

35%, 75%, and 85% of observations were removed from four respective intervals



14

progressively more distant from K’ in the nontruncated placement group distribution. An
80% truncation condition was used to cxamine the cffects of truncation beyond the
intermediate condition.

Due to the fact that placement group distributions were similar in shape but not
identical, maintaining interval widths above K" and using the same amount of truncation
to create baseline conditions resulted in somewhat different percentages of observations
for subscquent truncation conditions. However, these differences were not substantial
and therefore did not likely influence the results.

Panel B of Figure 2 illustrates that hard truncation below K" was paired with two
truncation conditions above K’'. These combinations were choscn to represent moderate
and extreme truncation conditions.

Five hundred data sets of appropriate sample size were simulated for each
combination of the 11 placement groups and 7 truncation conditions, by randomly
sclecting and then removing observations within cach of the intervals shown in Figure 2.
Tablc 2 contains truncation sample sizes, by placement group and truncation condition.
Depending on the shape of the placement group distribution and the location of the
optimal cutoff score, truncation samples varicd considerably in size, ranging from 10
(Placement Group 7, Hard/80%; Placement Group 10, Hard/80%) to 272 (Placement

Group 1, Baseline/baseline).
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TABLE 2

Truncation Sample Sizes, by Placement Group and Truncation Condition

Placement N before Hard/ Hard/ DBaseline/ Baseline/ Baseline/ Baseline/  Baseline/

Group truncation  baseline 80 % baseline 20% 40 % 60 % 80%
1 500 160 65 272 239 214 193 177
2 500 157 65 256 224 199 179 164
3 500 170 6Y 221 186 159 137 120
4 500 172 70 256 221 194 171 154
s 500 174 72 251 216 189 166 149
6 500 164 68 246 213 187 165 150
7 100 25 10 60 54 51 48 45
3 100 28 11 47 4] 38 33 30
9 100 35 15 45 37 32 27 25
10 100 26 10 55 50 45 42 39
11 100 28 12 4] 35 31 29 25

Figure A in the appendix provides additional information about the truncation
process. It illustrates this process for Placement Group 1, beginning with no truncation
and ending with the Hard/80% truncation condition. Figure A shows how the truncation
sample sizes in Table 2 were obtained for this particular placement group.

Comparing Placement Group and Truncation Sample Validity Statistics

Logistic curves were fit to each of the 500 data sets that were simulated for cach
placement group/truncation condition combination. Validity statistics were calculated
using the methods described in Sawyer (1996). Median validity statistics (over 500
simulations) were then calculated for cach truncation condition and compared to those
obtained for the respective placement groups, using procedures described in Schiel and
King (1999). For example, the placement group Ps were subtracted from the
baseline/80% truncation condition (median) P s at each COMPASS score point (16-99).

The (unweighted) mean difference over 84 score points (AP) was then calculated, and
the mean of the absolute values of the differences was also calculated. Finally, estimated

optimal cutoff scores were identified for the placement group (the “true™ cutoff) and for
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each truncation condition. Differences between optimal cutoffs for each truncation
condition and its corresponding true optimal cutoff were calculated.
Results

Estimated Probabilities of Success

Figure 3 illustrates the ci'l'ccls of truncation on P for Placement Group 3 (steep
slope, zero skewness, n=500). Of all the placement groups, this one was least affected by
truncation with respect to estimating P. The solid curve in the figure represents
probabilitics for the nontruncated placement group. Probabilities for the seven truncation

conditions arc represented by dashed or dotted curves, which are nearly identical.

~

Clearly, truncation had little effect on estimating £ for this placement group.
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FIGURE 3. Effects of Truncation on
Estimated Conditional Probability of Success

(Placement Group 3: Steep Slope, Zero Skewness, N=500)
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Contrast the logistic regression curves for Placement Group 3 with those of Group
10, which are displayed in Figure 4. Under these conditions (flat slope, high skewness,
n=100), P was relatively poorly estimated. The hard/80% truncation condition (which

included only 10 observations) had the least accurate estimates of P in this figure.




FIGURE 4. Effects of Truncation on
Estimated Conditional Probability of Success

(Placement Group 10: Flat Slope, High Skewness, N=100}
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Table 3 summarizes the effects of truncation on P for all placement groups.

Consistent with previous truncation research, placement groups with large samples

yielded more accurate estimates of P than did those with small samples. Irrespective of

sample size, steep slope conditions produced more accurate estimates than did flat slope

~

conditions. This finding is also consistent with previous research. With respect to P, the

three groups least affected by truncation were 1, 2, and 3; the three groups most affected
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were 8, 11, and 10. Mean ‘Af)’ ranged from .0003 (Group 3; baselinc/60%) to .209

~

(Group 10, hard/80%). The relationship between extent of truncation and accuracy of P
was similar to that identified in previous research, in that increased truncation was
associated with decreased P accuracy.

TABLE 3

Effects of Truncation on Estimated Probability of Success,
by Placement Group and Truncation Condition

Placement group Truncation

Hard/ Hard/ Baseline/ Bascline/ Bascline/ Baseline/ Baseline/

No. Slope  Skew. N Mecan baseline 80% baseline 20% 40% 60 % 80%
I Swep High 500 AP 0031 -0003 0005 0013 S0006 -0021 -0027
’Af" 0031 0036 0015 0013 0007 0021 0028

2 Siep Med. 500 AP -0031 0063 -0036  -0071  -0085  -Q082 0079
’AP‘ 0104 0060 0096 0094 o117 0110 0106

3 Sweep  Zero SOD AP 0037 0003 0029 0009 0000 0000 0000
tA.f" 0053 0029 0008 0009 0006 0003 0019

4 Fla High 500 AP -0101  -0084  -0059  -0125  -0160  -0104  -0066
a8 o101 0059 0099 0139 0178 0112 0097

S Fla Med 500 AP 0048 0058 0053 0042 0027 0055 0051
|Aﬁ| 0364 0396 0100 0084 0056 0068 0053

6  Fla  Zero 500 AP -0189 0008 -0194 0033 0078 0135 0203
8 0230 0222 0173 0191 0173 0182 0204

7 Swep  High 100 AP -0108  -0067  -0168 20116 -0144  -0179 0284
)Aﬁ{ 0464 0622 0067 0117 0144 0184 0291

8  Steep  Med. 100 AP 0170 0079 -.0229 0105 0113 0121 0132
)Aﬁ\ 0475 0575 0193 0211 0221 0216 0229

9 Swep  Zero 100 AP -0084 0070 -0205 0076 0110 0147 0145
’Af)‘ 0145 0429 0077 0076 0110 0147 0145

10 Flat  High 100 AP 0443 0368 0629 0275 0362 0263 0695
| aso7 2000 0469 0340 0381 0307 0754

11 Fa  Zero 100 AP 0375 0231 0325 0266 0264 0292 0351
|AI5| 0375 035 0286 0350 0406 0393 0525
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Estimated Accuracy Rates

Figure § displays the effects of truncation on A for Placcment Group 3 (steep

slope, zero skewness, n=500), whose cstimates were more accurate overall than those of

other groups. The maximum A for this placcment group (corresponding to the “true™
cutofl score) occurred at a COMPASS score of 32. For all truncation conditions except
one (hard/bascline), the estimated optimal cutoff score was cquivalent to the true optimal
cutoff. Although not discernible in the figure, the optimal cutoff for the Hard/baseline

condition was underestimated by one COMPASS score point.



FIGURE 5. Eftects of Truncation on
Estimated Accuracy Rate

(Placement Group 3: Steep Slope, Zero Skewness, N=500)
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The effects of truncation on A for a placement group with relatively inaccurate
estimates (Group 10; flat slope, high skewness, n=100} are shown in Figure 6. Locations
of maximum A for the Hard/baseline and Hard/80% conditions (at COMPASS scores of
46 and 47, respectively) were considerably different from those for the other truncation

conditions (between scores of 35 and 38).
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FIGURE 6. Effects of Truncation on
Estimated Accuracy Rate

(Placement Group 10: Flat Slope, High Skewness, N=100)
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The effects of truncation on A are summarized for all placement groups in Table
4. As was found for P . more precise cstimates of A were associated with large sample
placement groups. Steep slope placement groups generally had more precise estimates of
As than did {lal slope placement groups, irrespective of sample size, but there were some

exceptions. For example, As for Group 4 (flat slope, high skewness, n=500) were

somcwhat more precise than those for Group 2 (steep slope, medium skewness, n=500).
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The three placement groups with the most precise estimates of A were 1, 3, and 4; the
lcast precise estimates were found for Groups 7, 10, and 11. Mean 'Af\‘ ranged from

0003 (Placement Group 3; baseline/40% and bascline/60%) to .1216 (Group 10

hard/80%}).

TABLE 4

Effects of Truncation on Estimated Accuracy Rate,
by Placement Group and Truncation Condition

Placement group

Truncation

Hard/ Hard/ Baseline/ Baseline/ Baseline/ Baseline/ DBaseline/

No.  Slope  Skew. N  Mean Dbaseline 80% baseline 20% 40 % 60 % 80 %
1 Steep High 500 AA -.0028 0020 - 0007 0008 0001 0012 0012
L\le 0037 0027 0000 0014 0006 0025 0031

2 Steep Med. S00 L\/i -.0035 -.0028 -.0007 0004 -.0000 0008 -.0002
lL\/i’ 0059 0042 0074 (0080 0094 L0098 0084

3 Steep Zero S00 . !.\/’i -.0032 -.0015 -.0002 -.0007 -.0002 0003 0001
‘Ml 20037 0018 0005 .0008 {0003 0003 0006

4 Flat High 500 Af\ 0018 0047 -.0009 -.0020 0021 -.0020 -.0031
|L\/i 0049 0063 0040 0043 0063 0029 0034

S Flat Med. 500 M 0204 0213 0033 0032 0016 0004 -0012
lL\fi‘ 0213 0223 0035 .0032 0019 0034 0039

6 Flat Zero 500 L\/i 013 0100 -.0082 -.0098 -.0097 -.0101 -0101
’A/A\‘ 0189 0183 L0087 0106 O11s 0142 077

7 Steep High 100 M 0391 0471 L0038 0063 0074 {0083 0100
yA/i’ 0433 {0552 0077 0130 0149 0195 L0278

8 Steep Med. 100 M 0314 0397 0020 -.0008 0002 -.0023 -.0016
[A/i| 0387 0508 0080 0119 0109 0134 0131
9 Steep Zero 100 M 0077 017 -.0042 -0043 -.0064 -.0077 -.0080
|A/i| 0091 0140 0050 0073 0112 0143 0162

10 Flal High 100) AA .0897 b146 0122 0080 0017 0047 0071
’/.\/A\ {0957 1216 0139 0100 0135 0091 0246

11 Flat Zero 100 A/i -.0131 -.0035 0023 0041 0052 0023 0067
lA/i‘ 0263 0214 0218 0260 {0289 0297 .0358




Optimal Cutoff Scores
Estimated optimal cutoff scores are displayed in Table 5, by placement group and
truncation condition. The difference between the estimated optimal cutoff for a particular
truncation condition and the truc cutoff (shown in the “None™ column for cach placement
group) is displayed in parentheses beneath the corresponding cutoff.
TA_{B_LE 5

Estimated Optimal Cutoff Scores, by Placement Group
(Difference from ‘“I'rue” Cutoff)

Placement group Truncation
Hard/ Hard/ Bascline/ Baseline/ Baseline/  Baseline/  Baseline/

No.  Slope  Skew. N None  baseline  80% haseline 204 % 40 % 60 % 80 %
! Steep  High S00 32 32 32 32 32 32 32 33
(M) (V) (0 (0) (0) Q) (1)

2 Steep Med. 500 i3 33 33 33 34 34 34 34
(0) (M () (n 4] (1) ()

3 Swep  Zera o 500 32 31 2 32 32 2 32 2
-1 (0 (V) () (0 (0) (0)

4 Flat High 500 27 26 25 26 27 25 27 25
(-1) (-2) - () (-2) () (-2)

5 Flat Med. S060 30 33 32 30 30. 31 30 - 29
3) (2) (0) (0 (h () -

6 Flat Zero 500 39 43 43 38 36 35 38 36
(4) 4) (-1) (-3) (-4) -1) (-3}

7 Stecep High 100 36 37 39 36 36 37 37 37
n 3) () )] (h (h (1)

8 Steep Med. 100 33 36 36 33 32 32 32 32
(3) 3) (h -D -1 (-1) (-1

9  Swep Zero 100 32 3 34 3 3 30 3l 3l
: (1) 2) . -0 -1 - (D) -1 (-1)

[0 Tat  High 100 34 46 47 38 36 36 35 35
(12) (13) (4) (2) (2) (1) (h

11 Flat Zero 100 35 3t 29 34 34° 37 33 35

(-4) (-6) N (G19) (2) (-2) ()]
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Optimal cutoff scores were estimated very accurately for Placement Groups [, 2,
and 3 over all truncation conditions, deviating no more than one COMPASS scorc point
from the true cutoff. These results are well within one standard error of measurement
(SEM) for COMPASS, which ranges from about five to six for the Writing Skills,
Reading, and Algebra tests. Cutoffs were accurately estimated for size n=100 placement
groups when the logistic curve was steep. Interestingly, the results for Group 11 were
more accurate than those for Group 6; these groups differed only in their initial sample
sizes (100 and 500. respectively). Generally, one would expect more accurate cutoff
estimales to be associated with large placement groups.

The only placement groups yielding somewhat inaccurate cutoft estimates (i.e., 6
or more points above or below the true cutoff) were Groups 10 and I, both of which had
flat logistic curves and small sample sizes. The Hard/80% condition produced an optimal
cutoff that overestimated the Placement Group 10 true cutoff by 13 scale score points; a
12-point overestimate and a 6-point underestimate were produced by the Hard/bascline
and Hard/80% conditions in Groups 10 and 11, respectively.

Estimated Success Rates

The most accurate estimates of S, as measured by mean iASl , were found for

Placement Groups 1, 3, and 9. These groups had steep logistic curves in common, but
differed in initial sample size; Groups | and 3 contained 500 observations, whereas
Group 9 contained 100. The lcast accurate estimates of S were found for Groups 7, 10,
and 11, all of which initially contained 100 observations. Two of thesc groups had tlat

logistic curves.
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The characteristics associated with accurate estimates of S. with a few
exceptions, were similar to those associated with accurate A and P: large placement
group samples and steep logistic curves. Mean ‘AS’ ranged from .0001 (Group 3;

bascline/60%) to .1784 (Group 10; hard/80%). These statistics arc summarized, by
placement group, in Table A in the appendix.
Discussion

It was shown in this study that validity smtistics and optimal cutoff scores can be
estimated with reasonable accuracy from the truncated data of two-stage course
placement systems. For cxample, optimal cutoftf scores were under- or overestimated by
no more than 4 COMPASS score points, over all combinations of distribution shape and
logistic regression curve. even when baseline truncation below K' was paired with 80%
truncation ubove K'. It was only when hard truncation was paired with either baseline or
80% truncation that optimal cutoff score estimates differed substantially from true
cutoffs. Morcover, substantial differences in estimated optimal and true cutoffs were
found only for placement groups having flat logistic curves and small sample sizes under
these two truncation conditions. Consistent with previous rescarch (Schiel, 1998; Schiel
& King, 1999), more accurate estimates of validity statistics and optimal cutoffs were
associated with large sample, steep logistic curve placement groups.

The three least accurate estimated optimal cutoff scores (within 12, 13, and 6
score points of corresponding true cutofts) occurred for truncation samples containing 26,
10, and 12 obscrvations, respectively. It is unlikely that a postsecondary institution
would use logistic regression and decision theory to evaluate test score/course outcome

relationships for such small samples. because the accuracy of estimated logistic
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regression parameters declines significantly for very small sample sizes (Houston, 1993).
Optimal cutoff scores over- or underestimated to this extent therefore have a small
likelihood of occurring in practice. A more typical over- or underestimate, given the
results of this study, would be about four COMPASS score points.

What are the practical implications of an institution employing an optimal cutoft
score for a standard course that is over- or underestimated by four COMPASS score
points? One way to answer this question is by examining accuracy rates. Considering
Placcment Group 10 (flat slope, high skewness, n=100) as an cxample, the
Baseline/bascline truncation condition, based on 55 observations, yielded a median
estimated optimal cutoff of 38. The median A corresponding to this cutoff indicated that

58.2% of students would be correctly placed if it were used. The true cutoff for Group 10

~

was 34; the corresponding A, expressed as a percentage, was 58.1. Thus, in this
instance. there would be no substantive effect of using a cutoft score that was

underestimated by four COMPASS score points. Note that absolute differences between

the median A's for the other placement group that had four-point over- or underestimates
(Group 6; flat slope, zero skewness, n=500) were .005 or less, similarly suggesting no
substantive effect of using a cutoff score within 4 score points of the true cutoff.
Postsecondary institutions that experiencc moderate truncation  (i.e.,
baseline/bascline to baseline/80%) in two-stage course placement systems can expect to
estimate validity statistics and optimal cutoff scores with reasonable accuracy. It is only
when truncation is extreme (i.e., hard/bascline or hard/80%), logistic regression curves
are flat, and sample sizes are very small (c.g., about 25 or less) that institutions risk

obtaining optimal cutoff scores that differ substantively from thosc of nontruncated



placement group distributions. One might consider a “substantive” difference to be two

or more percentage points between the A corresponding to a true cutoff and the A for an

estimated optimal cutoff. In a placement group consisting of about 100 students, for

example, a two-percentage point decrease in A would mean that about 2 students would
be incorrectly placed as a result of estimation error.

In a two-stage course placement system. truncation occurs both below and above
the cutoff score on the placement test, thereby difterentiating such a system from a one-
stage system.  One might therefore expect that the cffect of truncation on estimated
validity statistics in a two-stage system would differ from that occurring in a one-stage
system, which i1s indeed the case. When the results of this study are compared with those
of previous studics that examined the cffects of truncation in one-stage systems, one
noteworthy difference pertains to the accuracy of the respective optimal cutoff scores. In
Schiel and King’s (1999) one-stage system rescarch, for example, the largest difference
between a true cutoff and an estimated optimal cutoff was 17 ACT Assessment score
points. This is larger than the largest difference observed in the present study (13
COMPASS score points; Group 10, hard/80%). Both of these results were obtained from
placement groups with flat logistic curves and a high degree of skewness.

The difference between these results becomes intriguing when one considers that
the Schiel and King result was based on a joint distribution of ACT scores and course
outcomes containing considerably more observations than did the COMPASS
score/course outcome distribution in the present study (330 vs. 10, respectively). One
might expect a more accurate estimate to be associated with a larger sample, but this is

clearly not the case. Moreover, the score scales of the two instruments differ
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considerably. The ACT Assessment score scale has 36 possible points. and a SEM (for
the Composite) of about 1. The COMPASS score scale, on the other hand, has 84
possible points and a SEM of about 6. These characteristics suggest that the
underestimation of the optimal ACT cutoff in the example from Schicl and King is
considerably greater, in an absolute sense, {rom the underestimation occurring in the
COMPASS cxample in the present study.

What might account for the difference between two-stage and onc-stage
placement system results? One possibility is the shape of the test score/course outcome
distribution; the ACT Assessment/course outcome distribution in the example from the
former study was highly negatively skewed, whereas the COMPASS/course outcome
distribution in the present study example is highly positively skewed. In onc-stage
systems, higher negative skewness 1s associated with more accurate estimates of validity
statistics.  The reason for this is that when high negative skewness is present, a greater
percentage of observations lie in the nontruncated region of the joint distribution. Such
an association 1s less evident in a two-stage system, because the skewness 1s positive and
truncation occurs in both tails of the distribution. It is possible that future rescarch could
provide additional insight into rclationships between truncation and distribution shape.
Nevertheless, it 1s important for interpretational purposes to consider that one-stage
placement systems are inherently different from two-stage systems. Given the findings
presented here, two-stage systems appear to be more resistant to the effects of truncation
in the context of estimating course placement validity statistics.

To alleviate estimation problems that might result from soft truncation above X',

institutions could consider administering the placement test to a group of students (e.g.,
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an entering freshman class) who scored at or above K on the screcning test. Course
placement decisions would not have to be changed for these students. Institutions could
then estimate validity statistics and optimal cutoff scores from a distribution of placement
test scores and course outcomes that was not truncated above K'. A disadvantage to this
approach i1s, of course, that institutions would have to test a larger number of students
than vsual with the placement test. Such an approach might be of interest to institutions
whose data are severely truncated. based on small samples, and yield flat logistic curves,
as they have the greatest risk of estimating inaccurate optimal cutoff scores. Most
institutions, however, are not likely to benefit much from administering the placement
test to students who scored at or above K, because truncation will affect their estimates
only minimally.

In one-stage placement systems, A is a function of conditional probabilities
estimated from the data of students who completed the standard course and the empirical
distribution of test scores for the placcment group, which includes the scores of students
who did not complete the standard course. In two-stage systems, although both a
screening test and a placement test arc used, A is typically calculated just as it is in a
one-stage system, using the distribution of placement test scores only. As a consequence,
this statistic does not reflect the standard course outcomes of those students who scored

high on the screening test, were placed directly into the standard course, and therefore did

not have to take the placement test. This A could therefore differ somewhat from one

that was instead based on both screening and placement test data.

Research that examines alternative ways of calculating A in two-stage placement

systems would be beneficial, but would not likely alter the conclusions reached in this
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study, which controlled for this potential methodological problem. The placement groups
in this study differed deliberately from those of actual two-stage placement systems in
that they contained test scores and standard course outcomes for the fult distribution of
placement test scores, including those that would likely have been earned by students
who earned high screening test scores and did not take the placement test. Consequently,
the placement test score distributions for the placement groups, which would ordinarily
be truncated with respect to the screening test in a two-stage system, were not truncated
in this study. This allowed more precise comparisons between true (placement group)
A's and those reflecting the effects of truncation.

Another reason that alternative methods of calculating A would not change this
study’s conclusions is that the effects of truncation were investigated in this study by
considering differences between As (and other validity statistics) calculated when
truncation was and was not present. The size of such differences should remain relatively
constant across different methods of calcutating a particular validity statistic, provided
that the same method is applicd consistently under both nontruncated and truncated

conditions.
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TABLE A

Effects of Truncation on Estimated Success Rate,
by Placement Group and Truncation Condition

Placement group

Truncation

Hard/ Hard/ Baseline/ Baseline/ Baseline/ Baseline/ Baseline/

No. Slope  Skew. N  Mean_ baseline  80% baseline 20% 40% 60 % 80 %
[ Swep  High 500 AS 0016 0007 0009 20010 0006 -0018  -.0027
AS 0016 0017 0009 0010 0006 0018 0027

2 Swep  Med. 500 AS 0072 -0058  -.0083 S0085 0104 -0099  -.0095
‘Aﬁ’ 0072 0058 0083 0085 0104 0099 0095

3 Sweep  Zero  S00 AS 0004 0009 -0003 0002 0002 ~0000 0007
/_\.é‘ 0012 0009 0003 0002 0002 0001 0007

4 Fla High S00 AS L0113 -0042 0016 0164 0210 -0138  -0103
L\S't 0l13 0042 0116 0164 0210 0138 0103

S Fla Mcd 500 AS 0244 0265 0101 0080 0053 0077 0060
AS 0263 0285 0101 0080 0053 0077 0060

6  Flau Zero 500 AS 0073 -0088  -.0103 0094 -.0040 0022 0111
LA§‘ o1 0nY 0113 0112 0080 0078 0111

7 Swep  High 100 AS 0087 0057 -.0065 0118 -0136  -0190  -.0305
‘L\.§| 0188 0245 0065 0118 0136 0190 0305

§  Siecep  Med. 100 AS 0004 -0045 0071 0084 0086 0090 0096
}Aﬁ\ 0107 0148 0071 0084 0086 0090 0096

9 Sieep  Zero 100 AS 0012 0046 0006 0035 0051 0076 0090
‘L\S" 0039 0078 0012 0035 0051 0076 0090

10 Fla High 100 AS 1229 1641 0573 0418 0489 0382 0965
AS 1352 1784 0573 0418 0489 0382 0965

Il Flau  Zero 100 AS 0227 0327 0326 0391 0426 0426 0550
AS 0227 0327 0326 039) 0426 0426 0550
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FIGURE A. Truncation Example . .
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FIGURE A (continued). Truncation Example

(Placement Group 1: Steep slope, high skewness, n=500)
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FIGURE A (continued). Truncation Example

(Placement Group 1: Steep slope, high skewness, n=500)
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